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1. Introduction

In a wide range of mathematical problems, the existence of a solution is equivalent to the

existence of a fixed point of a nonlinear operator. The existence of a fixed point is therefore of

paramount importance in several areas of mathematics and other sciences. Fixed point theory

as an important research field has been extensively investigated by many authors since it finds a
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lot of applications in real world problems, such as, engineering, economy, optimization, game

theory, and medicine. Recently, Kakutani [1] extended the Brouwer’s fixed point theorem from

single valued mappings to multivalued mappings and Nadler [2] extended the Banach contrac-

tion principle from single valued mappings to multivalued mappings using the Hausdorff metric.

And the classes of Nadler’s fixed point theorem was further extended and generalized for var-

ious multivalued mappings in [3, 4]. Measure of noncompactness plays a fundamental role in

the study of single valued and multivalued mappings, especially, in the metric and topological

fixed point theory. It is a very useful tool to guarantee the existence of fixed points. The measure

of noncompactness was defined and studied by Kuratowski [5]. Darbo [6] used this measure

to generalize both the Schauder’s fixed point theorem and the Banach’s contraction principle

for condensing operators. Recently, measure of noncompactness has been used in differential

equations, integral equations, nonlinear equations; see [7, 8, 9] and the references therein.

Partially ordered metric spaces are an important generalization of metric spaces in the fixed

point theory. By using two basic concepts, Guo and Lakshmikantham [10] first gave some ex-

istence theorems of the coupled fixed points for both continuous and discontinuous operators.

They also provided some applications to the initial value problems of ordinary differential e-

quations with discontinuous right-hand sides. Bhaskar and Lakshmikantham [11] introduced

coupled fixed points and established a coupled fixed point theorem in a partially ordered metric

space. Berinde and Borcut [12] established a tripled fixed point theorem for nonlinear mappings

in partially ordered complete metric spaces. Ertürk and Karakaya [13] introduced the concept

of n-tuplet fixed points and studied the existence and uniqueness of fixed points of contractive

type mappings in partially ordered metric spaces. Moreover, by using the condensing operators,

Aghajani et al. [14] obtained some results on the existence of coupled fixed points and Karakaya

et al. [15] obtained some results concerning the existence of tripled fixed points via measure of

noncompactness. Recently, the existence of fixed points for various contractive mappings has

been studied by many authors under different conditions. The concept of coupled fixed points

for multivalued mappings was introduced by Samet and Vetro [17] and they obtained coupled

fixed point theorems for multivalued nonlinear contraction mappings in a partially ordered met-

ric space. Rao, Kishore and Kenan [18] obtained a tripled coincidence fixed point theorem for

multivalued mappings in a partially ordered metric space.
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In this paper, motivated by the research going in this direction, using condensing operators,

we investigate n-tuplet fixed points of multivalued mappings on a Banach space. We also give

an application of our result to a system of integral inclusions.

2. Preliminaries

Throughout this paper, E is always assumed to be a Banach space and P(E) (or 2E) is always

assumed to be the set of all subsets of E. We denote the set

Pk(E) = {X ⊂ E,X is nonempty and has a property k}.

Prcp(E),Pcl,bd(E),Pcl,cv(E) denotes the classes of all relatively compact, closed-bounded and

closed-convex subsets of E, respectively.

A mapping T : E → Pk(E) is called a multivalued mapping or set valued mapping on E into

E. A point x ∈ E is called a fixed point of T if x ∈ T x.

Definition 2.1. [19] A mapping µ : Pcl,bd(X)→R+ is called a measure of noncompactness if it

satisfies the following conditions:

(M1) ∅ 6= µ−1(0)⊂ Prcp(X),

(M2) µ(Ā) = µ(A), where Ā denotes the closure of A,

(M3) µ(conv A) = µ(A), where conv A denotes the convex hull of A,

(M4) µ is nondecreasing,

(M5) If {An} is a decreasing sequence of sets in Pcl,bd(X) satisfying lim
n→∞

µ(An) = 0, then the

intersection A∞ =
∞

∩
n=1

An is nonempty.

If (M4) holds, then A∞ ∈ Prcp(X). For this, let lim
n→∞

µ(An) = 0. As A∞ ⊆ An for each n =

0,1,2, ...; by the monotonicity of µ, we obtain µ(A∞) ≤ lim
n→∞

µ(An) = 0. So, by (M1), we get

that A∞ is nonempty and A∞ ∈ Prcp(X).

