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1. INTRODUCTION

During more than sixty years now, there has been a lot of activity regarding the fixed point
theory of nonexpansive (that is, 1-Lipschitz) mappings. See, for example, [3, 5, 11, 13, 14,
17, 18, 19, 20, 23, 24, 25, 28, 29] and the references cited therein. This activity stems from
Banach’s classical theorem [1] concerning the existence of a unique fixed point for a strict
contraction. It also covers the convergence of (inexact) iterates of a nonexpansive mapping to
one of its fixed points. Since that seminal result, many developments have taken place in this
field including, in particular, studies of feasibility and common fixed point problems, which find
important applications in engineering and medical sciences [8, 12, 15, 26, 27, 28, 29].

In [22], it was established the convergence of every inexact orbit of a strict contraction (that
is, c-Lipschitz where ¢ € (0, 1)) mapping with summable errors. This result was generalized in
[5] where it was shown that if any exact orbit of a nonexpansive mapping converges to its fixed
point, then this convergence property also holds for its inexact orbits with summable errors.
This result was obtained for a self-mapping of a complete metric space X. In [30], the result
of [5] was generalized for nonexpansive mappings which take a nonempty and closed subset
K of the complete metric space X into X. The result of [30] was obtained for a sequence of
inexact iterates such that an r-neighborhood of each iterate is contained in K where r > 0 is
a constant which does not depend on an iterate but on the whole sequence of iterates. In the
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present paper we prove the result of [30] under weaker assumptions. Here for a given sequence
of inexact iterates {x;}7* , we assume only that for a given natural number n there exists 6 > 0
and an infinite set of natural numbers E such that for every m € E and every i € [m,m+ ng| the
0-neighborhood of x; is contained in K.

In this section we discuss the results of [5, 30] and their applications. In out paper we use the
following notation.

Let (X,p) be a complete metric space. For each x € X and each nonempty set B C X, put

p(x.B) = inf{p(x,y) : y € B}.
For each x € X and each r > 0 set

B(x,r)={y€X: p(x,y) <r}.
For each mapping A : X — X, let A% = x for all x € X.

In [5], it was studied the influence of errors on the convergence of orbits of nonexpansive
mappings in metric spaces and it was obtained the following result (see also Theorem 2.72 of
[25]).

Theorem 1.1. Let A : X — X satisfy
p(Ax,Ay) < p(x,y) forall x,y € X,

let F(A) be the set of all fixed points of A and let for each x € X, the sequence {A"x};;_,
converges in (X, p).
Assume that {x,};_o C X, {rn}m_y C (0,00) satisfies

Y r<os
n=0
and that

P (xXn41,A%,) <1y, n=0,1,....
Then the sequence {x,}, _, converges to a fixed point of A in (X,p).

In [30], we generalized this result for nonexpansive mappings which take a nonempty, closed
subset of the complete metric space X into X. More precisely, the following result was obtained.

Theorem 1.2. Assume that K is a nonempty closed subset of X, A : K — X satisfies
P(Ax.AY) < p(x.y) for all x,y € K,

F(A) is the set of all fixed points of A and that for each x € X, if the sequence {A"x}> | is
well-defined, then it converges in (X, p).

Let
{xn}‘::() - K7
F>0, {r.}r_y C (0,00) satisfy
Z Ip < oo,
n=0

p(xn+1,Axn) < Tn, I’l:(),l,...
and let
B(x,,7) C K for all sufficiently large natural numbers n.

Then the sequence {x, };_, converges to a fixed point of A in (X, p).
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Theorem 1.1 found interesting applications and is an important ingredient in superiorization
and perturbation resilience of algorithms. See [2, 4, 6, 7, 9, 10, 16, 21] and the references
mentioned therein. The superiorization methodology works by taking an iterative algorithm,
investigating its perturbation resilience, and then using proactively such perturbations in order
to “force” the perturbed algorithm to do in addition to its original task something useful. This
methodology can be explained by the following result on convergence of inexact iterates.

