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Abstract. In this paper, we present some results characterizing compact sets in the space of bounded linear
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and sufficient conditions characterizing compact sets in the weak operator topology followed by similar results with
respect to strong operator topology. These results are then used to develop feedback control theory for evolution
equations on Banach spaces.
Keywords. Spaces of Bounded Linear Operators, Weak and Strong Operator topologies, Characterization of
Compact sets, Optimal feedback controls.
2020 Mathematics Subject Classification. 35K10, 35L10, 34G20.

1. INTRODUCTION

Let X ,Y be any pair of real Banach spaces and L (Y,X) the space of bounded linear operators
from Y to X . Furnished with the uniform operator topology, this is a Banach space. In fact the
space L (Y,X) can be given many different topologies. Some of the most popular topologies
are (1) the uniform operator topology, (2) the topology of convergence on compact sets, (3)
the topology of point-wise convergence, also called strong operator topology and (4) the weak
operator topologies. Here we are interested in the strong and weak operator topologies. For
convenience of the reader we present the method of construction of strong and weak operator
topologies. In the last section 5, we develop optimal feedback control theory and present several
applications.

Strong Operator Topology: Let F denote the class of all finite subsets of the set Y, B ∈
L (Y,X), ε > 0, F ∈F and define

Nε(B,F)≡ {T ∈L (Y,X) :‖ (T −B)y ‖X< ε, ∀ y ∈ F}.
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The family of sets
{
Nε(B,F) : B ∈L (Y,X),F ∈F ,ε > 0

}
forms a local base for the strong

operator topology. Let D ≡ (D,≥) denote a directed set. A sequence or a net (= generalized
sequence) {Tα} converges to T in this topology if and only if, for every ε > 0, there exists a
β ∈ D such that Tα ∈Nε(T,F) for all α > β and for every F ∈F . This is a locally convex
topology and with respect to this topology, L (Y,X) is a locally convex Hausdorff topological
vector space. We denote this topological space by (L (Y,X),τso) ≡Lso(Y,X). This topology
can be generated also by the family of seminorms {ρy(T )≡‖ Ty ‖X ,y ∈ Y,T ∈L (Y,X)}.

Weak Operator Topology: Let G denote the class of all finite subsets of the set X∗, the topo-
logical dual of the Banach space X . Let B ∈L (Y,X), F ∈F and G ∈ G and ε > 0 arbitrary,
and define the set

Nε(B,F,G)≡ {T ∈L (Y,X) : |(T −B)y,x∗)|< ε, ∀ y ∈ F,x∗ ∈ G}.

The family of sets
{
Nε(B,F,G),B ∈L (Y,X),F ∈F ,G ∈ G ,ε > 0

}
forms a local base for the

weak operator topology. Again, a generalized sequence (or a net) Tα converges to an element
T ∈L (Y,X) in this topology if, and only if, there exists a β ∈ D such that for all α > β ,

Tα ∈Nε(T,F,G) ∀ F ∈F and ∀ G ∈ G .

We denote the corresponding topological vector space by (L (Y,X),τwo)≡Lwo(Y,X). This is
also a locally convex Hausdorff topological vector space. This topology can be generated also
by the family of seminorms {ρy,x∗(T )≡ |(Ty,x∗)|,y ∈ Y,x∗ ∈ X∗,T ∈L (Y,X)}.

The author believes that the following result is known to the specialists in the field. But the
author is not aware of any paper where the proof is given. For completeness we present a proof.

Proposition 1 Let X ,Y be a pair of real Banach spaces. Then, the space Lso(Y,X) is a locally
convex sequentially complete Hausdorff topological vector space. If X is also weakly sequen-
tially complete [8], then the space Lwo(Y,X) is also a sequentially complete locally convex
Hausdorff topological vector space.

Proof It is clear from the definition of their bases for the topology that the spaces Lso(Y,X) and
Lwo(Y,X) are locally convex Hausdorff spaces. So it remains to verify that they are sequentially
complete. First, we consider the space Lso(Y,X). Let {Tn} be a Cauchy sequence in the strong
operator topology. Clearly, for each y ∈ Y, {Tny} ≡ {xn

y} is a Cauchy sequence in X and since
X is a Banach space there exists an element xy ∈ X such that xn

y
s−→ xy. Then it follows from

Banach-Steinhaus theorem [ Dunford-Schwartz, 10] that there exists a unique T ∈L (Y,X) so
that xy = Ty. Thus Lso(Y,X) is a locally convex sequentially complete topological Hausdorff
space. Next, we consider the space Lwo(Y,X). Let {Tn} ∈L (Y,X) be a Cauchy sequence in
the weak operator topology. Then, for each y ∈ Y , {Tny} ≡ {xn

y} is a weak Cauchy sequence
in X . Since, by hypothesis, X is weakly sequentially complete, there exists a unique element
xy ∈ X so that, along a subsequence if necessary, xn

y
w−→ xy in X . Since for each y∈Y, {Tny} is a

weak Cauchy sequence, it is a bounded sequence. By the Banach-Steinhaus theorem, {Tn} is a
bounded sequence in the uniform operator topology. Clearly, the operator T defined by xy = Ty
is linear and Tn converges to T in the weak operator topology. The limit T is unique because
Lwo(Y,X) is Hausdorff. This shows that Lwo(Y,X) is a locally convex sequentially complete
topological Hausdorff space. This completes the proof. •
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2. CHARACTERIZATION OF COMPACT SETS IN L (Y,X)

