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1. INTRODUCTION

Let X, Y be any pair of real Banach spaces and .2 (Y, X ) the space of bounded linear operators
from Y to X. Furnished with the uniform operator topology, this is a Banach space. In fact the
space .Z(Y,X) can be given many different topologies. Some of the most popular topologies
are (1) the uniform operator topology, (2) the topology of convergence on compact sets, (3)
the topology of point-wise convergence, also called strong operator topology and (4) the weak
operator topologies. Here we are interested in the strong and weak operator topologies. For
convenience of the reader we present the method of construction of strong and weak operator
topologies. In the last section 5, we develop optimal feedback control theory and present several
applications.

Strong Operator Topology: Let .# denote the class of all finite subsets of the set Y, B €
Z(Y,X),e>0,F €.7% and define

Ne(B,F)={T € Z(Y,X):||(T—B)y|x<e, VyeF}.
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The family of sets {A¢(B,F): B € Z(Y,X),F € #,& >0} forms a local base for the strong
operator topology. Let D = (D,>) denote a directed set. A sequence or a net (= generalized
sequence) {7y} converges to T in this topology if and only if, for every € > 0, there exists a
B € D such that Ty, € A¢(T,F) for all @ > B and for every F € .%. This is a locally convex
topology and with respect to this topology, -Z(Y,X) is a locally convex Hausdorff topological
vector space. We denote this topological space by (£ (Y,X), Ty0) = -Z50(Y,X). This topology
can be generated also by the family of seminorms {p,(T) =|| Ty ||x,y € ¥, T € Z(¥,X)}.

Weak Operator Topology: Let ¢ denote the class of all finite subsets of the set X*, the topo-
logical dual of the Banach space X. Let B€ Z(Y,X), F € .% and G € ¢ and € > 0 arbitrary,
and define the set

N¢(B,F,G)={T € Z(Y,X): |(T —B)y,x")| <&, Vy€ F,x* € G}.

The family of sets {,/i{g(B,F, G),Bec X(Y,X),Fe #,Ge€¥,e> O} forms a local base for the
weak operator topology. Again, a generalized sequence (or a net) Ty, converges to an element
T € Z(Y,X) in this topology if, and only if, there exists a B € D such that for all o0 > 3,

To € Ne(T,F,G)VF € FandVGe Y.

We denote the corresponding topological vector space by (Z(Y,X), Two) = Lo (Y, X). This is
also a locally convex Hausdorff topological vector space. This topology can be generated also
by the family of seminorms {p, +(T) = |(Ty,x*)|,y € Y,x* € X*,T € Z(Y,X)}.

The author believes that the following result is known to the specialists in the field. But the
author is not aware of any paper where the proof is given. For completeness we present a proof.

Proposition 1 Let X,Y be a pair of real Banach spaces. Then, the space %, (Y,X) is a locally
convex sequentially complete Hausdorff topological vector space. If X is also weakly sequen-
tially complete [8], then the space %, (Y,X) is also a sequentially complete locally convex
Hausdorff topological vector space.

Proof It is clear from the definition of their bases for the topology that the spaces %, (Y, X) and
Zwo(Y,X) are locally convex Hausdorff spaces. So it remains to verify that they are sequentially
complete. First, we consider the space %, (Y,X). Let {T,, } be a Cauchy sequence in the strong
operator topology. Clearly, for each y € ¥, {T,y} = {x}} is a Cauchy sequence in X and since

