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Abstract. In this paper, we study some new characterizations for the weak subdifferentials with lower Lipschitz
functions in real normed space and its applications to nonconvex mathematical programming problems having set,
inequality and equality constraints. First, some new properties of the weak subdifferential and the argumented nor-
mal cone are formulated. Second, the fuzzy sum rules, in general, in terms of weak subdifferentials are proposed.
Third, we derive some necessary and sufficient optimality conditions for having the global minimum. Finally,
some necessary and sufficient optimality conditions for the (weak) efficiency of such problems are obtained.
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1. INTRODUCTION

The current paper aims at contributing to the nonconvex mathematical programming theory
and the necessary conditions for having the global minimum. Our work here can be viewed as
the continuation of the scientists during the last twenty years concerning the weak subdifferen-
tials and augmented normal cones; see [2, 4, 5, 6, 9, 12, 15, 16, 17, 18, 19, 20, 21, 22] and the
references therein. As far as we know, Subgradients play a crucial role in the constructing the
weak subdifferential notion and the augmented normal cone notion. Note that the weak subd-
ifferential and the augmented normal cone have a compatible relationship involving indicator
functions. The concept of weak subdifferential was first proposed by Kasimbeyli - Inceoglu
- Mammadov in Refs. [2, 9], which is an overview of the classical subdifferential notion in
real normed space. The concept of augmented weak subdifferential that we introduce for a
vector-valued mapping in Definition 2.7 has not been reviewed before; see [18] and the cited
references therein. We observe that the authors [18] provided only the concept of second-order
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classical subdifferential for a vector-valued mapping and then they obtained some properties
of second-order scalar subdifferentials. Thus, the definition 2.7 in our paper is really useful
and is a significant deterministic method to investigate nonsmooth nonconvex mathematical
programming problems in infinite-dimensional space. For this goal, some the fuzzy sum rules
for the augmented weak subdifferential and the weak subdifferential are formulated and then
they are employed in deriving necessary and sufficient optimality conditions for the (weak) effi-
ciency of a nonconvex mathematical programming problem having set, equality and inequality
constraints. Also, some important properties of the weak subdifferential, the augmented weak
subdifferential and the weak normal cone are studied in accordance with the class of lower
Lipschitz functions together with the class of indicator functions.

In recent years, finding some key properties of the weak subdifferential and the (augmented)
weak normal cone has been an important subject of study, as is shown in the works of Kasim-
beyli and Mammadov [1, 2] and some other related authors. The author [8] introduced only
the cononical generalized gradient notion and its applications to the nonsmooth mathematical
programs. However, to the best of our knowledge, in most papers in the content of the refer-
ence, some important characterizations of the weak subdifferential/ and normal cone as well
as the fuzzy sum rules are not discovered and, in our literature, in which those concepts are
considered, the necessary and sufficient optimality conditions for efficiency in any nonconvex
mathematical programming problem concerning lower Lipschitz functions are established. The
equivalent formulation between the weak subdifferential and the augmented normal cone is also
presented. We mention once again that the concept of weak subdifferential is provided based
on the use of supporting cones instead of supporting hyperplanes, which was introduced by
the authors in Refs. [3, 10, 11]. Such concept plays a crucial role in nonlinear analysis that
allows establishing necessary/and sufficient optimality conditions for efficiency in any noncon-
vex mathematical programming problems (see [7, 8, 13, 20, 21, 22] for more details). This is
the motivation for our work in the present literature.

The paper is organized as follows. The definition of weak subdifferentials, augmented normal
cones and some preliminaries results are provided in the next section. Some characterizations
of weak subdifferential and argumented normal cone along with some necessary and sufficient
optimality conditions via weak subdifferentials and (augmented) weak normal cones for global
minimum are presented in Section 3. Section 4 is devoted to establishing some necessary and
sufficient optimality conditions in terms of weak subdifferentials for the (weak) efficiency of a
nonconvex mathematical programming problem with set, inequality and equality constraints in
real normed space. Finally, Section 5 presents some conclusions.

2. PRELIMINARIES

Let X be a real normed space with a norm ‖ · ‖, and let X∗ be the topological dual of X . By
〈ξ ,x〉 we denote the value of the continous linear functional ξ defined on X at the vector x ∈ X .
Let C be a nonempty subset of X and x ∈C. Let δ ( . ,C) be an indicator function of C, that is,

δ (x,C) =

{
0 if x ∈C,

+∞ if x 6∈C.

Let Rn be a n−dimensional Euclidean space, Rn
+ be a non-negative orthant cone of Rn, Rn

++

be the topological interior of a non-negative orthant cone Rn
+, Pn be the set of all continuous
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positively homogeneous subadditive convex functions on Rn, R be the real numbers set, N be
the positive integer numbers set and let m,n, p,q ∈N. Let a vector-valued mapping k : X →Rn.
Then the domain, epigraph and hypograph of the mapping k|C are formulated respectively by

domk|C := {x ∈C|k(x) 6= /0},
epik|C := {(x,r) ∈C×Rn|r ∈ k(x)+Rn

+},
hypok|C := {(x,r) ∈C×Rn|r ∈ k(x)−Rn

+}.

Definition 2.1. ([2, 14]) Let l be a real-valued function defined on X and x ∈ X .

(i) l is called lower locally Lipschitz at x if there exist a neighborhood of x, say U, and a
non-negative Lipschitz constant L such that l(x)− l(x)≥−L‖x− x‖ for every x ∈U. If
the above inequality holds for every x ∈ X , then l is called lower Lipschitz at x.

(ii) l is called calm at x if there exist a neighborhood of x, say U, and a non-negative calm
constant L such that |l(x)− l(x)| ≤ L‖x− x‖ for every x ∈U.
It is said that l is Lipschitz around x if |l(x)− l(y)| ≤ L‖x− y‖ for every x,y ∈U. Espe-
cially l is called locally Lipschitz on X , if for each x ∈ X , there exists a neighborhood U
of x such that l is Lipschitz around x. If l is Fréchet differentiable at x, then its Fréchet
derivative at x is denoted by ∇l(x).

We remark that the class of lower locally Lipschitz functions is wider than the class of calm
functions and so is the class of locally Lipschitz functions.

Definition 2.2. ([1]) The augmented normal cone to C at x is the set

Na
C(x) = {(ξ ,r) ∈ X∗×R+ | 〈ξ ,x− x〉− r‖x− x‖ ≤ 0 (∀x ∈C)}.