Theorem 2.2. [20] Let X be a closed and convex subset of a Banach space E. Then every

compact, continuous map T : X → X has at least one fixed point.

Theorem 2.3. [7] Let X be a nonempty, bounded, closed and convex subset of a Banach space

E and let T : X → X be a continuous mapping. Suppose that there exists a constant k ∈ [0,1)

such thatµ(T (X))≤ kµ(X) for any subset X of E, then T has a fixed point.
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Definition 2.4. [19] A multivalued mapping T : E → Pcl,bd(E) is said to be D-set-Lipschitz if

there exists a continuous nondecreasing function ϕ : R+→ R+ such thatµ(T (X)) ≤ ϕ(µ(X))

for all X ∈ Pcl,bd(E) with T (X) ∈ Pcl,bd(E), where ϕ(0) = 0. Generally, we call function ϕ to a

D- f unction of T on E.

If ϕ(r) = kr, k > 0, then T is called a k-set-Lipschitz mapping. If k < 1, then T is called a

k-set-contraction on E. If ϕ(r) < r for r > 0, then T is called a nonlinear D-set-contraction

on E.

Lemma 2.5. [21] If ϕ is a D- f unction with ϕ(r) < r for r > 0, then lim
n→∞

ϕn(t) = 0 for all

t ∈ [0,∞).

Theorem 2.6. [19] Let X be a nonempty, bounded, closed and convex subset of a Banach space

E and let T : X → Pcl,cv(X) be a closed and nonlinear D-set-contraction. Then T has a fixed

point.

Theorem 2.7. [19] Let X be a bounded, closed and convex subset of a Banach space E and let

T : X → Pcl,cv(X) be a closed and k-set-contraction. Then T has a fixed point.

Definition 2.8. [22] Let X be a topological space, 2X the family of all subsets of X and T

be a mapping of X into 2X such that T x is nonempty, for all x ∈ X . Then the mapping T is

called upper semicontinuous if for each closed subset C of X , T−1(C) = {x ∈ X : T x∩C 6=∅}

is closed.

Definition 2.9. [19] A mapping µ : Pk(E)→R+ is said to be nondecreasing if A,B ∈ Pk(E) are

any two sets with A⊆ B, then µ(A)≤ µ(B), where ⊆ is order relation of inclusion in Pk(E).

Lemma 2.10. [23] Let X be a Banach space and F be a Caratheodory multivalued mapping.

Let Φ : L1 (H;X)→C (H;X) be linear continuous mapping. Then,

Φ◦SF : C (H;X) → Pcl;cv (C (H;X))

u 7−→ (Φ◦SF)u := Φ(SF (u)) ,

is a closed graph operator in C (H;X)×C (H;X).

Lemma 2.11. [24] (1) Let A ⊆ C (H;X) be bounded. Then µ (A(t)) 6 µ (A) for all t ∈ H,

where A(t) = {y(t) ,y ∈ A} ⊂ X. Furthermore, if A is equicontinuous on H, then µ (A(t))

is continuous on H and µ (A) = sup{µ (A(t)) , t ∈ H} . (2) If A ⊂ C (H;X) is bounded and
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equicontinuous, then

µ

(∫ t

0
A(s)ds

)
6
∫ t

0
µ (A(s))ds,

for all t ∈ H, where
∫ t

0 A(s)ds =
{∫ t

0 x(s)ds : x ∈ A
}
.

3. n-tuplet fixed point theorems and some related results

In this section, we investigate the n-tuplet fixed point property of a multivalued mapping and

give some applications for special cases n = 2, that is, coupled fixed points.

Definition 3.1. Let X be a nonempty set and G : Xn→ P(X) be a given mapping. An element

(x1,x2,x3, ...,xn) ∈ Xn is called an n-tuplet fixed point of G if

x1 ∈ G(x1,x2,x3, ...,xn),

x2 ∈ G(x2,x3, ...,xn,x1),

...

xn ∈ G(xn,x1,x2, ...,xn−1).

Remark 3.2. If we take as special cases n = 2 and n = 3 in Definition 3.1, respectively, we get

coupled fixed points [17] and tripled fixed points [18].