X is a Banach space there exists an element xy, € X such that xj — xy. Then it follows from
Banach-Steinhaus theorem [ Dunford-Schwartz, 10] that there exists a unique 7' € Z(Y,X) so
that x, = Ty. Thus %, (¥,X) is a locally convex sequentially complete topological Hausdorff
space. Next, we consider the space .%,,(Y,X). Let {T,,} € Z(Y,X) be a Cauchy sequence in
the weak operator topology. Then, for each y € Y, {T;y} = {x]} is a weak Cauchy sequence
in X. Since, by hypothesis, X is weakly sequentially complete, there exists a unique element
xy € X so that, along a subsequence if necessary, xj BLEN xyin X. Since foreachy € Y, {T;,y} is a
weak Cauchy sequence, it is a bounded sequence. By the Banach-Steinhaus theorem, {7}, } is a
bounded sequence in the uniform operator topology. Clearly, the operator T defined by x, = Ty
is linear and 7;, converges to T in the weak operator topology. The limit 7" is unique because
Zwo(Y,X) is Hausdorff. This shows that .%,,,(Y,X) is a locally convex sequentially complete
topological Hausdorff space. This completes the proof. e
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2. CHARACTERIZATION OF COMPACT SETS IN .Z(Y,X)

Continuity and compactness are two of the major concepts in topology. Compact sets in topo-
logical spaces play a crucial role in the study of calculus of variations, optimal control theory
and many other fields. Feedback control theory is based on the compactness of admissible sets
of operators, more generally, sets of operator valued functions with a compatible topology. In
this paper, we are interested in feedback control theory using suitable operators and operator
valued functions. This raises the question of characterization of compact sets in the space of
bounded linear operators endowed with topologies such as weak (and strong) operator topolo-
gies. With this goal in mind, in this section, we present some necessary and sufficient conditions
foraset o7 C .Z(Y,X) to be compact in the weak operator topology followed by a similar result
with respect to the strong operator topology.

For characterization of compact sets, we use the celebrated result of Rosenthal [9] known as
Rosenthal’s ¢; theorem. For detailed proof; see [11]. This theorem states that in a Banach space
a bounded sequence has a weakly convergent subsequence if, and only if, it does not contain an
isomorphic copy of /1. For an excellent account of this result; see [11]. For convenience of the
reader we state this result below.

Lemma 2.1 (Rosenthal /; theorem) Let {x,} be a bounded sequence in a Banach space X.
Then, (i): either {x,} has a weakly Cauchy subsequence or (ii)): {x,} has a /1 subsequence.

We use the above result, among others, to prove the following theorem giving the necessary
and sufficient conditions for a set in .2 (Y, X) to be compact in the weak operator topology.

Theorem 2.2 Let {X,Y} be a pair of real Banach spaces with X being weakly sequentially
complete. Then a set .7 C .%,,(Y,X) is sequentially compact (in the weak operator topology)
if, and only if,(i): .2/ is closed and bounded and (ii): X contains no isomorphic copy of ¢;.

Proof First we prove that the given conditions are sufficient. Consider any sequence {7} € <.
Then by assumption (i), for any y € Y, {x,} = {T,,y} is a bounded sequence in X. Since, by
assumption (ii), X contains no copy of ¢, it follows from Rosenthal’s dichotomy (Lemma 2.1)
that the sequence {x,} has a weakly Cauchy subsequence. By relabeling, if necessary, we
may consider that {x,} itself is the weakly Cauchy subsequence of the original sequence in
X. The subsequence may depend on y and hence differ from point to point. In an arbitrary
Banach space a weak Cauchy sequence need not converge. However, by our assumption, X is
weakly sequentially complete. Sufficient conditions for a Banach space to be weakly sequential
complete see [8]. Thus there exists a unique x, € X, dependent on the point y € Y, such that
X, — X, = X, (y) weakly. In other words, T;,(y) — x,(y). This is true for every y € Y. Hence it
follows from a corollary of uniform boundedness principle and Banach-Steinhaus theorem that
there exists a 7, € Z (Y, X) such that x,(y) = T,y. Since, by assumption (i) .27 is closed, we have
T, € of proving that o7 is sequentially compact in the weak operator topology. This proves the
sufficiency of the conditions. Next we prove that these conditions are also necessary. Suppose
that .o/ is sequentially compact in the weak operator topology. Clearly, this implies that .7 is a
(sequentially) closed subset of %, (Y, X ) and norm bounded. Consider any sequence {7,} € <.
Since .7 is sequentially compact in the weak operator topology, there exists a 7, € <7 such that,
along a subsequence if necessary, T, — T, in «/. The weak operator topology is Hausdorff
and hence the limit is unique. Clearly, for every y € Y, the sequence {x, = T,y} is a bounded
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sequence in X and converges weakly to x, = T,y. Thus it follows from Rosenthal’s dichotomy
that X cannot contain a copy of ¢; proving the necessity of the conditions. This completes the
proof. e