Remark 2.3. Note that the augmented normal cone notion is extended from the usual normal
cone notion in Convex Analysis. The set Na

C(x) is a nonempty closed convex cone. Observe
that, if ‖ξ‖ ≤ r, then

sup
x∈C\{x}

∣∣∣〈ξ ,
x− x
|x− x|

〉∣∣∣≤ r,

which ensures that (ξ ,r)∈Na
C(x). An augmented normal cone consisting of only such elements

is said to be trivial and formulated by Ntriv
C (x). It can be verified that Na

C(x) ⊃ Ntriv
C (x). In the

case C = X , we have Ntriv
C (x)≡ Na

C(x).

Definition 2.4. ([2]) Let f : X→R be a function and x∈ X be a given point where f (x) is finite.
A pair (ξ ,r) ∈ X∗×R+ is called the weak subgradient of f at x if

f (x)− f (x)≥ 〈ξ ,x− x〉− r‖x− x‖ for all x ∈ X . (2.1)

The set

∂
w f (x) := {(ξ ,r) ∈ X∗×R+| f (x)− f (x)≥ 〈ξ ,x− x〉− r‖x− x‖ (∀x ∈ X)}

is called the weak subdifferential of f at x. If ∂ w f (x) 6= /0, then f is called weakly subdifferen-
tiable at x. If (2.1) is valid only x ∈C, where C ⊂ X , then we say that f is weakly subdifferen-
tiable at x on C. One uses the symbol ∂ w

C f (x) to instead of the weak subdifferential of f at x on
C. It is not difficult to verify that ∂ w f (x) ⊂ ∂ w

C f (x). Besides, if f is lower Lipschitz at x, then
there exists a non-negative Lipschitz constant L such that (0,L) ∈ ∂ w f (x) and thus f is weakly
subdifferentiable at x.
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Example 2.5. Let a real-valued function f be defined on X , given for all x ∈ X by

f (x) =

{
0 if ‖x‖ ≤ 1,
‖x‖ if ‖x‖> 1.

For the illustration let us may take x ∈ C be arbitrary, where the set C is an unit ball of X ,
means that C = {x ∈ X |‖x‖ ≤ 1} ⊂ X . Then ∂ w f (x) = Na

C(x). In fact, for every (ξ ,r)∈Na
C(x) is

equivalent to 〈ξ ,x− x〉− r‖x− x‖ ≤ 0 (∀x ∈C). Since f (x)− f (x) = ‖x‖ ≥ 0 for all x ∈ X \C
and f (x)− f (x) = 0, otherwise. Thus, (ξ ,r) ∈ Na

C(x) is equivalent to 〈ξ ,x− x〉− r‖x− x‖ ≤
f (x)− f (x) (∀x ∈ X), that is (ξ ,r) ∈ ∂ w f (x), which completes the check.

Remark 2.6. ([2]) The nonempty set ∂ w f (x) is closed convex in X∗×R+. Further, it yields
from Definition 2.4 that the pair (ξ ,r) ∈ X×R+ is a weak subgradient of f at x ∈ X if and only
if there exists a continuous (super linear) concave function k : X → R defind by

k(x) = f (x)+ 〈ξ ,x− x〉− r‖x− x‖ (∀x ∈ X),

satisfies k(x) ≤ f (x) for every x ∈ X and k(x) = f (x), means that k supports f from below.
Therefore, it entails that if f is weakly subdifferentiable at x and (ξ ,r) ∈ ∂ w f (x), then the
graph of function k becomes a supporting surface to the epigraph of f on X at the point (x, f (x)).
Especially, for the gradient of k at x, that is ∇k(x), one can achieve that

∇k(x) = ξ − rz, z =
x− x
|x− x|

,

which guarantees the bounded of the norm of ∇k(x). This result will be useful in estimating the
subgradients for finding the extremal points of a nonsmooth function.

Definition 2.7. Let f : X→Rn be a vector-valued mapping and x ∈ X be a given point. A triple
(ξ ,P,r) ∈ X∗× (Pn \{0})×R+ is called the augmented weak subgradient of f at x if

〈P, f (x)− f (x)〉 ≥ 〈ξ ,x− x〉− r‖x− x‖ for all x ∈ X . (2.2)

The set

∂
w
a f (x) :=

{
(ξ ,P,r) ∈ X∗×(Pn \{0})×R+|

〈P, f (x)− f (x)〉 ≥ 〈ξ ,x− x〉− r‖x− x‖ (∀x ∈ X)
}

is called the augmented weak subdifferential of f at x. If ∂ w
a f (x) 6= /0, then f is called augmented

weakly subdifferentiable at x. If (2.2) is valid only x ∈C, where C ⊂ X , then we say that f is
augmented weakly subdifferentiable at x on C. One uses the symbol ∂ w

a,C f (x) to instead of the
augmented weak subdifferential of f at x on C. It is not difficult to verify that ∂ w

a f (x)⊂ ∂ w
a,C f (x).

Example 2.8. Let a R3-valued mapping f be defined on R, given by f (x) = (x,2x,3x) for
all x ∈ R. For the illustration let us take x := (0,0,0) ∈ R3, C = R+ and P := (P1,P2,P3) ∈
P3 \{(0,0,0)}. Then

∂
w
a f (x) =

{
(ξ ,P,r) ∈ R× (P3 \{(0,0,0)})×R+

∣∣ |ξ − 3

∑
i=1

iPi| ≤ r
}
,

∂
w
a,C f (x) =

{
(ξ ,P,r) ∈ R× (P3 \{(0,0,0)})×R+

∣∣ ξ −
3

∑
i=1

iPi ≤ r
}
.
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Indeed, for any (ξ ,P,r) ∈ R× (P3 \{(0,0,0)})×R+, (ξ ,P,r) ∈ ∂ w
a f (x) is equivalent to

〈ξ ,x〉− r|x| ≤ (
3

∑
i=1

iPi)x (∀x ∈ R) i.e., |ξ −
3

∑
i=1

iPi| ≤ r.

Similarly, we calculate that (ξ ,P,r) ∈ ∂ w
a,C f (x) is equivalent to the inequality ξ −∑

3
i=1 iPi ≤ r,

as it was checked.

Definition 2.9. ([5, 23]) Let /0 6= K ⊂ X and x ∈ X .

(i) A function l : X → R has a global minimum at x if l(x)≥ l(x), ∀x ∈ X .
(i’) A function l : X → R has a global maximum at x if l(x)≤ l(x), ∀x ∈ X .
(ii) A function l : X → R has a global minimum at x ∈ K on K if l(x)≥ l(x) for all x ∈ K.

(ii’) A function l : X → R has a global maximum at x ∈ K on K if l(x)≤ l(x) for all x ∈ K.
(iii) A mapping l : X → Rn has a weakly efficient solution at x ∈ K on K if l(x)− l(x) 6∈
−Rn

++ for all x ∈ K.
(iv) A mapping l : X→Rn has an efficient solution at x∈K on K if l(x)− l(x) 6∈ −(Rn

+\{0})
for all x ∈ K.