Assume that (X, || - ||) is a Banach space, p(x,y) = ||[x—y|| for all x,y € X, for each x € X, the

sequence {A"x}>_, converges in the norm topology. xo € X, {Bx};>, is a sequence of positive
numbers satisfying

Z ﬁk < oo, (11)
k=0
{vk}7_o C X is a norm bounded sequence and that for any integer k > 0,
Xk+1 :A(xk+ﬁkvk). (1.2)

Then it follows from Theorem 1.1 that the sequence {x};>_, converges in the norm topology of
X and its limit is a fixed point of A. In this case the mapping A is called bounded perturbations
resilient (see [6] and Definition 10 of [9]). In other words, if exact iterates of a nonexpansive
mapping converge, then its inexact iterates with bounded summable perturbations converge too.

Now assume that xo € X and the sequence {f};>_, satisfying (1.1) are given and we need
to find an approximate fixed point of A. In order to meet this goal we construct a sequence
{xx}7_, defined by (1.2). Under an appropriate choice of the bounded sequence {v;}; . the
sequence {xx};>_, possesses some useful property. For example, the sequence { f(x¢)}7_; can
be decreasing, where f is a given function.

2. THE MAIN RESULTS

Assume that (X, p) is a complete metric space, K C X is a nonempty, closed set and that a
mapping 7 : K — X satisfies

p(T(x),T(y)) < p(x,y) for each x,y € K. (2.1)
Set
F(T)={x€K: T(x)=x} (2.2)
and fix
0 cX.
We assume that
F(T)#0

and that the following assumption holds:
(A1) For each M, € > 0, there exists a natural number n(€,M) such that for each finite se-
quence {x;}"_, C K satisfying
p(x07 9) <M
and
Xip1=T(x;),i=0,....,n(M,e)—1
the inequality
p(xn(M,S)vF) <€
is true.
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It is well-known that (A1) holds if T is a contractive type mapping [25]. In this paper, we
prove the following results.

Theorem 2.1. Assume that {x;}X , satisfies

o)

Y. p(T(x).3111) < oo (23)
i=0

and that the following property holds:
(P1) for each natural number ny, there exists 0 > 0 such that, for each integer m > 0, there
exists and integer n > m such that

B(x;,0) CK,i=n,...,n+ng.

Then there exists
limx; € F(T).

i—oo
Theorem 2.1 is proved in Section 3. The next theorem is proved in Section 4.

Theorem 2.2. Assume that M > 0, a sequence {x;}7> , C K satisfies
lim p (7 (x;),xi41) = 0 (2.4)

and that the following assumption holds:
(A2) for each natural number ny there exist & > 0 and a strictly increasing sequence of
natural numbers {k;}3 | such that for each integer i > 1,

p('xki?G) <M
and
B(Xj,5> CK, j=ki,...,ki+ng.
Then there exists
liminfp (x;, F(T)) = 0.

i—oo
Theorem 2.3. Assume that M > 0, a sequence {x;}7>, C K satisfies
lim p (7 (x;), xi1) = 0 (2.5)

and that the following assumption holds:
(A3) for each natural number ny there exist & > 0 and a strictly increasing sequence of
natural numbers {k;}3> | such that

sup{kivi —ki: i=1,2,...} <oo
and for each integer i > 1,
p('xki?G) <M
and
B()Cj,6> CK, j=ki....,ki+ng.
Then there exists
lim p(x;, F(T)) = 0.

i—oo
Theorem 2.3 is proved in Section 5. Note that property (P1) and assumptions (A2) and (A3)
hold for a sequence of iterates such that there distances to the boundary of K are bounded by a
positive constant.
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3. PROOF OF THEOREM 2.1

Fix
z€ F(T). (3.1)
By (2.1) and (3.1), for each integer i > 0,
p(zxiv1) < p(z, T () +p(T(xi), xiv1) < p(zx:0) + (T (xi), Xi1))- (3.2)
In view of (3.2), for each integer j > 1,
P(z,x)) < p(z,x0) + Y p(xiy1, T (x)). (3.3)
i=0
Set
M = p(z,%0) + Y p(xit1, T (x))- (3.4)
i=0

Let € € (0,1). By assumption (A1), there exists a natural number ng such that the following
property holds:
(P2) for each finite sequence {y;};°, C K satisfying

p(yo,z) <M
and
Vit1 =T (i), i=0,...,n9—1
the inequality
p()’novF) <e/4
is true.

