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SOLVING COST VARYING TRANSPORTATION PROBLEMS BY GENETIC
ALGORITHM BASED ON A SPANNING TREE AND PRÜFER NUMBER

CHANDAN BIKASH DAS

Department of Mathematics, Tamralipta Mahavidyalaya, Tamluk, Purba Midnapore-721636, West Bengal, India

Abstract. This paper presents a mathematical model for the cost varying transportation problem (CVTP) in which

cost is varied due to the capacity of vehicles as well as amount of transport quantity. The main purpose is to develop

a bi-level mathematical model. This model determines the minimum total transportation cost by determining

minimum cost of the transportation at the route(i, j). This model is also a mixed-integer mathematical model.

To tackle such a problem, a genetic algorithm (GA) based on the spanning tree has been proposed. We focus on

the use of Prüfer number encoding based on a spanning tree, which is adopted because it is capable of equally

and uniquely representing all possible trees. From this point, the criteria by which chromosomes can always be

converted to a CVTP tree is design. The procedures of crossover and mutation operators are newly designed.

Numerical examples are presented to illustrate the problem with some conclusions.
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1. Introduction

The classical transportation problem (TP) refers to a special class of linear programming.

It is well known as a basic network problem. The first formulation and discussion of a pla-

nar transportation model was introduced by Hitchcock [5]. The objective is to determine the

amounts shipped from each source to each destination that minimizes the total cost while sat-

isfying both the supply limits and the demand requirements. Efficient methods of solution are

derived from the simplex algorithm and were developed in 1947. The transportation problem
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can be converted as a standard linear programming problem, which can be solved by the sim-

plex method. However, because of its very special mathematical structure, it was recognized

early that the simplex method applied to the transportation problem can be made quite efficient

in terms of how to evaluate the necessary simplex-method information (variable to enter the

basis, variable to leave the basis and optimality conditions). Charnes et al. [1] developed the

Stepping Stone Method which provides an alternative way of determining the simplex-method

information. Dantzig [2] used the simplex method in the transportation problem as the Primal

simplex transportation method. An initial basic feasible solution for the transportation problem

can be obtained by using the North West corner rule, Row minima, Column minima, Matrix

minima, or the Vogels approximation method. The Modified Distribution method is useful for

finding the optimal solution for the transportation problem.

In the past several decades a variety of deterministic and/or stochastic models have been de-

veloped considering constant unit transportation cost.In more real world applications, it is often

that the unit transportation cost is not constant; it depends on amount of transport quantity and

capacity of vehicles. If amount of quantity is small then small(capacity) vehicle is sufficient

for deliver. Where as if amount of quantity is large then big(capacity) vehicle is needed. So,

depend on amount of transport quantity and the capacity of vehicles, the unit transportation cost

is varied. Panda and Das [10] present some transportation problems whose unit transportation

cost is varied. This type of transportation problems are known as cost varying transportation

problem(CVTP). They [11] modified some techniques to allocate initial basic feasible solution-

s. then optimize the objective function by deterministic way. Tn this paper we are going to

present such type of TP where unit transportation cost is unknown but cost of single trip of all

the vehicles are known for each route(i, j). Without considering the unit transportation cost,

a bi-level mathematical programming model has been presented whose lower level determines

the minimum cost to transport xi j amount in the cell (i, j) and upper level presents the opti-

mal transportation cost of the problem. This bi-level mathematical model is a mixed-integer

programming problem.

Theoretically, any general mixed integer programming solution method can be used to solve

this kind of problem, for example, branch and bound method, branch and cut method. However,
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these methods are generally inefficient and computationally expensive for the problems with

large size.

Several efficient algorithms have been developed over the past decades for solving the trans-

portation problem when the cost coefficients and the supply and demand values are known

exactly.

Metaheuristic methods, can obtain global optimal solution or approximately global optimal

solution at the cost of less computational time, are preferable in practical industry applications.

To the best of our knowledge, the matrix encoding genetic algorithm for generic nonlinear

transportation problems developed by Michalewicz, et al. [7] is an only meta heuristic method

relevant directly to our problem.