Theorem 3.3. [25] Let µ1,µ2...,µn be measures of noncompactness in Banach spaces E1,E2...,En

respectively. Suppose that the function F : [0,∞)n→ [0,∞) is convex and F(x1,x2, ...,xn) = 0 if

and only if xi = 0 for i = 1,2, ...,n. Then µ̃(X) = F(µ1(X1),µ2(X2)...,µn(Xn)) defines a mea-

sure of noncompactness in E1×E2× ...×En where Xi denotes the natural projection of X onto

Ei, for i = 1,2, ...,n.

Remark 3.4. By taking

F (x1,x2,x3, ...,xn) = max{x1,x2,x3, ...,xn} ,

or

F (x1,x2,x3, ...,xn) = x1 + x2 + x3 + ...+ xn,

for any (x1,x2,x3, ...,xn) ∈ [0,∞)n, the conditions of Theorem 3.3 are satisfied. Therefore,

µ̃ (X) := max(µ (X1) ,µ (X2) , ...,µ (Xn)) ,
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or

µ̃ (X) := µ (X1)+µ (X2)+ · · ·+µ (Xn)

defines measures of noncompactness in En, where Xi, i = 1,2, ...,n are the natural projections

of X on Ei.

We now give the following theorem for the existence of fixed points of multivalued mappings

under measure of noncompactness conditions.

Theorem 3.5. Let X be a nonempty, bounded, closed and convex subset of a Banach space

E and let µ be an arbitrary measure of noncompactness in E. Let ϕ : R+ → R+ be a non-

decreasing and upper semicontinuous function such that ϕ (r) < r for all r > 0. Suppose that

G : X1×X2×·· ·×Xn→ Pcl,cv(X) is continuous multivalued operator satisfying

µ (G(X1×X2×·· ·×Xn))6 ϕ

(
µ (X1)+µ (X2)+ · · ·+µ (Xn)

n

)
for all X1,X2, ...,Xn ⊂ X. Then G has at least one n-tuplet fixed point.

Proof. As in Remark 3.4, we define the measure of noncompactness µ̃ by

µ̃ (X) := µ (X1)+µ (X2)+ · · ·+µ (Xn) .

Define the mapping G̃(X) := G(X1×X2×·· ·×Xn). We prove that G̃ satisfies all the conditions

of Theorem 2.6. Then

µ̃

(
G̃(X)

)
= µ̃ (G(X1×X2×·· ·×Xn))

= µ̃ (G(x1,x2,x3, ...,xn),G(x2,x3, ...,xn,x1), ...,G(xn,x1,x2, ...,xn−1))

= µ (G(x1,x2,x3, ...,xn))+µ(G(x2,x3, ...,xn,x1))+ · · ·+µ(G(xn,x1,x2, ...,xn−1))

6 ϕ

(
µ (X1)+µ (X2)+ · · ·+µ (Xn)

n

)
+ϕ

(
µ (X2)+µ (X3)+ · · ·+µ (X1)

n

)
+ · · ·+ϕ

(
µ (Xn)+µ (X1)+ · · ·+µ (Xn−1)

n

)
= nϕ

(
µ (X1)+µ (X2)+ · · ·+µ (Xn)

n

)
.

Note that
1
n

µ̃

(
G̃(X)

)
≤ ϕ

(
µ (X1)+µ (X2)+ · · ·+µ (Xn)

n

)
.
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Taking µ̃ ′ = 1
n µ̃, we get

µ̃
′
(

G̃(X)
)
6 ϕ

(
µ̃
′ (X)

)
.

Also, µ̃ ′ is a measure of noncompactness. Thus, by Theorem 2.6, we obtain that G has at least

one n-tuplet fixed point.

Remark 3.6. If we take µ measure of noncompactness in Theorem 3.5 as

µ̃ (X) := max(µ (X1) ,µ (X2) , ...,µ (Xn)) ,

we can obtain the same result.

4. Applications to inclusions systems

The multivalued fixed point theorem of this paper has some applications to differential and in-

tegral systems of inclusions. As an example, we study the solvability of a system of differential

inclusions.

Consider the following differential systemx′(t) ∈ A(t)x(t)+G(t,x(t) ,y(t)), t ∈ [0,b] ,

y′(t) ∈ A(t)y(t)+F(t,y(t) ,x(t)), t ∈ [0,b]
(4.1)

with

x(0) = ϕ(x,y), y(0) = ϕ(y,x), (4.2)

where G is an upper Caratheodory multimap, ϕ : C ([0,b] ,X)→ X is a given multivalued func-

tion, {A(t) : t ∈ [0,b]} is a family of linear closed unbounded operators on X with domain

D(A(t)) independent of t that generate ∆ an evolution system of operators {U (t,s) : t,s ∈ ∆}

with ∆ = {(t,s) ∈ [0,b]× [0,b] : 0 6 s 6 t 6 b}.