Remark 2.10. Obviously that condition (iii) implies condition (ii) and moreover this notions
are coincide in the case K = X and n = 1. If l has a global minimum at x ∈ K, then l also has a
global minimum at x on K.

3. SOME BASIC CHARACTERIZATIONS OF WEAK SUBDIFFERENTIAL AND ARGUMENTED

NORMAL CONE

In this section, we study some fundamental characterizations of the weak subdifferential and
the augmented normal cone in real normed space.

Proposition 3.1. Let C ⊂ X and f : X → R be weakly subdifferentiable at x ∈C. Then

∂
w f (x)+Na

C(x)⊂ ∂
w( f +δ ( . ,C))(x)⊂ ∂

w
C f (x). (3.1)

Proof. Let (ξ ,r) ∈ ∂ w f (x) and (η ,s) ∈ Na
C(x) be arbitrary. For every x ∈ X , it follows from the

definitions that

f (x)− f (x)≥ 〈ξ ,x− x〉− r‖x− x‖+ 〈η ,x− x〉− s‖x− x‖,
which guarantees the following inequality

( f +δ ( . ,C))(x)− ( f +δ ( . ,C))(x)≥ 〈ξ +η ,x− x〉− (r+ s)‖x− x‖.
Thus, (ξ +η ,r+ s) ∈ ∂ w( f +δ ( . ,C))(x), means that the first inclusion in (3.1) is valid.

For the last inclusion in (3.1), we always have

∂
w( f +δ ( . ,C))(x)⊂ ∂

w
C ( f +δ ( . ,C))(x) = ∂

w
C f (x),

which follows the claim. �

Proposition 3.2. Let dimX < +∞, f : X → R be a function that attains a global minimum on
C ⊂ X at x ∈C. If − f is weakly subdifferentiable at x, then we have

∂
w(− f )(x)+Na

C(x)⊂ Ntriv
C (x)⊂ Na

C(x)⊂ ∂
w
C f (x). (3.2)
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Proof. By the initial hypotheses,− f is weakly subdifferentiable at x. Making use of Proposition
3.1, we conclude that − f + δ ( . ,C) is also weakly subdifferentiable at x. By taking (ξ ,r) ∈
∂ w(− f )(x)+Na

C(x). Under (3.1) it entails that (ξ ,r) ∈ ∂ w(− f +δ ( . ,C))(x), and thus, one can
reach the following one

− f (x)+δ (x ,C)+ f (x)−δ (x,C)≥ 〈ξ ,x− x〉− r‖x− x‖, (∀x ∈ X).

Since x ∈C and f attains a global minimum at x, it yields that

0≥ (− f )(x)− (− f )(x)≥ 〈ξ ,x− x〉− r‖x− x‖, (∀x ∈C),

which ensures that ‖ξ‖ ≤ r. Thus, (ξ ,r) ∈ Ntriv
C (x) ⊂ Na

C(x). Because f attains a global mini-
mum on C at x ∈C, it follows f (x)− f (x)≥ 0 for all x ∈C. Hence, for any (ξ ,r) ∈ Na

C(x) and
for any x ∈C, one can obtain that 〈ξ ,x− x〉− r‖x−x‖ ≤ f (x)− f (x) and so is (3.2). Therefore,
we get the desired conclusions. �

Corollary 3.3. Let dimX < +∞, f : X → R be a function that attains a global maximum on
C ⊂ X at x ∈C. If f is weakly subdifferentiable at x, then we have

∂
w f (x)+Na

C(x)⊂ Ntriv
C (x)⊂ Na

C(x)⊂ ∂
w
C (− f )(x). (3.3)

Proof. Since f attains a global maximum on C at x ∈C, so is − f attains a global minimum on
C at x ∈C. In view of Proposition 3.2 with observing − f replacing f , we deduce that (3.3) is
fulfilled, which completes the proof. �

Corollary 3.4. Let dimX < +∞, f : X → R be a function that attains a global maximum on
C ⊂ X at x ∈ intC. If f is weakly subdifferentiable at x, then we have

∂
w f (x)+Na

C(x)⊂ Ntriv
C (x) = Na

C(x)⊂ ∂
w
C (− f )(x). (3.4)

Proof. Taking into account Corollary 3.3, it suffices to show that Ntriv
C (x) ⊃ Na

C(x). Since x ∈
intC, there exists δ > 0 such that the sphere Sδ (x) = {x ∈ X |‖x−x‖= δ} ⊂C. On the contrary,
suppose that there is a pair (ξ ,r) ∈ Na

C(x) but (ξ ,r) 6∈ Ntriv
C (x), means that ‖ξ‖ > r ≥ 0. One

gets the right inequality 〈ξ ,x− x〉− r‖x− x‖ ≤ 0 for every x ∈C, which guarantees that

〈ξ ,x− x〉− r‖x− x‖ ≤ 0

for every x ∈ Sδ (x). Evidently,〈
ξ ,

x− x
‖x− x‖

〉
− r ≤ 0 (∀x ∈ Sδ (x)),

or equivalently, 〈ξ ,x〉 − r ≤ 0 for all x ∈ S1(0)). Thus, ‖ξ‖ ≤ r, this is a contradiction and
completes the proof of Corollary 3.4. �

Proposition 3.5. Let C ⊂ X and f : X → R be weakly subdifferentiable at x ∈C. Then

(i) If (ξ ,r) ∈ ∂ w
C f (x), then ((ξ ,−1),r) ∈ Na

epi f |C(x, f (x)).
(ii) If ((ξ ,λ ),r) ∈ Na

epi f |C(x,µ) with (x,µ) ∈ epi f |C, then |λ | ≤ r.
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Proof. Since C ⊂ X and f is weakly subdifferentiable at x ∈C, it yields that f is weakly subd-
ifferentiable on C at x ∈C, that is, the set ∂ w

C f (x) is not empty.

(i): Assume that (ξ ,r) ∈ ∂ w
C f (x), one gets for every x ∈ X ,

f (x)+δ (x,C)− f (x)−δ (x,C)≥ 〈ξ ,x− x〉− r‖x− x‖,

which implies that

( f +δ (.,C))(x)− ( f +δ (.,C))(x)≥ 〈ξ ,x− x〉− r(‖x− x‖+ | f (x)− f (x)|).