A number of exact solution algorithms are developed to solve the fixed charge transportation

(FCT) problem, which include cutting plane approaches [12] and branch and bound approaches

[9]. Some heuristic methods are also proposed [14]. Some meta heuristic methods are devel-

oped for the FCP problem. Sun et al. [13] developed a tabu heuristic search procedure. Gottlieb

and Paulmann [4] proposed a matrix representation genetic algorithm. Li et al. [6] proposed

a genetic algorithm where prüfer numbers are use to encode spanning tree in unbalanced fixed

charge TP. During decoding, it essential to repair some chromosomes. This paper presents a

proposed GA where prüfer numbers are use to encode spanning tree and no repair is required

and procedures of crossover and mutations are newly stated.

2. Preliminaries

2.1. Transportation Problem.

In transportation model, there are m sources (production units) and n destinations(customers).

Distribute a single commodity from various sources to various destination o in such a manner

that the total transportation cost is minimized. A transportation problem can be stated in Model

1 as follows:



4 C. B. DAS

Model 1

min
m

∑
i=1

n

∑
j=1

ci jxi j,

subject to
m

∑
i=1

xi j = ai, i = 1, . . . ,m

n

∑
j=1

xi j = b j, j = 1, . . . ,n

m

∑
i=1

ai =
n

∑
j=1

b j

xi j ≥ 0 ∀i, ∀ j,

where,

xi j quantity to be transport on the route (i, j) from source i to destination j.

ci j unit transportation cost from source i to destination j.

ai capacity of source i.

bi number of units demand at destination j.

2.2. Cost varying transportation problem.

Suppose there are two types off vehicles V1,V2 from each source to each destination. Let C1

and C2(>C1) are the capacities(in unit) of the vehicles V1 and V2 respectively. Ri j = (R1
i j,R

2
i j)

represent transportation cost for each cell (i, j); where R1
i j is the transportation cost from source

Oi, i = 1, . . . ,m to the destination D j, j = 1, . . . ,n by the vehicle V1. And R2
i j is the transportation

cost from source Oi, i = 1, . . . ,m to the destination D j, j = 1, . . . ,n by the vehicle V2. So, cost

varying transportation problem can be represent in the following tabulated form.

D1 D2 .. Dn stock(ai)

O1 R1
11,R

2
11 R1

12,R
2
12 .... R1

1n,R
2
1n a1

O2 R1
21,R

2
21 R1

22,R
2
22 .... R1

2n,R
2
2n a2

.... .... .... .... .... ....

Om R1
m1,R

2
m1 R1

m2,R
2
m2 .... R1

mn,R
2
mn am

Demand(b j) b1 b2 .... bn

Table 1: Tabular representation of cost varying transportation problem.



SOLVING CVTP BY GA BASED ON SPANNING TREE AND PRÜFER NUMBER 5

2.2.1. Determination of cost in (i, j)

In the above tabulated form we use the following notations.

Oi, i = 1, . . . ,m are sources.

D j, j = 1, . . . ,n are destinations.

ai capacity of source i.

bi number of units demand at destination j.

V1,V2 types of vehicles,(Here consider only two types).

C1 C1 Capacity to carry of V1.

C2(>C1) Capacity to carry of V2.

R1
i j transportation cost for V1. in a single trip from source i to destination j.

R2
i j(> R1

i j) transportation cost for V2 in a single trip from source i to destination j.

P1
i j number of vehicles used of type V1.

P2
i j number of vehicles used of type V2.

Let xi j amount of transport quantity from source i to destination j.

Suppose xi j is known. If P1
i j number V1 type vehicles and P2

i j number V2 type vehicles are used

to deliver xi j units amount in the cell (i, j) i.e.(xi j ≤ (P1
i jC1 +P2

i jC2)).

And cost of transportation in the cell (i, j) is Wi j = P1
i jR

1
i j +P2

i jR
2
i j.