Property (P1) implies that there exists
0 €(0,e/8)

such that the following property holds:
(P3) for each integer m > O there exists an integer n > m such that

B(x;,0) CK,i=n,...,n+ng.
By (2.3), there exists an integer ny > 0 such that
Z p(T(xi),x,-H) < é. (3.5)
i=ny

Property (P3) implies that there exists an integer

ny > ny
such that
B(x;,0) CK, i=ny,...,ny+ny. (3.6)
Set
Yny = Xny- (3.7)

It follows from (3.3), (3.4) and (3.7) that
p(ynzaz):p(xnz,Z) SM (38)
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Set
)’n2+1 - T(ynz) (39)
which is well defined in view of (3.6). Equations (3.5)-(3.7) and (3.9) imply that
P (15 Yy 1) = P (Xny+1, T (X)) < 6 (3.10)
and
Y41 € K. (3.11)
By induction, we set for each integer p > n,
Yp+1 = T(yp) (3.12)

is y, exists and belongs to K.
Assume that p € {ny+1,...,n0+ns},

vy €K (3.13)
exists and
p—1
POpp) < Y plaiet, T(x)). (3.14)

i=ny
(In view of (3.10) and (3.11), our assumption holds for p = n; +1.) By (3.12) and (3.13), y,+1
is defined. Equations (2.1), (3.12) and (3.14) imply that

POp+1:%p+1) = P(T(p)s T(xp)) + P (T (xp), Xp+1)
<PpWpsxp) + P (T (xp),Xpt1)

< Z p (T (x1),%xi+1) +P (T (xp), Xp+1) Z (T (xi),%i11)- (3.15)

ln2 l}’l2

In view of (3.5) and (3.15), we have

(o)

Pprisxpr1) < Y, p(T(xi),xi41) < 8.

i=ny
If p < ng+ny, we obtain from (3.6) that y,; € K. Thus, by induction, we have that
Yp €K7 pznz,...,no+n2

are well defined and (3.14) holds for all p =n, 4+ 1,...,n2 +ng. By (3.5), (3.14) and inequality
ny > ny, we have

(o] (o]

p<xn2+n07yn2+"o) < Z P (T (xi),xi41) < Z P (T (xi),xi+1) <0 <¢€/8. (3.16)

i=nyp i=ny
Property (P2) and (3.8) and (3.12) imply that p (yuy+n,, F(T)) < €/4. This together with (3.16)
implies that
P (Xny4ny, F) < €/44€/8. (3.17)
By (3.17), there exists
z€F(T) (3.18)
such that
P (Xng4n,,2) < €/2. (3.19)



CONVERGENCE OF INEXACT ORBITS OF NONEXPANSIVE MAPPINGS 7
It follows from (2.1) and (3.18) that for each integer p > ng+ny

P(pe1,2) < P(T () 3pi1) +P(T(5p).2) < T (5p)pit) + (5,2). (3.20)
By (3.5), (3.19) and (3.20), for each integer p > ng + ny,

P(xps2) < P(ngny )+ ), P(T(x),xi41) < €/2+¢€/8.
i=ny+no
Since € is an arbitrary element of the interval (0,1), we conclude that {x;}; is a Cauchy
sequence and there exits x, = lim;_,..x;. Evidently, T'(x,) = x,. Theorem 2.1 is proved.

4. PROOF OF THEOREM 2.2

Let € > 0. By assumption (A1), there exists a natural number ngy such that the following
property holds:

(a) for each finite sequence {y;}°, C K satisfying p(yo,0) < M and y;1 = T(y;), i =
0,...,np— 1, the inequality p(yn,,F(T)) < €/4 is true.

By (A2), there exist 0 € (0, €/2) and a strictly increasing sequence of natural numbers {k;}3
such that for each integer i > 1,

p(x;,.0) <M (4.1)
and
B(xj,0) CK, j=ki,...,ki+no. (4.2)
By (2.4), there exists an integer n| > ng such that
p(T(xj),xj41) < 8(2ng) ! for each integer j > n;. (4.3)
There exists an integer go > 1 such that
kgy > ny. (4.4)
Let g > go be an integer. Set
Vkqg = Xk (4.5)

Yig+1 =T (yx,)-
In view of (4.2) and (4.5), Vig+1 is well defined. It follows from (4.3)-(4.6) that