Continuity and compactness are two of the major concepts in topology. Compact sets in topo-
logical spaces play a crucial role in the study of calculus of variations, optimal control theory
and many other fields. Feedback control theory is based on the compactness of admissible sets
of operators, more generally, sets of operator valued functions with a compatible topology. In
this paper, we are interested in feedback control theory using suitable operators and operator
valued functions. This raises the question of characterization of compact sets in the space of
bounded linear operators endowed with topologies such as weak (and strong) operator topolo-
gies. With this goal in mind, in this section, we present some necessary and sufficient conditions
for a set A ⊂L (Y,X) to be compact in the weak operator topology followed by a similar result
with respect to the strong operator topology.

For characterization of compact sets, we use the celebrated result of Rosenthal [9] known as
Rosenthal’s `1 theorem. For detailed proof; see [11]. This theorem states that in a Banach space
a bounded sequence has a weakly convergent subsequence if, and only if, it does not contain an
isomorphic copy of `1. For an excellent account of this result; see [11]. For convenience of the
reader we state this result below.

Lemma 2.1 (Rosenthal `1 theorem) Let {xn} be a bounded sequence in a Banach space X .
Then, (i): either {xn} has a weakly Cauchy subsequence or (ii)): {xn} has a `1 subsequence.

We use the above result, among others, to prove the following theorem giving the necessary
and sufficient conditions for a set in L (Y,X) to be compact in the weak operator topology.

Theorem 2.2 Let {X ,Y} be a pair of real Banach spaces with X being weakly sequentially
complete. Then a set A ⊂Lwo(Y,X) is sequentially compact (in the weak operator topology)
if, and only if,(i): A is closed and bounded and (ii): X contains no isomorphic copy of `1.

Proof First we prove that the given conditions are sufficient. Consider any sequence {Tn} ∈A .
Then by assumption (i), for any y ∈ Y, {xn} ≡ {Tny} is a bounded sequence in X . Since, by
assumption (ii), X contains no copy of `1, it follows from Rosenthal’s dichotomy (Lemma 2.1)
that the sequence {xn} has a weakly Cauchy subsequence. By relabeling, if necessary, we
may consider that {xn} itself is the weakly Cauchy subsequence of the original sequence in
X . The subsequence may depend on y and hence differ from point to point. In an arbitrary
Banach space a weak Cauchy sequence need not converge. However, by our assumption, X is
weakly sequentially complete. Sufficient conditions for a Banach space to be weakly sequential
complete see [8]. Thus there exists a unique xo ∈ X , dependent on the point y ∈ Y , such that
xn −→ xo = xo(y) weakly. In other words, Tn(y)

w−→ xo(y). This is true for every y ∈Y. Hence it
follows from a corollary of uniform boundedness principle and Banach-Steinhaus theorem that
there exists a To ∈L (Y,X) such that xo(y) = Toy. Since, by assumption (i) A is closed, we have
To ∈A proving that A is sequentially compact in the weak operator topology. This proves the
sufficiency of the conditions. Next we prove that these conditions are also necessary. Suppose
that A is sequentially compact in the weak operator topology. Clearly, this implies that A is a
(sequentially) closed subset of Lwo(Y,X) and norm bounded. Consider any sequence {Tn}∈A .
Since A is sequentially compact in the weak operator topology, there exists a To ∈A such that,
along a subsequence if necessary, Tn

wo−→ To in A . The weak operator topology is Hausdorff
and hence the limit is unique. Clearly, for every y ∈ Y, the sequence {xn ≡ Tny} is a bounded
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sequence in X and converges weakly to xo = Toy. Thus it follows from Rosenthal’s dichotomy
that X cannot contain a copy of `1 proving the necessity of the conditions. This completes the
proof. •

It is well known that reflexive Banach spaces are weakly sequentially complete. An example
of a nonreflexive Banach space which is weakly sequentially complete is the Lebesgue space
L1(S,Σ,ν) where ν is a sigma finite positive measure. However, this space contains a copy of
`1 [11] and thus Theorem 2.2 does not hold in case X = L1(S,Σ,ν). There are many examples
of nonreflexive Banach spaces which are weakly sequentially complete. It follows from Rosen-
thal’s dichotomy that a weakly sequentially complete Banach space is either reflexive or has an
isomorphic copy of `1. Thus the condition (ii) of Theorem 2.2 is equivalent to the assumption
that X is reflexive. Next, we present a result on the necessary and sufficient conditions for a set
in L (Y,X) to be compact in the strong operator topology τso.