Therefore,
0≥〈(ξ ,−1), (x− x,( f +δ (.,C))(x)− ( f +δ (.,C))(x))〉

− r‖(x− x, f (x)− f (x))‖
(∀x ∈ X),

which combined with the equalities epi( f +δ (.,C)) = epi f |C and

Na
epi( f+δ (.,C))(x,( f +δ (.,C))(x)) = Na

epi f |C(x, f (x))

prove that ((ξ ,−1),r) ∈ Na
epi f |C(x, f (x)), as required.

(ii): Suppose that ((ξ ,λ ),r) ∈ Na
epi f |C(x,µ) with (x,µ) ∈ epi f |C. Since x ∈ C, by applying

the augmented normal cone notion, we arrive at the conclusion that λ (s−µ)− r|s−µ| ≤ 0 for
all (x,s)∈ epi f |C. We always have f (x)≤min{s,µ} because (x,µ), (x,s)∈ epi f |C. In the case
when µ ≤ s, it follows from the inequality above that λ ≤ r. In the case when s = f (x), it can
be verified that λ ≥−r, and hence, |λ | ≤ r, which completes the proof. �

Theorem 3.6. (Optimality conditions for global minimum) Let a nonempty subset K ⊂C ⊂
X , x ∈ K and let l : X → R∪{+∞} be lower Lipschitz at x. We have the following assertions

(i) If l has a global minimum on K at x, then there exists a real number r0 ≥ 0 such that
(0,r) ∈ ∂ wl(x)+Na

C(x) for every r ≥ r0.
(ii) If (0,0) ∈ ∂ wl(x)+Na

K(x), then l attains a global minimum on K at x.

Proof. Since l is lower Lipschitz at x, it is weakly subdifferentiable at x, that is, ∂ wl(x) 6= /0.
(i): Since l attains a global minimum on K at x, it follows that l(x) ≥ l(x) for every x ∈ K.

To finish the proof, we assume to the contrary, that for every r > 0, there exists r0 ≥ r such that
(0,r0) 6∈ ∂ wl(x)+Na

C(x). Because x ∈ K ⊂C, it is evident that (0,0) ∈ Na
C(x) and so ∂ wl(x)⊂

∂ wl(x)+Na
C(x). Therefore, (0,r0) 6∈ ∂ wl(x). By the weak subdifferential notion, there exists

x0 ∈ X \{x} such that

l(x0)− l(x)< 〈0,x0− x〉− r0‖x0− x‖=−r0‖x0− x‖. (3.5)

If x0 ∈ K \ {x}, then, it follows from (3.5) that l(x0)− l(x) < 0, which contradicts to f has a
global minimum on K at x. If x0 ∈ (X \K)\{x}, then one can achieve from (3.5) and r0 ≥ r that

r ≤ r0 <
l(x)− l(x0)

‖x− x‖
(∀r > 0). (3.6)

By the initial assumption, l is lower Lipschitz at x, one can find a non-negative Lipschitz con-
stant L0 > 0 such that l(x)− l(x)≥−L0‖x− x‖ (∀x ∈ X), which combined with (3.6) ensures
that r < L0 for every r > 0, this is a contradiction. In consequence, there exists r0 ≥ 0 such that
(0,r) ∈ ∂ wl(x)+Na

C(x) for every r ≥ r0.
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(ii): Suppose that (0,0) ∈ ∂ wl(x) +Na
K(x), which combined with (3.1) in Proposition 3.1

yields that (0,0) ∈ ∂ w
K l(x). Thus, l(x)− l(x)≥ 0 for all x ∈ K, which terminates the proof. �

Corollary 3.7. Let a nonempty subset K⊂X , x∈K and let l : X→R∪{+∞} be lower Lipschitz
at x. Then, if l has a global minimum on K at x, then there exists a real number r0 ≥ 0 such that
(0,r) ∈ ∂ wl(x)+Na

K(x) for every r ≥ r0.

Proof. The proof is straightforward from Theorem 3.6, as required. �

Theorem 3.8. (Optimality conditions via weak subdifferential) Let a nonempty subset K ⊂
C⊂ X , x ∈K and let f : X→Rn such that for every P ∈Pn, P0 f be lower Lipschitz at x, where
P0 f : X → R is defined by (P0 f )(x) := 〈P, f (x)〉 , (∀x ∈ X). We have the following assertions

(i) If f has a weakly efficient solution on K at x, then there exist P ∈Pn \ {0} and a real
number r0 ≥ 0 such that{

y2− y1 ∈ Rn
++ =⇒ P(y1)< P(y2),

(0,r) ∈ ∂ w(P0 f )(x)+Na
C(x) (∀r ≥ r0).

(3.7)

(ii) If there exist P ∈Pn \{0} such that{
y2− y1 ∈ Rn

++ =⇒ P(y1)< P(y2),

(0,0) ∈ ∂ w(P0 f )(x)+Na
K(x).

(3.8)

Then f has a weakly efficient solution on K at x.
(iii) If there exist P ∈Pn \{0} such that{

y2− y1 ∈ Rn
+ \{0}=⇒ P(y1)< P(y2),

(0,0) ∈ ∂ w(P0 f )(x)+Na
K(x).

(3.9)

Then f has an efficient solution on K at x.

Proof. By hypotheses, for any P ∈Pn, the scalar function P0 f is lower Lipschitz at x, which
ensures it is weakly subdifferentiable at x, i.e., the set ∂ w(P0 f )(x) is not empty.

(i): Since f has a weakly efficient solution on K at x, it entails from Theorem 3.1 [6] that there
exist P∈Pn\{0} such that if y2−y1 ∈Rn

++, then P(y1)< P(y2) and further 〈P, f (x)− f (x)〉 ≥
0 (∀x ∈ K). Thus 〈P, f (x)〉 ≥ 〈P, f (x)〉 (∀x ∈ K). We have P0 f attains a global minimum on K
at x, which combined with Theorem 3.6 (i) yields that there exists a real number r0 ≥ 0 such
that the system (3.7) above is fulfilled.

(ii): Assume that there is P ∈Pn \ {0} satisfying the system (3.8). Then, we have (0,0) ∈
∂ w(P0 f )(x)+Na

K(x) which yields the existence of (ξ ,r)∈Na
K(x) such that (ξ ,r)∈−∂ w(P0 f )(x).

For all x ∈ K, it results that 〈P, f (x)− f (x)〉 ≥ −
(
〈ξ ,x− x〉− r‖x−x‖

)
≥ 0. This together with

the result ”y2−y1 ∈Rn
++ =⇒ P(y1)< P(y2)” one can achieve that f (x)− f (x) 6∈ −Rn

++ for all
x ∈ K, means that x being a weakly efficient solution of f .