So, the transportation cost in (i, j) is determined by the following programming.

min
P1

i j,P
2
i j

Wi j

Wi j = P1
i jR1i j +P2

i jR2i j(1)

xi j ≤ P1
i jC1 +P2

i jC2)

xi j ≥ 0; P1
i j,P

2
i j are integers

Mathematical programming of cost varying transportation model The Bi-level mathematical

programming cost varying transportation problem under 2-vehicle is formulated in Model 2 as

follows:



6 C. B. DAS

Model 2

min
m

∑
i=1

n

∑
j=1

ci jxi j,

s. t. min
P1

i j,P
2
i j

Wi j

Wi j = P1
i jR1i j +P2

i jR2i j

xi j ≤ P1
i jC1 +P2

i jC2

m

∑
i=1

xi j = ai, i = 1, . . . ,m

n

∑
j=1

xi j = b j, j = 1, . . . ,n

m

∑
i=1

ai =
n

∑
j=1

b j

xi j ≥ 0 ∀i, ∀ j,

where P1
i j, P2

i j, i = 1, . . . ,m; j = 1, . . . ,n are integers

3. Proposed genetic algorithm

3.1. Parameters of GA

GA depends on different parameters like population size (POPSIZE), probability of crossover

(PCROS), probability of mutation (PMUT E) and maximum number of generation (MAXGEN).

According to the existing literature, there is no clear indication about the population size of

GA(how large it should be?). However, there arises some difficulties in storing the data, if the

population is too large. However, if it is too small, there may not be enough populations for

good crossovers. In our present study, we have taken the values of these parameters as follows:

POPSIZE = 50 PCROS = 0.8 PMUT E = 0.1 MAXGEN = 500

3.2. Chromosome representation

Spanning tree-based genetic algorithm. A TP is a kind of a network problem that its feasible

solution has spanning tree topology. We encode the nodes of a transportation tree by prüfer
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number and is considered as a chromosome. Fig-1 illustrate a spanning tree and its prüfer

number.

FIGURE 1. Spanning Tree and prüfer number .

3.3. Initialization

The initial chromosome is presented by a prüfer number which is performed from random-

ly generated m+ n− 2 digits in range [1,m+ n]. There will be a possibility that it cannot be

adopted into a transportation network graph. Due to this reason, the feasibility is checked be-

fore decoding the prüfer number.Gen and Cheng[3] developed feasibility criteria for the prüfer

number. Molla-Alizadeh-Zavardehi et. al.[8] proposed a criteria for an unbalanced TP where

there is no need to check or repair the invalid chromosome. The used feasibility criteria is as

follows:

m

∑
i=1

(Li +1) =
m+n

∑
i=m+1

(Li +1)

i.e.
m

∑
i=1

Li +m =
m+n

∑
i=m+1

Li +n(2)

and
m

∑
i=1

Li +
m+n

∑
i=m+1

Li = m+n−2,(3)
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where, Li is the appearance number of node i in the prüfer number P(T ).

If we consider

m

∑
i=1

Li = n−1,(4)

m+n

∑
i=m+1

Li = m+n−2.(5)

Then (3.2) and (3.3) are satisfied.

Prüfer number generation

Therefore, a prüfer number is generated by randomly selection of (n− 1) number of digits

from set [1,m] and (m−1) number of digits from set [m+1,m+n].

An example, is presented in the following Figure-2.

FIGURE 2. illustration of feasible prüfer number .

After generating a feasible prufer number, the transportation network graph can be determined

by following decoding procedure.

3.4. Evaluation

Procedure : prüfer number to transportation tree

Step 1: Let P(T ) be a prüfer number, Pc(T ) the set of all nodes that are not part of P(T ) and

design eligible for consideration.
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Step 2: Repeat following (2.1) to (2.5)

(i) Let i be the lowest numbered eligible node in Pc(T ) and j be the left most digit of P(T ).

(ii) If i and j are not in the same set O or D, add edge (i, j) to the tree. Otherwise, select the

next digit k from P(T ) that is not included to the same set with i, exchange j with k, and add

the edge (i,k) to the tree T .

(iii) Remove j(ork) from P(T ) and i from Pc(T ). If j(ork) does not occur anywhere in the

remaining part of P(T ), put it into Pc(T ).

(iv) Assign xi j = min(ai,b j)(ormin(ai,bk)) to the edge (i, j)(or(i,k)).

(v) Set ai = ai− xi j and b j = b j− xi j(orbk = b j− xik)

Step 3: If no digits remain in P(T ), then there are exactly two nodes, i and j, still eligible in

Pc(T ). Add edge (i, j) to the tree T and from a tree with (m+n−2) edges.

Step 4: If there are no available units to assign, then stop.

Otherwise if, there are only one available and only one destination still remain, then add a edge

between them and remove an edge which has a zero flow to avoid cycle so that the spanning

tree have only (m+n−2) edges. Else form a new spanning tree with (m+n−2) edges.