Theorem 2.3 Let {Y,X} be any pair of real Banach spaces and Lso(Y,X) denote the space
of bounded linear operators from Y to X endowed with the strong operator topology τso. A
bounded set A ⊂L (Y,X) is compact in the strong operator topology if, and only if,

(i): for each y ∈ Y, the set A (y)≡ {Ty,T ∈A } is a relatively compact subset of X , and
(ii): the set A is point-wise closed as a subset of Lso(Y,X).

Proof For proof we use the celebrated theorem of Tychonoff which states that an arbitrary
product of compact sets is compact in the product topology [ Willard, 14 ]. We present a brief
outline of our proof using this fundamental result. Since, by assumption (i), for each y ∈ Y ,
A (y) ≡ {Ty,T ∈ A } is relatively compact in X , it follows from Tychonoff’s theorem that
A , as a subspace of XY , is relatively compact in the Tychonoff product topology on XY . By
assumption (ii) A is point-wise closed. Thus it follows from these facts that A is compact
in the topology of point-wise convergence which is equivalent to convergence in the strong
operator topology. This proves that the conditions (i) and (ii) are sufficient. The necessity of
the conditions is obvious. This completes the outline of our proof. •

Remark 2.4 It is known that the closed unit ball B1⊂L (Y,X) is compact in the weak operator
topology if, and only if, X is reflexive [Dunford-Schwartz, 10, p512]. Thus, for nonreflexive
Banach space X , it may be interesting to find additional conditions for a bounded set A ⊂
L (Y,X) to be compact in the weak operator topology.

In the following remark we present a simple example.

Remark 2.5 Let (Ω,Σ,µ) be a finite positive measure space and take X = L1(Ω,Σ,µ). It is
well known that X is a weakly sequentially complete Banach space. However, it contains an
isomorphic copy of `1 as demonstrated eloquently in [Diestel,11, p201]. So the closed unit ball
B1 ⊂L (Y,X) is not compact in the weak operator topology. However, the following is true.

A set A ⊂L (Y,X) is sequentially compact in the weak operator topology iff (i) it is bounded
and (ii) it is uniformly integrable in the sense that for each y ∈ Y, the set A (y)≡ {Ty,T ∈A }
is uniformly µ integrable.

3. COMPACT SETS IN K (Y,X)

Let K (Y,X) denote the class of linear compact operators from Y to X , that is, for each
T ∈K (Y,X), the set T (B1(Y )) is a relatively compact subset of X where B1(Y ) stands for the
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closed unit ball in Y. Note that K (Y,X) is a closed subspace of the Banach space L (Y,X) in
the uniform operator topology. Hence K (Y,X) is also a Banach space. Let Z be another real
Banach space. The space K (Y,X) has the following properties. For any T ∈K (Y,X) and
L ∈L (X ,Z), LT ∈K (Y,Z) and similarly for any S ∈L (Z,Y ), T S ∈K (Z,X). In particular,
K (X) is a two sided ideal in the Banach algebra of bounded linear operators L (X). In recent
years, several interesting results on characterization of compact subsets of K (Y,X) have ap-
peared in the literature [12,13]. We present here a result due to Mayoral [12]. This result has
found interesting applications in control theory [1,2]. For some degree of completeness we state
this result here.

Theorem 3.1 Let {X ,Y} be a pair of real Banach spaces with Y not containing a copy of `1.
Then, a set M ⊂K (Y,X) is relatively compact in the uniform operator topology if, and only if,
(i):The set M is uniformly completely continuous and (ii): For each y ∈Y , M(y)≡ {Ty,T ∈M}
is a relatively compact subset of X .

For detailed proof of the above result see Mayoral [12, Theorem 1]. The proof makes el-
egant use of the abstract Ascoli’s theorem [ Willard,14, Theorem 43.15, p287] characterizing
precontract sets of C(Y,X) where Y and X are uniform (topological) spaces.