(iii): Analogously to the proof of case (ii) with observing that the hypotheses ”y2− y1 ∈
Rn
+ \{0}=⇒ P(y1)< P(y2)” one can reach the result f (x)− f (x) 6∈ −Rn

+ \{0} for any x ∈ K,
i.e., x being an efficient solution of f , which completes the proof. �
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Corollary 3.9. Let a nonempty subset K ⊂ X , x ∈ K and let f : X → Rn such that for every
P ∈Pn, P0 f be lower Lipschitz at x. Then, if f has a weakly efficient solution on K at x, then
there exist P ∈Pn \{0} and a real number r0 ≥ 0 such that{

y2− y1 ∈ Rn
++ =⇒ P(y1)< P(y2),

(0,r) ∈ ∂ w(P0 f )(x)+Na
K(x) (∀r ≥ r0).

Proof. Analogously to the proof of Theorem 3.8, and completes the proof. �

Theorem 3.10. (Optimality conditions via augmented weak subdifferential) Let a nonempty
subset K ⊂ X , x ∈ K and let f : X → Rn such that for every P ∈Pn, P0 f be lower Lipschitz at
x. We have the following assertions

(i) If f has a weakly efficient solution on K at x, then there exist P ∈Pn \ {0} and a real
number r0 ≥ 0 such that{

y2− y1 ∈ Rn
++ =⇒ P(y1)< P(y2),

(0,P,r) ∈ ∂ w
a f (x) (∀r ≥ r0).

(3.10)

(ii) If there exist P ∈Pn \{0} such that{
y2− y1 ∈ Rn

++ =⇒ P(y1)< P(y2),

(0,P,0) ∈ ∂ w
a f (x).

(3.11)

Then f has a weakly efficient solution on K at x.
(iii) If there exist P ∈Pn \{0} such that{

y2− y1 ∈ Rn
+ \{0}=⇒ P(y1)< P(y2),

(0,P,0) ∈ ∂ w
a f (x).

(3.12)

Then f has an efficient solution on K at x.

Proof. Analogously to the proof of case (i) in Theorem 3.6, it is not difficult to very that if
l : X → R has a global minimum on K at x, then there exists a real number r0 ≥ 0 such that
(0,r) ∈ ∂ wl(x) for all r ≥ r0. Especially, for the case l = P0 f , where P ∈Pn \ {0}, one has
(0,r) ∈ ∂ wl(x), i.e., for every x ∈ K, one obtains 〈P, f (x)− f (x)〉 ≥ −r‖x−x‖. Thus, (0,P,r) ∈
∂ w

a f (x). Then, in a similar idea as for proving Theorem 3.8 (i), we assert that if f has a weakly
efficient solution on K at x, then there exist P ∈Pn \ {0} and a real number r0 ≥ 0 satisfying
(3.10), and thus, (i) is fulfilled. On the other hand, we that (0,P,0) ∈ ∂ w

a f (x) is equivalent to
(0,0) ∈ ∂ w(P0 f )(x). Analogously to the proof of (ii) & (iii) in Theorem 3.8, the remain cases
can be verified. �

4. APPLICATIONS TO A NONCONVEX MATHEMATICAL PROGRAMMING PROBLEM

In this section, we derive some necessary and sufficient optimality conditions in terms of
weak subdifferentials for the efficiency of a nonconvex mathematical programming problem
with set, inequality and equality constraints in real normed space.
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Now, we consider the following nonconvex mathematical programming problem with set,
inequality and equality constraints:

min f (x) =
(

f1(x), f2(x), . . . , fm(x)
)

subject to gi(x)≥ 0, i = 1,2, . . . , p,

h j(x) = 0, j = 1,2, . . . ,q,

x ∈C,

(MPPC)

where fi,g j,hk : X → R, i = 1,2, . . . ,m; j = 1,2, . . . , p; k = 1,2, . . . ,q are given real-valued
functions, and a nonempty subset C ⊂ X .

Definition 4.1. The feasible set of problem (MPPC) is denoted by K and is defined by

K := {x ∈C |g j(x)≥ 0, j = 1,2, . . . , p; hk(x) = 0, k = 1,2, . . . ,q}.

For each point x ∈ K is called a feasible solution to the problem (MPPC).

For each x ∈ X , we denote by

l(x) :=
(

l1(x), l2(x), . . . , lp+2q(x)
)

:=
(

g1(x), . . . ,gp(x),h1(x), . . . ,hq(x),−h1(x), . . . ,−hq(x)
)

where l = (l1, l2, . . . , lp+2q) : X → Rp+2q is a vector-valued function. Then, the feasible set of
problem (MPPC) can be re-written as

K := {x ∈C | li(x)≥ 0, i = 1,2, . . . , p+2q}.

Definition 4.2. A vector x ∈ K is said to be a weakly efficient solution to the problem (MPPC)
if f has a weakly efficient solution on K at x.

Definition 4.3. A vector x ∈ K is said to be an efficient solution to the problem (MPPC) if f
has an efficient solution on K at x.

In order to treat necessary and sufficient optimality conditions for the efficiency of problem
(MPPC), the following fuzzy sum rules play an important role for our study in the sequel.

Theorem 4.4. Let single-valued functions fi : X → R∪{+∞} be lower Lipschitz at x ∈ X , i =
1,2, . . . ,m and the non-negative real numbers α1,α2, . . . ,αm. Then

(i) The functions fi, i = 1,2, . . . ,m are weakly subdifferentiable at x ∈ X .
(ii) The sum function ∑

m
i=1 αi fi is weakly subdifferentiable at x ∈ X .

(iii) The following inclusion holds true:
m

∑
i=1

αi∂
w fi(x)⊂ ∂

w( m

∑
i=1

αi fi
)
(x). (4.1)

In addition, for any /0 6=C ⊂ X , one also has
m

∑
i=1

αi∂
w
C fi(x)⊂ ∂

w
C
( m

∑
i=1

αi fi
)
(x). (4.2)
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Proof. (i): Because the functions fi : X→R∪{+∞} are lower Lipschitz at x∈X , i= 1,2, . . . ,m,
there exist non-negative Lipschitz constants Li such that (0,Li) ∈ ∂ w fi(x), i = 1,2, . . . ,m. Thus,
they are weakly subdifferentiable at x ∈ X .

(ii): We always have

fi(x)− fi(x)≥−Li‖x− x‖ for all x ∈ X , i = 1,2, . . . ,m.

Taking L = ∑
m
i=1 αi, one can obtain the result that L ≥ 0 because αi ≥ 0, i = 1,2, . . . ,m. Addi-

tionally, it is evident that
m

∑
i=1

αi fi(x)−
m

∑
i=1

αi fi(x) =
m

∑
i=1

αi

(
fi(x)− fi(x)

)
≥−

m

∑
i=1

αiLi‖x− x‖=−L‖x− x‖ for all x ∈ X .