Total transportation cost:

After determination of xi j determine cost in i, j by (1) and determine the cost using

∑
m
i=1 ∑

n
j=1( cost in (i, j)).

3.5. Selection

During the selection, the parent?individuals aimed at producing the child?chromosomes are

chosen. The selection process works out a new population starting from current one by encour-

aging the chromosomes having the strongest fitness, i.e., those which are nearer to the global

optima of the objective function. There exists several methods to obtain this task. In our work,

we use the ranking selection method. The procedure is as follows:

Step 1:Sort all fitness fi, i = 1, . . . ,POPSIZE in descending order and change the corresponding

chromosome accordingly.

Step 2: Generate a real random number c in [0,1].

Step 3: Compute the probability pi of selection for each chromosome Pi(T ) by the formula

pi = c(1− c)i−1.
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Step 4: Compute the cumulative probability qi for each chromosome Pi(T ) using the formula

qi = ∑
i
j=1 p j.

Step 5: Generate a random number r ∈ [0,1].

Step 6: If r < qi, then select the chromosome Pi(T ) , otherwise go to Step 7.

Step 7: Repeat Steps 5 and 6 POPSIZE times and obtain POPSIZE copies of chromosomes.

3.6. Genetic operators

Reproduction

The chromosomes with higher fitness value are more desirable, so pr% of the chromosomes

are automatically copied to the next generation.

Crossover

Crossover operator operates on two randomly selected parent chromosomes (solutions) at a

time and generates offspring by combining both parent chromosomes (solutions) features. For

this operation, expected (PCROS ∗POPSIZE) number of chromosomes will take part. Hence,

in order to perform the crossover operation, select PCROS∗POPSIZE number of chromosomes.

Different steps of crossover between, Pi(T ) and Pj(T ), are given below.

Step 1: Generate a random real number r ∈ [0,1].

Step 2: Select two chromosomes Pi(T ) and Pj(T ) randomly among populations for crossover

if r < PCROS.

Step 3: Interchange the k ∈ O of Pi(T ) with l ∈ O of Pj(T )

Step 4: Repeat Steps 1-3 for PCROS∗POPSIZE/2 times. For example, (FIGURE 3)

Mutation. This operation is responsible for fine tuning capabilities of the system. It is ap-

plied to a single chromosome. For this operation, expected (PMUT E ∗ POPSIZE) number

of chromosomes will take part. Hence, in order to perform the crossover operation, select

PMUT E ∗POPSIZE number of chromosomes. Different steps of crossover between, Pi(T ),

are given below.

Step 1: Generate a random real number r ∈ [0,1].

Step 2: Select chromosomes Pi(T ) randomly among populations for mutation if r < PMUT E.

Step 3: Select any k from Pi(T ), if it is in O then select any number l from O and replace k by
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FIGURE 3. illustration of crossover procedure.

l. Otherwise select any number l from D and replace k by l.

Step 4: Repeat Steps 1-3 for PMUT E ∗POPSIZE/2 times. (FIGURE 4)

FIGURE 4. illustration of mutation procedure.

Overall procedure

The overall procedure of the spanning tree-based GA is shown in Fig.-5

4. Numerical examples

Example 4.1. Consider a cost varying transportation problem as
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FIGURE 5. Proposed GA flowchart.

D1 D2 D3 D4 stock(ai)

O1 5,7 4,6 6,9 8,12 30

O2 2,4 6,9 7,10 5,8 40

O3 3,5 10,13 4,6 7,10 20

Demand(b j) 15 25 35 15

Table 2: Tabular representation of Example 1.
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The capacities of vehicles of V1 and V2 are respectively, C1 = 10 and C2 = 16.

The optimal solution of this problem is given in the following table

Popsize Maximum Prüfer Route Allocation Minimum

Generation Number Route Allocation Cost

[2,6,7,3,1] (2,4),(2,6),(3,5), x12 = 25,x14 = 5,

10 20 (3,7),(1,6),(1,7) x21 = 15,x23 = 25, 66

x33 = 10,x34 = 10,

[1,3,2,4,6] (1,5),(1,4),(3,4), x11 = 5,x12 = 25,

20 100 (3,6),(2,6),(2,7) x23 = 25,x24 = 15, 64

x31 = 10,x33 = 10,

[4,1,3,6,2] (1,5),(1,4),(3,4), x11 = 5,x12 = 25,

50 500 (3,6),(2,6),(2,7) x23 = 25,x34 = 15, 64

x31 = 10,x33 = 10,

Table 3: Results of Example 1 by GA.