4. APPLICATION TO FEEDBACK CONTROL AND OPTIMIZATION

Results presented in the preceding sections have interesting applications in control theory
for systems governed differential equations on Banach spaces [1, 2]. Here we are interested
in feedback control and its optimization. Let X ,Y be any pair of real Banach spaces with
X representing the state space and Y the output space. Consider the dynamic system on the
Banach space X with an observer G that maps the state space X to the observable output space
Y,

ẋ(t) = Ax(t)+F(x(t))+B(t)y(t),x(0) = x0, (4.1)

y(t) = G(x(t)), t ∈ I, (4.2)

where A is the infinitesimal generator of a C0 semigroup S(t), t ≥ 0, on X , F is a Lipschitz
map in X and G is a Lipschitz map from the state space X to the output space Y and B is an
operator valued function (considered as an output feedback operator) with values in L (Y,X).
The observation space is the Banach space Y considered as the output space. In applications, Y
may be a closed subspace of the state space X or even a finite dimensional space determined by
practical constraints or limitations on the acquisition of data on the state of the system. Using
the semigroup S(t), t ∈ I, the system (4.1)-(4.2) can be written as the following integral equation

x(t) = S(t)x0 +
∫ t

0
S(t− s)F(x(s))ds+

∫ t

0
S(t− s)B(s)G(x(s))ds, t ∈ I. (4.3)

For each given x0 ∈ X , and the operator valued function B(t), t ∈ I, with values in L (Y,X),
and the nonlinear maps {F,G} satisfying Lipschitz conditions, one can easily verify that this
integral equation has a unique solution x ∈C(I,X). In other words, the system (4.1)-(4.2) has
a unique mild solution x ∈C(I,X). Let Lso(Y,X) denote the space L (Y,X) endowed with the
strong operator topology. The space B∞(I,Lso(Y,X)) is the class of bounded measurable func-
tions on I, taking values in Lso(Y,X). The admissible set of output feedback control operators
is given by the set Bad ≡ B∞(I,A ) where A is a compact subset of the topological space
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Lso(Y,X). It is known that the set Bad, endowed with the Tychonoff product topology τp [14],
is a compact Hausdorff space. Recently, the author of this paper introduced a more general class
of admissible feedback control laws containing Lipschitz maps; see [3]. The problem is to find
an element B ∈Bad that minimizes the following cost functional

J(B)≡
∫ T

0
`(t,x(t))dt +Φ(x(T )), (4.4)

where ` and Φ are suitable Borel measurable functions defined on I×X and X respectively. We
present a result on existence of optimal feedback law in the following theorem.

Theorem 4.1 Consider the system given by equations (4.1),(4.2) with the admissible set of
feedback control laws Bad = B∞(I,A ) as introduced above. Suppose the operator A is the
infinitesimal generator of a C0-semigroup {S(t), t ∈ I} of operators in the Banach space X sat-
isfying sup{‖ S(t) ‖L (X), t ∈ I} ≤M with 0 < M < ∞ and the pair {F,G} are nonlinear Borel
measurable maps satisfying the following Lipschitz conditions

‖ F(x1)−F(x2) ‖X≤ K ‖ x1− x2 ‖X ,x1,x2 ∈ X

‖ G(x1)−G(x2) ‖L (X ,Y )≤ K ‖ x1− x2 ‖X ,x1,x2 ∈ X

for some constant K > 0. The functions {`,Φ} are real valued Borel measurable and lower
semicontinuous in the state variable on X satisfying

|`(t,x)| ≤ α +β ‖ x ‖p
X |Φ(x)| ≤ α +β ‖ x ‖p

X

for any pair of positive numbers {α,β} and 1 ≤ p < ∞. Then there exists an optimal control
law Bo ∈Bad minimizing the cost functional (4.4).

Proof First we verify that the control to solution map B−→ x = x(B) is continuous from Bad to
C(I,X) with respect to Tychonoff product topology τp on Bad and the uniform norm topology

on C(I,X). Let Bn
τp−→ Bo and let xn ∈C(I,X) and xo ∈C(I,X) denote the corresponding mild

solutions of equations (4.1),(4.2) in the sense that

xn(t) = S(t)x0 +
∫ t

0
S(t− s)F(xn(s))ds+

∫ t

0
S(t− s)Bn(s)G(xn(s))ds, t ∈ I, (4.5)

xo(t) = S(t)x0 +
∫ t

0
S(t− s)F(xo(s))ds+

∫ t

0
S(t− s)Bo(s)G(xo(s))ds, t ∈ I. (4.6)

By assumption the set A is a compact subset of Lso(Y,X) and hence there exists finite positive
number b such that

sup{‖ Γ ‖L (Y,X),Γ ∈A } ≤ b.