By virtue of the lower Lipschitz function notion, ∑
m
i=1 αi fi is lower Lipschitz at x, and so, this

sum function is weakly subdifferentiable at x.
(iii): By (ii), we get the set ∂ w(

∑
m
i=1 αi fi

)
(x) is not null. It can be verified that

αi∂
w fi(x)⊂ ∂

w(αi fi)(x), i = 1,2, . . . ,m. (4.3)

We claim by induction the relations of order m ≥ 2. In fact, together (4.3) with Proposition 2
[9] guarantees that

α1∂
w f1(x)+α2∂

w f2(x)⊂ ∂
w(α1 f1)(x)+∂

w(α2 f2)(x)⊂ ∂
w(α1 f1 +α2 f2)(x).

So, for m = 2 the inclusion (4.1) is fulfilled. Suppose that (4.1) is satisfied for every integer
positive number 2 < k < m, which means that the inclusion (4.1) holds for m = k, means that

k

∑
i=1

αi∂
w fi(x)⊂ ∂

w( k

∑
i=1

αi fi
)
(x).

For the case m = k+1, one can obtain the following result

k+1

∑
i=1

αi∂
w fi(x) =

k

∑
i=1

αi∂
w fi(x)+αk+1∂

w fk+1(x)

⊂ ∂
w( k

∑
i=1

αi fi
)
(x)+∂

w(αk+1 fk+1)(x)⊂ ∂
w( k+1

∑
i=1

αi fi
)
(x),

which the conclusion above can be verified. �

We mention that the proof of the inclusion (4.2) is similar to the proof of the inclusion (4.1),
where X is replaced by C.

Theorem 4.5. Let vector-valued functions fi : X → Rn and Pi ∈Pn, i = 1,2, . . . ,m such that
Pi0 fi be lower Lipschitz at x∈X , i= 1,2, . . . ,m and the non-negative real numbers α1,α2, . . . ,αm.
Then

(i) The functions fi, i = 1,2, . . . ,m are augmented weakly subdifferentiable at x ∈ X .
(ii) The sum function ∑

m
i=1 αi fi is augmented weakly subdifferentiable at x ∈ X .
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(iii) The following inclusion holds true:
m

∑
i=1

αi∂
w
a fi(x)⊂ ∂

w
a
( m

∑
i=1

αi fi
)
(x). (4.4)

In addition, for any /0 6=C ⊂ X , one also has
m

∑
i=1

αi∂
w
a,C fi(x)⊂ ∂

w
a,C
( m

∑
i=1

αi fi
)
(x). (4.5)

Proof. (i): By the initial assumptions one has the functions Pi0 fi : X →R are lower Lipschitz at
x, i = 1,2, . . . ,m, then there exist non-negative Lipschitz constants Li such that

(0,Li) ∈ ∂
w(Pi0 fi)(x), i = 1,2, . . . ,m,

or equivalently, (0,Pi,Li) ∈ ∂ w
a fi(x), i = 1,2, . . . ,m. Therefore, fi, i = 1,2, . . . ,m are general-

ized weakly subdifferentiable at x ∈ X .

(ii): We obtain that

〈Pi, fi(x)− fi(x)〉 ≥ −Li‖x− x‖ for all x ∈ X , i = 1,2, . . . ,m.

By puting L := ∑
m
i=1 αi ≥ 0 is due to αi ≥ 0, i = 1,2, . . . ,m. In addition, it is easy to verify that

m

∑
i=1

αi(Pi0 fi)(x)−
m

∑
i=1

αi(Pi0 fi)(x) =
m

∑
i=1

αi

(
(Pi0 fi)(x)− (Pi0 fi)(x)

)
≥−

m

∑
i=1

αiLi‖x− x‖=−L‖x− x‖ for all x ∈ X .

Consequently, the sum function ∑
m
i=1 αi(Pi0 fi) is lower Lipschitz at x and thus, ∑

m
i=1 αi fi is

augmented weakly subdifferentiable at x.
(iii): By using the inclusion (4.1) it follows that

m

∑
i=1

αi∂
w
a fi(x)⊂ ∂

w
a
( m

∑
i=1

αi fi
)
(x).

In fact, let (ξi,Pi,ri) ∈ ∂ w
a fi(x), i = 1,2, . . . ,m be arbitrary. It follows from the definition that

(ξi,ri) ∈ ∂
w(Pi0 fi)(x), i = 1,2, . . . ,m.

Also one can obtain that
m

∑
i=1

αi(ξi,Pi,ri) ∈
m

∑
i=1

αi∂
w
a fi(x) and

m

∑
i=1

αi(ξi,ri) ∈
m

∑
i=1

αi∂
w(Pi0 fi)(x),

which combined with the fuzzy sum rule in Theorem 4.4 one can reach the result
m

∑
i=1

αi∂
w
a (Pi0 fi)(x)⊂ ∂

w
a
( m

∑
i=1

αiPi0 fi
)
(x),

which guarantees that
m

∑
i=1

αi(ξi,ri) ∈ ∂
w
a
( m

∑
i=1

αiPi0 fi
)
(x).

Consequently,
m

∑
i=1

αi(ξi,Pi,ri) ∈ ∂
w
a
( m

∑
i=1

αi fi
)
(x),
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and thus, the inclusion (4.4) is fulfilled. Finally, analogously to the argument above with observ-
ing the inclusion (4.2) replacing the inclusion (4.1), which entails the inclusion (4.5) is fulfilled
too and the conclusion follows. �

Next, we provide some necessary and sufficient optimality conditions for the (weakly) effi-
cient solutions of problem (MPPC) in terms of weak subdifferentials.