Define the set

SG (x,y) =
{

g ∈ L1 ([0,b] ,X) : g(t) ∈ G(t,x(t) ,y(t))
}
.

Definition 4.1. A family {U(t,s)}(t,s)∈∆ of bounded linear operators U(t,s) : X → X , where

(t,s) ∈ ∆ := {(t,s) ∈ J× J : 0 6 s 6 t <+∞} for J = [0,b] is called an evolution system if the

following properties are satisfied
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(1) U(t, t) = I, where I is the identity operator in X and U(t,s) U(s,τ) = U(t,τ) for 0 6

τ 6 s 6 t <+∞,

(2) The mapping (t,s)→ U(t,s) y is strongly continuous, that is, there exists a constant

M > 0 such that ‖U(t,s)‖6 M, ∀(t,s) ∈ ∆.

An evolution system U(t,s) is said to be compact if U(t,s) is compact for any t-s > 0. U(t,s)

is said to be equicontinuous if {U(t,s)x : x ∈M} is equicontinuous at 0 6 s < t 6 b for any

bounded subset B⊂ X . Clearly, if U(t,s) is a compact evolution system, it must be equicontin-

uous. The converse is not necessarily true.

More details on evolution systems and their properties could be found in the books of Ahmed

[26], Engel and Nagel [27] and Pazy [28].

Definition 4.2. We say that the couple (x(t) ,y(t))∈C ([0,b] ,X)×C ([0,b] ,X) is a mild solution

of the evolution system (4.1)-(4.2) if it satisfies the following integral systemx(t) =U(t,0) ϕ(x,y)+
∫ t

0 U(t,s) g(s) ds for g ∈ SG (x,y) ,

y(t) =U(t,0) ϕ(y,x)+
∫ t

0 U(t,s) g(s) ds for g ∈ SG (y,x)
(4.3)

for all t ∈ [0,b].

Theorem 4.3. Assume the following hypotheses

(H1) {A(t) : t ∈ J} is a family of linear operators. A(t) : D(A) ⊂ X → X generates an e-

quicontinuous evolution system {U (t,s) : (t,s) ∈ ∆} and|U (t,s)|6 M.

(H2) The multifunction G : J×C([0,b]×X ×X) −→Pcl,cv(X) is an upper Carathéodory

with respect to x and y and ϕ : C(J;X)→ X is compact and

µ (G(t,W ×W ))< kµ

(
W ×W

2

)
,∀t ∈ J.

(H3) There exists a constant r > 0 such that

M [‖ϕ (x,y)‖+{‖g(t)‖1 : g ∈ SG (x,y) ,x ∈ A0}]6 r

and

M [‖ϕ (y,x)‖+{‖g(t)‖1 : g ∈ SG (y,x) ,y ∈ A0}]6 r,

where A0 = {z ∈C(J;X) : ‖z(t)‖6 r for all t ∈ J} hold. Then the non local system

(4.1)-(4.2) has at least one mild solution in the space C (J,X).



n-TUPLET FIXED POINTS OF MULTIVALUED MAPPINGS 9

Proof. To solve problem given in (4.1)-(4.2), we transform it into the following fixed point

problem.

Consider the multivalued operator N : C([0,b] ;X ;X)→P(C([0,b] ;X)) defined by,

N(x,y) =
{

h ∈C(J;X) : h(t) =U(t,0)ϕ(x,y)+
∫ t

0
U(t,s) g(s) ds, with g ∈ SG (x,y)

}
.

Clearly, coupled fixed points of the operator N are mild solutions. For each y ∈ C([0,b] ;X),

set SG (x,y) is nonempty since G has a measurable selection. Let us show that N has a cou-

pled fixed point. To this end, we need to verify all the conditions of Theorem 3.5 Let A0 =

{z ∈C([0,b] ;X) : ‖z(t)‖6 r for all t ∈ [0,b]}. We notice that A0 is closed, bounded and con-

vex. To show that N (A0×A0)⊆ A0, we need first to prove that the family

{∫ t

0
U(t,s) f (s) ds : f ∈ SF (y) and y ∈ A0

}

is equicontinuous for t ∈ J, that is, all the functions are continuous and they have equal variation

over a given neighbourhood. In view of (H1) , we have that functions in {U (t,s) : (t,s) ∈ ∆}

are equicontinuous, i.e, for every ε > 0 there exists δ > 0 such that |t− τ|< δ implies