Since the maps F,G satisfy Lipschitz conditions and {S(t), t ∈ I} is a C0 semigroup in L (X),
and A is a compact set in Lso(Y,X) each of the above integral equations has unique solution
xn ∈C(I,X) and xo ∈C(I,X) respectively. Subtracting equation (4.5) from equation (4.6) term
by term and using triangle inequality one can easily verify that

‖ xo(t)− xn(t) ‖X≤ en(t)+MK(1+b)
∫ t

0
‖ xo(t)− xn(t) ‖X , t ∈ I, (4.7)
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where

en(t) = M
∫ t

0
‖ [Bo(s)−Bn(s)]G(xo(s)) ‖X ds, t ∈ I. (4.8)

Using Gronwall inequality applied to the expression (inequality) (4.7) we obtain the following
inequality

‖ xo(t)− xn(t) ‖X≤ en(t)+
∫ t

0
eMK(1+b)(t−s)en(s)ds, t ∈ I. (4.9)

It follows from the same expression (4.8) and the fact that the set A is compact in the strong op-
erator topology (and hence bounded) that {en(t), t ∈ I} is uniformly bounded. Since G(xo(s)) ∈
Y for s ∈ I and Bn converges to Bo in the Tychonoff product topology τp, it follows from the
expression (4.8) that en(t) −→ 0 for each t ∈ I. Thus letting n→ ∞ in the expression (4.9) we
find that xn converges to xo in the norm topology of C(I,X). Since both ` and Φ are lower
semicontinuous in the state variable we have

`(t,xo(t))≤ lim`(t,xn(t)) a.e t ∈ I ,Φ(xo(T ))≤ limΦ(xn(T )). (4.10)

Hence

J(Bo) =
∫

I
`(t,xo(t))dt +Φ(xo(T ))≤

∫
I
lim`(t,xn(t))dt + limΦ(xn(T ))

≤ lim
∫

I
`(t,xn(t))dt + limΦ(xn(T )) = limJ(Bn). (4.11)

Note that by virtue of the growth properties of ` and Φ as stated in the theorem, and the fact that
the solutions {xo,xn}n≥1 are contained in a bounded subset of the Banach space C(I,X), all the
integrals in the expression (4.11) are well defined (finite) and J(Bo)>−∞. Hence

J(Bo)≤ limJ(Bn)

proving that B−→ J(B) is lower semicontinuous in the Tychonoff product topology τp on Bad.
Since Bad is compact in this topology, J attains its minimum on it. This proves the existence of
an optimal feedback control law. •

Next, we consider an interesting confinement problem. Let Br ⊂ X denote the closed ball of
radius r > 0 centered at the origin containing the initial state x0 in its interior. The objective is to
find a feedback law that forces the solution trajectory to stay inside the ball as long as possible.
Let IBr(·) denote the indicator function of the set Br given by IBr(x) = 1 for x ∈ Br and 0 for x /∈
Br. The problem as stated is equivalent to finding a feedback control law in Bad that maximizes
the following functional

Js(B) =
∫ T

0
IBr(x(B)(t))dt.

Corollary 4.2 Consider the system (4.1), (4.2) and suppose the assumptions of Theorem 4.1
hold. Then there exists an optimal (feedback control) policy Bo ∈ Bad that maximizes the
functional Js.

Proof Let {Bn,Bo} ∈Bad and {xn,xo} ∈ C(I,X) denote the corresponding mild solutions of

the system (4.1), (4.2). It follows from Theorem 4.1 that as Bn
τp−→ Bo, xn

s−→ xo in C(I,X). It
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is known that indicator functions of closed sets are upper semicontinuous. Hence

lim IBr(xn(t))≤ IBr(xo(t)) for each t ∈ I.

Integrating the above expression on either side, one can easily conclude that

lim
∫ T

0
IBr(xn(t))dt ≤

∫ T

0
lim IBr(xn(t))dt ≤

∫ T

0
IBr(xo(t))dt.

Hence
limJs(Bn)≤ Js(Bo)

proving upper semicontinuity of Js on Bad in the τp topology. It follows from compactness of
the set Bad in the same topology that Js attains its maximum on it. This proves the existence of
an optimal policy. •

One can interpret the above feedback law as an stabilizing control forcing the state trajectory
to stay inside the closed ball Br for the longest period of time. For example, if the nonlinear
terms F,G are only locally Lipschitz, having possibly polynomial growth, the system (4.1),(4.2)
has solution only locally in the sense that there exists an r > 0 such that the solution trajectory
exits the ball Br⊂X in finite time. In this situation one is interested to find a stabilizing feedback
control law using the output provided by the observer G.

Another closely related problem is to find a feedback control law that maximizes the first exit
time. Let B′r denote the complement of the closed ball Br. Define

τ(B) = inf{t ≥ 0 : x(B)(t) ∈ B′r}.

If the underlying set is empty, take τ(B) = T + . The problem is to find a feedback law B ∈
Bad that maximizes the exit time τ(B). Interested reader may like to prove the existence of an
optimal policy.

5. NECESSARY CONDITIONS OF OPTIMALITY

For simplicity, here we assume that X is a reflexive Banach space. Let DF(ξ ) ∈L (X) and
DG(ξ ) ∈L (X ,Y ) denote the Gâteaux differentials of F and G evaluated at any point ξ ∈ Y.
Given that the optimal policy exists, one may consider the question of construction of such
policies. We present a result which can be used to determine the optimal policy.