Theorem 4.6. (Necessary optimality condition) Let x ∈ K and suppose that for any P ∈Pm,
the real-valued functions P0 f ,g1,g2, . . . ,gp,h1,h2, . . . ,hq are lower Lipschitz at x. Then, if x
is a weakly efficient solution to problem (MPPC), then there exist P ∈Pm \ {0}, r0 ∈ R+,
η := (η1,η2, . . . ,ηp) ∈ Rp

+ and γ := (γ1,γ2, . . . ,γq) ∈ Rq satisfying

(0,r) ∈ ∂
w(P0 f )(x)+

p

∑
i=1

∂
w(ηigi)(x)+

q

∑
j=1

∂
w(γ jh j)(x)+Na

C(x) (∀r ≥ r0); (4.6)

y2− y1 ∈ Rn
++ =⇒ P(y1)< P(y2); (4.7)

ηigi(x) = 0, i = 1,2, . . . , p; (4.8)

γ jh j(x) = 0, j = 1,2, . . . ,q; (4.9)

Proof. Under all the hypotheses of Theorem 4.6, for all P ∈Pm, by taking into account Theo-
rem 4.4 (i), we assert that the single-valued functions P0 f ,g1,g2, . . . ,gp,h1,h2, . . . ,hq are weakly
subdifferentiable at x. In view of Definition 4.2, the mapping f = ( f1, f2, . . . , fm) has a weakly
efficient solution on K at x. By taking into account Theorem 3.8 (i), there exist P ∈Pm \ {0}
such that the implication (4.7) is fulfilled and a non-negative real number rP

0 satisfying

(0,rP) ∈ ∂
w(P0 f )(x)+Na

C(x) (∀rP ≥ rP
0 ). (4.10)

By picking η := (η1,η2, . . . ,ηp) ∈Rp
+ satisfying (4.8) and then one can achieve the conclusion

that ηigi (i = 1,2, . . . , p) have a global minimum on K at x. By directly applying Theorem 3.6,
there would exist rηi

0 ≥ 0 (i = 1,2, . . . , p) such that

(0,rηi) ∈ ∂
w(ηigi)(x)+Na

C(x) (∀rηi ≥ rηi
0 ) (i = 1,2, . . . , p),

which yields without loss of generality that

(0,rg) :=
p

∑
i=1

(0,rηi) ∈
p

∑
i=1

∂
w(ηigi)(x)+Na

C(x) (∀rg ≥ rg
0 :=

p

∑
i=1

rηi
0 ). (4.11)

Then, in a similar idea to the proof above, there exist γ(1) := (γ
(1)
1 ,γ

(1)
2 , . . . ,γ

(1)
q ) ∈ Rq

+ and
γ(2) := (γ

(2)
1 ,γ

(2)
2 , . . . ,γ

(2)
q ) ∈ Rq

+ satisfying

(0,rh(1)) :=
q

∑
j=1

(0,rγ
(1)
j ) ∈

q

∑
j=1

∂
w(γ

(1)
j h j)(x)+Na

C(x) (∀rh(1) ≥ rh(1)
0 :=

q

∑
j=1

r
γ
(1)
j

0 ), (4.12)

(0,rh(2)) :=
q

∑
j=1

(0,rγ
(2)
j ) ∈

q

∑
j=1

∂
w(−γ

(2)
j h j)(x)+Na

C(x) (∀rh(2) ≥ rh(2)
0 :=

q

∑
j=1

r
γ
(2)
j

0 ). (4.13)

By taking γ = γ(1)− γ(2) ∈ Rq, rh := rh(1) + rh(2) and rh
0 := rh(1)

0 + rh(2)
0 . We have

γ jh j(x) = γ
(1)
j h j(x)− γ

(2)
j h j(x) = 0, j = 1,2, . . . ,q,
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which yields the condition (4.9) is fulfilled. Without loss of generality we can obtain from
Theorem 4.4 (iii) for the case m = 2 the following result

(0,rh) ∈
q

∑
j=1

∂
w(γ jh j)(x)+Na

C(x) (∀rh ≥ rh
0). (4.14)

We set r0 := rP
0 + rg

0 + rh
0 ≥ 0, and without loss of generality one can reach the inclusion (4.6)

from the inclusions (4.10), (4.11) and (4.14), which completes the proof. �

To demonstrate the previous result, we may take an example as follows.

Example 4.7. Consider the nonconvex mathematical programming problem with set, inequality
and equality constraints:

minimize f (x) =
(

f1(x), f2(x), f3(x)
)

subject to gi(x)≥ 0, i = 1,2;

h j(x) = 0, j = 1,2;

x = (x1,x2,x3) ∈C,

(MPPC1)

where C = {x ∈ R3 |‖x‖ ≤ 1}, f1(x) =

{
0 if x ∈C,

‖x‖ otherwise,

f2(x) =

{
0 if x ∈C,

2‖x‖ otherwise,
f3(x) =

{
0 if x ∈C,

−2‖x‖ otherwise,

g1(x) =

{
sin(‖x‖π) if ‖x‖ ≤ 2,
−‖x‖ otherwise,

g2(x) =

{
cos(‖x‖2 π) if ‖x‖ ≤ 2,
−2‖x‖ otherwise,

h1(x) =

{
0 if x ∈C,

‖x‖+‖x‖2 otherwise,
h2(x) =

{
0 if x ∈C,

−‖x‖+‖x‖2 otherwise.

For the illustration let us consider x = (0,0,0). An easy computation gives that K = C,
and hence, x ∈ K. It is not difficult to verify that for every P ∈P3, the real-valued functions
P0 f ,g1,g2,h1,h2 : R3→ R are lower Lipschitz at x. In other words, for all x = (x1,x2,x3) ∈ K,
one can achieve that ( f1(x), f2(x), f3(x))− ( f1(x), f2(x), f3(x)) = (0,0,0) 6∈ −R3

++, we mean
that x = (0,0,0) is a weakly efficient solution of (MPPC1). Applying Theorem 4.6, there exist
P ∈P3 \{(0,0,0)}, r0 ∈ R+, η := (η1,η2) ∈ R2

+ and γ := (γ1,γ2) ∈ R2 satisfying

(0,r) ∈ ∂
w(P0 f )(x)+

2

∑
i=1

∂
w(ηigi)(x)+

2

∑
j=1

∂
w(γ jh j)(x)+Na

C(x) (∀r ≥ r0); (4.15)

y2− y1 ∈ R3
++ =⇒ P(y1)< P(y2); (4.16)

ηigi(x) = 0, i = 1,2; (4.17)

γ jh j(x) = 0, j = 1,2. (4.18)

In fact, in this setting, one can take P= (1,0,0)∈P3\{(0,0,0)}, r0 = 0∈R+, η = (0,0)∈R2
+

and γ = (0,0) ∈ R2. Then, (4.16), (4.17) and (4.18) are fulfilled automatically. The mapping
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P0 f : R3 → R3 is given by (P0 f )(x) = f1(x) for all x ∈ R3. Thus, the relation of (4.15) is
equivalent to the following one

(0,r) ∈ ∂
w f1(x)+

2

∑
i=1

∂
w(0)(x)+

2

∑
j=1

∂
w(0)(x)+Na

C(x) (∀r ≥ 0). (4.19)

By virtue of Example 2.5, it leads to

∂
w f1(x) = Na

C(x),

which combined with (4.19) yields that

(0,r) ∈
2

∑
i=1

∂
w(0)(x)+

2

∑
j=1

∂
w(0)(x)+2Na

C(x) (∀r ≥ 0). (4.20)

It is plain that ∂ w(0)(x) = {(ξ ,r) ∈ R3×R+ |‖ξ‖ ≤ r}, (0,0) ∈ {(ξ ,r) ∈ R3×R+|‖ξ‖ ≤ r},
(0,0) ∈ 2Na

C(x), and thus,{
(ξ ,r) ∈ R3×R+|‖ξ‖ ≤ r

}
⊂

2

∑
i=1

∂
w(0)(x)+

2

∑
j=1

∂
w(0)(x)+2Na

C(x).