P (k41,78 +1) = P (0,11, T (%,)) < 8(2m0) ™" (4.7)
and in view of (4.2), yx 41 € K. By induction for each integer p > kg1, set
Yp+1 = T(yp) (4.8)
is y, € K. Assume that an integer p satisfies k;, + 1 < p < k, +no, exists y, € K and
P (xpsyp) < 8(p—kg)(2n0) " (4.9)

(In view of (4.7), inequality (4.9) holds for p = k;+1.) By (4.2) and (4.9), y, € K and y, ;1 =
T (yp) is well defined. It follows from (2.1), (4.3) and (4.4) that

P (pt1,Yp+1) S P (xpi1, T(xp)) + (T (xp), T (yp))
< 8(2n0) "+ p(xp,yp) < 8(p—kg+1)(2n9) ",
P(Xpi1,Ypr1) <6
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and in view of (4.2), y,11 € K. Thus we proved by induction that for all p = kg, ..., ks +ng
yp € K is well defined and

P (xpyp) < 8(p—ky)(2n0)~' < 8. (4.10)
Property (a), (4.1) and (4.5) imply that
Py F(T)) < /4. (4.11)

By (4.10) and (4.11), p(xk, 41y, F'(T)) < €. Since € is an arbitrary positive number we conclude
that liminf;_,.. p (x;, F(T)) = 0. Theorem 2.2 is proved.

5. PROOF OF THEOREM 2.3

Let € > 0. By assumption (A1), there exists a natural number ngy such that the following
property holds:

(a) for each finite sequence {y;}°, C K satisfying p(yo,0) <M and y;1 = T(y;), i =
0,...,np— 1 the inequality p(yn,,F) < €/8 is true.

By (A3), there exist &) € (0,€/8) and a strictly increasing sequence of natural numbers
{ki}? , such that

sup{kiv1 —ki: i=1,2,...} <oo (5.1)
and for each integer i > 1,
p(xi,,0) <M (52)
and
B(Xj,50)CK,j:ki,...,kl’—{-no. (5.3)
By (5.1), there exists a natural number n; > ng such that
ki1 —ki<ny,i=1,2,.... (5.4)
Choose
5 € (0,8)(8n)7 ). (5.5)
In view of (2.5), there exists an integer ny > np such that
p(T(xj),xj41) < 8(2n)~" for each integer j > ny. (5.6)
There exists an integer go > 1 such that
kgy > na. (5.7)
Let g > go be an integer. Set
Yky = Xkys Vg1 = T (Vi,)- (5.8)

In view of (5.3) and (5.8), Vig+1 is well defined. It follows from (5.6)-(5.8) that

P (k15 Yk 41) = P (1, T (x,)) < 8(2n1) " (5.9)

Equations (5.3), (5.5) and (5.9) imply that y; 4, € K. By induction for each integer p > kg1,
set

Yp+1=T(yp) (5.10)
if y, € K. Assume that an integer p satisfies

ky+1 < p < kg+no, (5.11)
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exists y, € K and

P (xp:yp) < 8(p—kg)(2m1)~ " (5.12)
(In view of (5.9), our assumption holds for p = k, + 1.) It follows from (2.1), (5.3), (5.6), (5.7),
(5.10) and (5.12) that

P(xpi1,¥p+1) S Pp1, T(xp)) +p (T (xp), T (yp))
<8@2nm) '+ 8(p—ky)(2m) T < 8(p—ky+1)(2ny) ! <6

Thus we showed by induction that for all p = kg, ... ,k; +no, y, € K is well defined and (5.12)
holds. Property (a), (5.2) and (5.8) imply that

P31y F(T)) < &/8. (5.13)
By (5.12) and (5.13), we have

p(xkq+n07F(T)) < p(xkq-l-noaykq-i-no) + p(ykq—l—no’F(T))

<nod(2n;) ' +¢&/8 < e/8+¢£/64.
This implies that there exists z € F(T) such that

P (7)< /2 (5.14)
By (2.1), (5.6), (5.7) and (5.14), for each integer i satisfying k, +no < i <k, +ny +ngp, we have

P (xir1,2) < pxist, T(6) +p (T (x:),2) < 8(2n1) " +p(xi,2),

P (xi,2) < P (Xkyngs2) + (i — kg —n0)8(2n1) ™"
<e/8+¢/32<¢g/4.
Thus p(x;, F(T)) < €/2 for each integer i > k. Since € is an arbitrary positive number Theo-
rem 2.3 is proved.
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