Theorem 5.1 Consider the system given by equations (4.1),(4.2) with the admissible feedback
control laws Bad = B∞(I,A ) where A is a compact convex subset of the space Lso(Y,X) and
the cost functional given by (4.4) with ` and Φ continuously Gâteaux differentiable in the state
variable on X . Suppose the operators {A,F,G} satisfy the assumptions as stated above with F
and G being continuously Gâteaux differentiable in the state variable on X . Let Bo ∈Bad with
xo ∈C(I,X) being the corresponding mild solution of the system (4.1),(4.2). Then, in order for
Bo to be the optimal feedback control law, it is necessary that there exists a ψ ∈C(I,X∗) such
that the triple {Bo,xo,ψ} satisfy the following inequality and the evolution equations:

dJ(Bo,B−Bo) =
∫

I
< (B(t)−Bo(t))G(xo(t)),ψ(t)>X ,X∗ dt ≥ 0, ∀ B ∈Bad (5.1)
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−ψ̇(t) = A∗ψ(t)+DF(xo(t))∗ψ(t)+(Bo(t)DG(xo(t)))∗ψ(t)+ `x(t,xo(t)), (5.2)

ψ(T ) = Φx(xo(T )) = DΦ(xo(T )), t ∈ [0,T )

and

ẋo(t) = Axo(t)+F(xo(t))+Bo(t)G(xo(t)), (5.3)

xo(0) = x0, t ∈ (0,T ],

where dJ(Bo,B−Bo) denotes the Gâteaux differential (or the directional derivative) of J evalu-
ated at Bo in the direction B−Bo.

Proof Let Bo ∈ Bad denote the optimal feedback (control) strategy and B ∈ Bad any other
feedback control. It follows from convexity of the set Bad that for any ε ∈ [0,1], Bε ≡ Bo +
ε(B−Bo) ∈Bad. Clearly, it follows from optimality of Bo that

(1/ε)[J(Bε)− J(Bo)]≥ 0 ∀ ε ∈ (0,1].

Letting ε ↓ 0 in the above expression we obtain the Gâteaux differential of J at Bo in the direction
B−Bo giving the following inequality

dJ(Bo,B−Bo)≥ 0 ∀ B ∈Bad. (5.4)

Let {xo,xε} ∈C(I,X) denote the mild solutions of the system (4.1),(4.2) corresponding to the
elements {Bo,Bε}. Using the cost functional J given by (4.4) and computing the above expres-
sion and letting ε ↓ 0, we obtain the Gâteaux differential of J at Bo in the direction B−Bo as
follows

dJ(Bo,B−Bo) =< Φx(xo(T )),z(T )>X∗,X +
∫ T

0
< `x(t,xo(t)),z(t)>X∗,X dt, (5.5)

where z ∈ C(I,X), given by z(t) = limε→0(1/ε)
(
xε(t)− xo(t)

)
, t ∈ (0,T ], is the unique mild

solution of the variational equation

ż = Az+DF(xo(t))z+Bo(t)DG(xo(t))z+(B−Bo)G(xo(t)), t ∈ I,

z(0) = 0. (5.6)

This follows readily from the facts that A is the generator of C0 semigroup on X and DF(xo(t))
and Bo(t)DG(xo(t)) are bounded operator valued functions with values in L (X). For B,Bo ∈
Bad and G(xo(·)) ∈ C(I,Y ), we have (B−Bo)G(xo) ∈ B∞(I,X). Thus it follows from the ex-
istence of mild solution of the variational equation (5.6) that the map (B−Bo)G(xo) −→ z is
a continuous linear map from B∞(I,X) to z ∈ C(I,X). Since, by hypothesis, both ` and Φ are
continuously Gâteaux differentiable, and xo ∈ C(I,X), we conclude that Φx(xo(T )) ∈ X∗ and
`x(·,xo(·) ∈ L1(I,X∗). Hence the expression on the righthand side of equation (5.5), denoted by

L(z)≡< Φx(xo(T )),z(T )>X∗,X +
∫ T

0
< `x(t,xo(t)),z(t)>X∗,X dt, (5.7)

is a continuous linear functional of z ∈C(I,X). Thus the composition map L̃ given by

(B−Bo)G(xo)−→ z−→ L(z)≡ L̃((B−Bo)G(xo)) (5.8)

is a continuous linear functional on B∞(I,X). In general, continuous linear functionals on
B∞(I,X) ⊂ L∞(I,X) are given by finitely additive measures with values in the dual X∗ of X .
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Thus there exists a µ ∈Mb f a(ΣI,X∗) (space of finitely additive measures having bounded vari-
ations) such that