For every r≥ 0, one has (0,r) ∈
{
(ξ ,r) ∈R3×R+|‖ξ‖ ≤ r

}
. which proves the relation (4.20),

as it was checked.

Corollary 4.8. Let x ∈ K and suppose that for any P ∈Pm, the real-valued functions P0 f ,
g1,g2, . . . ,gp,h1,h2, . . . ,hq are lower Lipschitz at x. Then, if x is a weakly efficient solution
to problem (MPPC), then there exist P ∈Pm \ {0}, r0 ∈ R+, η := (η1,η2, . . . ,ηp) ∈ Rp

+ and
γ := (γ1,γ2, . . . ,γq) ∈ Rq satisfying (4.7), (4.8), (4.9) and

(0,r) ∈ ∂
w(P0 f )(x)+

p

∑
i=1

∂
w(ηigi)(x)+

q

∑
j=1

∂
w(γ jh j)(x)+Na

K(x) (∀r ≥ r0). (4.21)

Proof. It is an immediately corollary from Theorem 4.6, and the claim follows. �

Theorem 4.9. (Sufficient optimality condition for weak efficiency) Let x ∈ K and suppose
that there exist P ∈Pm \{0}, η := (η1,η2, . . . ,ηp) ∈ −Rp

+ and γ := (γ1,γ2, . . . ,γq) ∈ Rq such
that all the following assertions are fulfilled:

(i) The real-valued functions P0 f ,η1g1,η2g2, . . . ,ηpgp,γ1h1,γ2h2, . . . ,γqhq are weakly sub-
differentiable at x.

(ii) If y2− y1 ∈ Rn
++, then P(y1)< P(y2).

(iii) The following relations hold true:

(0,0) ∈ ∂
w(P0 f )(x)+

p

∑
i=1

∂
w(ηigi)(x)+

q

∑
j=1

∂
w(γ jh j)(x)+Na

C(x), (4.22)

ηigi(x) = 0, i = 1,2, . . . , p. (4.23)

Then, x is a weakly efficient solution to problem (MPPC).
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Proof. Assume that all the assumptions of Theorem 4.9 are fulfilled. Then, under (i) the sum
function P0 f +∑

p
i=1 ηigi +∑

q
j=1 γ jh j is weakly subdifferentiable at x, which yields that the set

∂ w
K (P0 f +∑

p
i=1 ηigi +∑

q
j=1 γ jh j)(x) is not empty. Since K ⊂ C, it holds that Na

C(x) ⊂ Na
K(x).

Thus, under the relation (4.22), we have

(0,0) ∈ ∂
w(P0 f )(x)+

p

∑
i=1

∂
w(ηigi)(x)+

q

∑
j=1

∂
w(γ jh j)(x)+Na

K(x).

Making use of the fuzzy sum role in Theorem 4.4 and then this combined with the previous
relation ensures that

(0,0) ∈ ∂
w(P0 f +

p

∑
i=1

ηigi +
q

∑
j=1

γ jh j)(x)+Na
K(x).

In view of Proposition 3.1, one can reach the following result

(0,0) ∈ ∂
w
K (P0 f +

p

∑
i=1

ηigi +
q

∑
j=1

γ jh j)(x).

By applying the weak subdifferential notion and moreover for every x ∈ K guarantees that
ηi(gi(x)−gi(x))≤ 0, i = 1,2, . . . , p and γ j(h j(x)−h j(x)) = 0, j = 1,2, . . . ,q, we have

〈P, f (x)− f (x)〉 ≥ (P0 f +
p

∑
i=1

ηigi +
q

∑
j=1

γ jh j)(x)

− (P0 f +
p

∑
i=1

ηigi +
q

∑
j=1

γ jh j)(x)≥ 0,

or equivalently,
〈P, f (x)− f (x)〉 ≥ 0.

Under the condition (ii), one can obtain that f (x)− f (x) 6∈ −Rm
++ for every x ∈ K. Thus, x is a

weakly efficient solution to problem (MPPC) and completes the proof. �

Theorem 4.10. (Sufficient optimality condition for efficiency) Let x ∈ K and suppose that
there exist P ∈Pm \{0}, η := (η1,η2, . . . ,ηp) ∈ −Rp

+ and γ := (γ1,γ2, . . . ,γq) ∈ Rq such that
all the following assertions are fulfilled:

(i) The real-valued functions P0 f ,η1g1,η2g2, . . . ,ηpgp,γ1h1,γ2h2, . . . ,γqhq are weakly sub-
differentiable at x.

(ii) If y2− y1 ∈ Rn
+ \{0}, then P(y1)< P(y2).

(iii) The following relations hold true:

(0,0) ∈ ∂
w(P0 f )(x)+

p

∑
i=1

∂
w(ηigi)(x)+

q

∑
j=1

∂
w(γ jh j)(x)+Na

C(x), (4.24)

ηigi(x) = 0, i = 1,2, . . . , p. (4.25)
Then, x is an efficient solution to problem (MPPC).
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Proof. Analogously to the proof of Theorem 4.9, which can be verified that

〈P, f (x)− f (x)〉 ≥ 0.

Under the condition (ii), one can achieve that f (x)− f (x) 6∈ −Rm
+ \{0} for all x ∈K. Therefore,

x is an efficient solution to problem (MPPC) and terminates the proof. �

We remark that the results obtained in Theorem 4.9 and Theorem 4.10 are still true if the
augmented normal cone Na

C(x) is removed and replaced by an other cone Na
K(x).

5. CONCLUSION

In this paper, we have established some new important characterizations for the weak subdif-
ferential and provided the fuzzy sum rules for the (augmented) weak subdifferentials involving
the class of lower Lipschitz functions. Additionally, we presented some necessary and sufficient
optimality conditions for the weakly efficient solution and the efficient solution of a nonconvex
mathematical programming problem having set, inequality and equality constraints in terms of
the weak subdifferentials. It is important to remark that our obtained results in this paper have
not been fully discovered yet. In the future, these necessary and sufficient optimality conditions
may be used to construct algorithms for finding the (weakly) efficient solutions of a clas of
nonconvex mathematical programs via the weak subdifferentials notion.
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