‖U (t,s)−U (τ,s)‖< ε

for all U (t,s) ∈ {U (t,s) : (t,s) ∈ ∆} . Then, given some ε > 0, letting δ = ε ′

ε‖g‖
∞

such that

|t− τ|< δ , we have

∣∣∣∣∫ t

0
U(t,s) g(s) ds−

∫
τ

0
U(τ,s)g(s) ds

∣∣∣∣6 ∫ t

τ

|U (t,s)−U (τ,s)| |g(s)|ds.

As {U (t,s) : (t,s) ∈ ∆} is equicontinuous, we have

∣∣∣∣∫ t

0
U(t,s) g(s) ds−

∫
τ

0
U(τ,s) g(s) ds

∣∣∣∣ 6 ε ‖g‖
∞
|t− τ|

< ε ‖g‖
∞

ε ′

ε ‖g‖
∞

= ε
′.

Hence we conclude that
{∫ t

0 U(t,s) g(s) ds : g ∈ SG (x,y) and (x,y) ∈ A0×A0
}

is equicontin-

uous for t ∈ J.
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Now, we show that N (A0×A0)⊆ A0. For t ∈ J, we have

|h(t)| =

∣∣∣∣U (t,0)ϕ(x,y)+
∫ t

0
U(t,s) g(s) ds

∣∣∣∣
6 |U (t,0)ϕ(x,y)|+

∫ t

0
|U(t,s) g(s)|ds

6 M ‖ϕ (x,y)‖+M ‖g‖1

= M [‖ϕ (x,y)‖+‖g‖1]6 r.

Thus N (A0×A0)⊆ A0. Further, it is easy to see that N is convex value.

Now, let us show that N has a closed graph. Letting xn → x, yn → y and hn → h such that

hn (t) ∈ N (xn,yn), we show that h(t) ∈ N (x,y) .

Now, there exists a sequence gn ∈ SG (xn,yn) such that

hn (t) =U (t,0)ϕ(xn,yn)+
∫ t

0
U(t,s)gn(s)ds.

Consider the linear operator Φ : L1 ([0,b] ;X)→C ([0,b] ;X) defined by

Φ f (t) =
∫ t

0
U(t,s)gn(s)ds.

Clearly, Φ is linear and continuous. So we get that Φ ◦ SG (x,y) is a closed graph operator.

Further, we have

hn (t)−U (t,0)ϕ(xn,yn) ∈Φ◦SG (x,y) .

Since xn→ x, yn→ y and hn→ h, we have

h(t)−U (t,0)ϕ(x,y) ∈Φ◦SG (x,y) .

That is, there exists a function g ∈ SG (x,y) such that

h(t) =U (t,0)ϕ(y)+
∫ t

0
U(t,s)g(s)ds.

Therefore N has a closed graph, hence N has closed values on C ([0,b]×X×X ,X).
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We know that the family
{∫ t

0 U(t,s) f (s)ds, f ∈ SF (W (t))
}

is equicontinuous, hence by Lem-

ma 2.5, we have

µ

(∫ t

0
U(t,s)g(s)ds, g ∈ SG (W (t)×W (t))

)
6

∫ t

0
µ (U(t,s)g(s), g ∈ SG (W (t)×W (t)))ds

6 M
∫ t

0
µ (g(s), g ∈ SG (W (t)×W (t)))ds

6 Mtµ (G(t,W (t))) .

Therefore

µ (N (W ×W ))

= µ

(
N
(

U (t,0)ϕ(W (t)×W (t))+
∫ t

0
U(t,s)g(s)ds,g ∈ SG (W (t)×W (t))

))
6 µ (U (t,0)ϕ(W (t)×W (t)))+µ

(∫ t

0
U(t,s)g(s)ds,g ∈ SG (W (t)×W (t))

)
6 Mµ (ϕ(W (t)×W (t)))+Mtµ (G(t,W (t)×W (t))) .

In view of (H2), we get

µ (N (W ×W ))6 Mbkµ

(
W ×W

2

)
.

Therefore, for Mbk < 1, we obtain that N has at least one coupled fixed point. Hence, system

(4.1)-(4.2) has at least one solution.
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