L̃((B−Bo)G(xo)) =
∫

I
< (B(t)−Bo(t))G(xo(t)),µ(dt)>X ,X∗ ,

where ΣI is the algebra of subsets of the set I. Since X is reflexive, X∗ is reflexive, and so it
has Radon-Nikodym property. If µ were continuous with respect to Lebesgue measure on ΣI ,
we would have a ψ ∈ L1(I,X∗) such that µ(E) =

∫
E ψ(t)dt for every E ∈ ΣI. We do not know

if the vector measure µ is continuous with respect to Lebesgue measure. Thus the existence
of such a Radon-Nikodym derivative ψ cannot be guaranteed. So we follow a different route.
We note that equation (5.6) has a unique mild solution for each given f ∈ L1(I,X) in place of
(B−Bo)G(xo) ∈ B∞(I,X). Since I is a finite interval it is evident that B∞(I,X) ⊂ L1(I,X) and
so (B−Bo)G(xo) ∈ L1(I,X) for all B ∈Bad. Thus L̃ is also a continuous linear functional on
L1(I,X) which is the predual of L∞(I,X∗). Hence there exists a ψ ∈ L∞(I,X∗) such that

L̃((B−Bo)G(xo)) =
∫

I
< (B(t)−Bo(t))G(xo(t)),ψ(t)>X ,X∗ dt. (5.9)

In fact ψ has a better regularity property as seen below. Using the non homogeneous component
(B−Bo)G(xo) from equation (5.6) and substituting in equation (5.9), we obtain

L̃((B−Bo)G(xo))

=
∫

I
< ż−Az−DF(xo(t))z−Bo(t)DG(xo(t))z,ψ(t)>X ,X∗ dt. (5.10)

Integrating by parts one can easily verify that

L̃((B−Bo)G(xo))

=< z(T ),ψ(T )>X ,X∗ +
∫

I
< z(t),−ψ̇(t)>X ,X∗

+
∫

I
< z(t),−A∗ψ(t)− (DF(xo(t)))∗ψ(t)− (Bo(t)DG(xo(t)))∗ψ(t)>X ,X∗ dt.(5.11)

Setting

−ψ̇ = A∗ψ +(DF(xo(t)))∗ψ +(Bo(t)DG(xo(t)))∗ψ + `x(t,xo(t)),

ψ(T ) = DΦ(xo(T )), t ∈ I, (5.12)

and using these identities in the expression (5.11) we arrive at the following expression

L̃((B−Bo)G(xo))

=< z(T ),DΦ(xo(T )>X ,X∗ +
∫

I
< z(t), `x(t,xo(t))>X ,X∗ dt. (5.13)

Note that the expression on the right hand side of the above identity coincides with the functional
(5.7) as required by the implications stated in the expression (5.8). Thus the necessary condition
given by the inequality (5.1) follows from the expressions (5.4),(5.5) (5.9) and (5.13). The
necessary condition(5.2) follows from (5.12). Thus the adjoint variable ψ, whose existence
was guaranteed by the continuity of the linear functional L̃ on L1(I,X), can be determined by
solving the backward evolution equation (5.2) (same as equation (5.12)). Since by assumption
X is reflexive, the adjoint semi group {S∗(t), t ≥ 0} is also strongly continuous and hence this
equation has a unique mild solution ψ ∈C(I,X∗)⊂ L∞(I,X∗). The necessary condition (5.3) is
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simply the system equation (4.1) and (4.2) corresponding to the optimal policy Bo; so nothing
to prove. This completes the proof. •

Algorithm and its Convergence: Using Theorem 5.1 we can construct the optimal feedback
control law. Here we present the necessary steps in the following theorem. For simplicity, we
assume that both the state space X and the output space Y are reflexive Banach spaces.

Theorem 5.2 Consider the necessary conditions of optimality (5.1),(5.2),(5.3) given by theorem
5.1 and suppose both X and Y are reflexive Banach spaces. Then there exists a sequence of
feedback control laws {Bn} in Bad along which the cost functional J decreases monotonically
as indicated below

J(B1)≥ J(B2)≥ J(B3)≥ ·· ·J(Bn−1)≥ J(Bn)≥ ·· · .

Proof The proof is based on several steps. Choose an arbitrary B1 ∈Bad and solve the state
equation (5.3) with B1 replacing Bo and denote the solution by x1 ∈ C(I,X). Use the pair
{B1,x1} in place of {Bo,xo} and solve the adjoint equation (5.2) giving ψ1 ∈ C(I,X∗). De-
fine the operator valued function C1 given by the tensor product C1(t) ≡ G(x1(t))⊗ψ1(t) ∈
Y⊗X∗, t ∈ I. Let S1(Z) denote the unit sphere of any real Banach space Z. Choose v∗1 ∈S1(Y ∗)
and w1 ∈S1(X) so that

< v∗1,G(x1(t))>Y ∗,Y=‖ G(x1(t)) ‖Y , and < w1,ψ1(t)>X ,X∗=‖ ψ(t) ‖X∗ .