Example 4.2. Consider a cost varying transportation problem as

D1 D2 D3 D4 stock(ai)

O1 10,13 8,10 9,12 14,18 40

O2 12,14 20,25 22,30 16,20 50

O3 16,20 9,12 7,9 14,19 60

Demand(b j) 55 30 20 45

Table 4: Tabular representation of Example 2.

The capacities of vehicles of V1 and V2 are respectively, C1 = 12 and C2 = 18.

The optimal solution of this problem is given in the following table
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Popsize Maximum Prüfer Route Allocation Minimum

Generation Number Route Allocation Cost

[3,3,2,4,4] (1,4),(3,5),(3,6), x11 = 40,x21 = 5,

10 20 (3,4),(2,4),(2,7) x24 = 45,x31 = 10, 188

x32 = 30,x33 = 20,

[3,1,2,4,4] (3,5),(3,4),(1,6), x11 = 20,x13 = 20,

10 200 (1,4),(2,4),(2,7) x21 = 5,x24 = 45, 183

x31 = 30,x33 = 30,

[4,3,2,7,1] (3,5),(3,4),(2,4), x13 = 20,x14 = 20,

20 200 (2,7),(1,7),(1,6) x21 = 25,x24 = 25, 172

x31 = 30,x32 = 30,

[4,7,3,2,1] (3,5),(3,4),(2,4), x13 = 20,x14 = 20,

50 500 (2,7),(1,7),(1,6) x21 = 25,x24 = 25, 172

x31 = 30,x32 = 30,

Table 5: Results of Example 2 by GA.

Example 4.3. Consider a cost varying transportation problem as

D1 D2 D3 D4 stock(ai)

O1 10,14 9,12 25,30 18,22 80

O2 12,146 10,15 24,28 20,25 60

O3 11,15 8,10 30,35 17,20 40

Demand(b j) 75 50 30 25

Table 6: Tabular representation of Example 3.

The capacities of vehicles of V1 and V2 are respectively, C1 = 15 and C2 = 25.

The optimal solution of this problem is given in the following table
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Popsize Maximum prüfer Route Allocation Minimum

Generation Number Route Allocation Cost

[1,2,4,3,5] (1,6),(1,4),(2,4), x11 = 50,x13 = 30,

10 20 (2,5),(3,5),(3,7) x21 = 25,x22 = 35, 147

x32 = 15,x34 = 25,

[1,2,3,4,4] (1,5),(1,4),(2,6), x11 = 30,x12 = 50,

20 100 (2,4),(3,4),(3,7) x21 = 30,x23 = 30, 147

x31 = 15,x34 = 25,

[1,2,3,4,4] (1,5),(1,4),(2,6), x11 = 30,x12 = 50,

20 500 (2,4),(3,4),(3,7) x21 = 30,x23 = 30, 147

x31 = 15,x34 = 25,

[4,5,1,2,3] (1,6),(1,4),(2,4), x11 = 50,x13 = 30,

50 500 (2,5),(3,5),(3,7) x21 = 25,x22 = 35, 147

x32 = 15,x34 = 25,

Table 5: Results of Example 3 by GA.

Discussion. From the numerical results, it is seen that when the population size and the number

of iterations are increased, after certain iteration, reach an optimal solution. It is also seen that

there may exist many prüfer numbers give the same optimal path and unique optimal solution. It

is also seen that there may exist alternative optimal solutions, i.e., prüfer numbers are different,

routes are different allocations are different but optimal value is same though any basic cell does

not have any zero(0) allocation.

5. Conclusion

This paper represents a new mathematical model on transportation problem where trans-

portation cost is unknown, but the cost of transportation of the vehicles in a single trip from

each source to each destination is known. This model is a bi-level mathematical programming

model. It is not easy to solve by traditional method. By spanning tree based GA we solve this
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problem. By any finite number of vehicles this model can be generated and can be solved by

our proposed methodology. This model is more efficient in reality.
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