Existence of such a pair follows from [Dunford & Schwartz, [10], p65] and the fact that X
is a reflexive Banach space. It is clear from the above expressions that the pair {v∗1,w1} also
depends on t ∈ I. Introduce the operator valued function D1(t) ≡ w1(t)⊗ v∗1(t) ∈L (Y,X) for
t ∈ I, and note that ‖D1(t) ‖L (Y,X)= 1. Then for any ε > 0, define the operator valued function
B2 as

B2(t) = B1(t)− εD1(t), t ∈ I.
Choose ε > 0 sufficiently small, so that we have B2 ∈ Bad. If the inequality (5.1) holds for
{B1,G(x1),ψ1}, we have B1 optimal (a rare event). Ignoring this, we continue the algorithm
with B2 and we find that the Gâteaux differential of J at B1 in the direction B2−B1, denoted by
dJ(B1,B2−B1), is given by

dJ(B1,B2−B1) =
∫

I
< (B2(t)−B1(t))G(x1(t)),ψ1(t)>X .X∗ dt,

=−ε

∫
< D1(t)G(x1(t)),ψ1(t)>X ,X∗ dt +o(ε)

=−ε

∫
< v∗1(t),G(x1(t))>Y ∗,Y< w1(t),ψ1(t)>X ,X∗ dt +o(ε)

=−ε

∫
‖ G(x1(t)) ‖Y‖ ψ1(t) ‖X∗ dt +o(ε).

Computing the cost functional J at B2 and using the above expression we obtain

J(B2) = J(B1)+dJ(B1,B2−B1)+o(ε)

= J(B1)− ε

∫
‖ G(x1(t)) ‖Y ‖ ψ1(t) ‖X∗ dt +o(ε).

This shows that for ε > 0 sufficiently small, J(B2) < J(B1). To continue the process, use the
operator B2 (in place of Bo) and solve the state equation (5.3) giving x2, and the adjoint equation
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(5.2) corresponding to the pair {B2,x2} giving ψ2. Then take v∗2 ∈ S1(Y ∗) and w2 ∈ S1(X)
satisfying

< v∗2,G(x2(t))>Y ∗,Y=‖ G(x2(t)) ‖Y , and < w2,ψ2(t)>X ,X∗=‖ ψ2(t) ‖X∗

for t ∈ I. Again,recalling that the pair {v∗2,w2} may very well depend on t ∈ I, we construct the
operator valued function D2(t)≡ w2(t)⊗v∗2(t) ∈L (Y,X), t ∈ I. Then for any ε > 0, define the
operator valued function B3 as

B3(t) = B2(t)− εD2(t), t ∈ I.

Using the above operators in the expression (5.1) and replacing the triple {Bo,xo,ψ} by the
triple {B2,x2,ψ2}, again we find that the directional derivative of the functional J evaluated at
B2 in the direction B3−B2 is given by

dJ(B2,B3−B2) =
∫

I
< (B3(t)−B2(t))G(x2(t)),ψ2(t)>X .X∗ dt,

=−ε

∫
<< D2,G(x2)⊗ψ2 >> dt +o(ε)

=−ε

∫
‖ G(x2) ‖Y‖ ψ2 ‖X∗ dt +o(ε).

Computing the cost functional corresponding to B3, we find that

J(B3) = J(B2)+dJ(B2,B3−B2)+o(ε)

= J(B2)− ε

∫
‖ G(x2) ‖Y ‖ ψ2 ‖X∗ dt +o(ε).

This shows that for ε > 0 small, J(B3) < J(B2). Repeating this step-by-step process ad infini-
tum, we arrive at a sequence {Bn} in Bad satisfying

J(B1)≥ J(B2)≥ J(B3)≥ ·· ·J(Bn−1)≥ J(Bn)≥ ·· · .

This completes the proof. •

Some Recent Developments: Here we present references to some notable recent developments
on systems governed by differential equations on infinite dimensional Banach spaces and their
optimal control. In a recent book [6], we developed optimal control theory for systems driven
by vector measures. In [5], we considered optimal feedback control problems for stochastic
systems on Hilbert spaces presenting solutions to a broad range of standard and nonstandard
optimal control problems. We have also studied a very large class of nonlinear deterministic
as well as stochastic systems admitting unbounded and measurable vector fields [7]. These
systems do not admit classical, strong, or even mild solutions. It is shown that they have only
generalized (or measure valued) solutions which can be controlled to optimize both standard and
nonstandard objective functionals. For optimal control of stochastic systems on Hilbert spaces
subject to Brownian motion and Lévy process admitting only generalized solutions (measure-
valued), interested reader is referred to the recent paper of the author [4].
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