It is well known that reflexive Banach spaces are weakly sequentially complete. An example
of a nonreflexive Banach space which is weakly sequentially complete is the Lebesgue space
Li(S,X,v) where Vv is a sigma finite positive measure. However, this space contains a copy of
¢y [11] and thus Theorem 2.2 does not hold in case X = L{(S, X, V). There are many examples
of nonreflexive Banach spaces which are weakly sequentially complete. It follows from Rosen-
thal’s dichotomy that a weakly sequentially complete Banach space is either reflexive or has an
isomorphic copy of ¢;. Thus the condition (ii) of Theorem 2.2 is equivalent to the assumption
that X is reflexive. Next, we present a result on the necessary and sufficient conditions for a set
in .Z(Y,X) to be compact in the strong operator topology Ty,.

Theorem 2.3 Let {Y,X} be any pair of real Banach spaces and .Z,(Y,X) denote the space
of bounded linear operators from Y to X endowed with the strong operator topology 7y,. A
bounded set &7 C .Z(Y,X) is compact in the strong operator topology if, and only if,

(i): foreach y € Y, the set o7 (y) = {Ty,T € o} is a relatively compact subset of X, and

(ii): the set <7 is point-wise closed as a subset of .Z5,(Y,X).

Proof For proof we use the celebrated theorem of Tychonoff which states that an arbitrary
product of compact sets is compact in the product topology [ Willard, 14 ]. We present a brief
outline of our proof using this fundamental result. Since, by assumption (i), for each y € Y,
o (y) = {Ty,T € o/} is relatively compact in X, it follows from Tychonoff’s theorem that
a7, as a subspace of X”, is relatively compact in the Tychonoff product topology on X. By
assumption (ii) <7 is point-wise closed. Thus it follows from these facts that </ is compact
in the topology of point-wise convergence which is equivalent to convergence in the strong
operator topology. This proves that the conditions (i) and (ii) are sufficient. The necessity of
the conditions is obvious. This completes the outline of our proof. e

Remark 2.4 It is known that the closed unit ball #; C .2 (Y, X) is compact in the weak operator
topology if, and only if, X is reflexive [Dunford-Schwartz, 10, p512]. Thus, for nonreflexive
Banach space X, it may be interesting to find additional conditions for a bounded set .o/ C
Z(Y,X) to be compact in the weak operator topology.

In the following remark we present a simple example.

Remark 2.5 Let (Q,X, 1) be a finite positive measure space and take X = L (Q,X,u). It is
well known that X is a weakly sequentially complete Banach space. However, it contains an
isomorphic copy of /| as demonstrated eloquently in [Diestel,11, p201]. So the closed unit ball
P C L (Y,X) is not compact in the weak operator topology. However, the following is true.

Aset.of C Z(Y,X) is sequentially compact in the weak operator topology iff (i) it is bounded
and (ii) it is uniformly integrable in the sense that for each y € Y, the set <7 (y) = {Ty,T € </}
is uniformly u integrable.

3. COMPACT SETS IN JZ (¥, X)

Let J# (Y,X) denote the class of linear compact operators from Y to X, that is, for each
T € #(Y,X),theset T(B1(Y)) is a relatively compact subset of X where B;(Y) stands for the
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closed unit ball in Y. Note that .# (Y,X) is a closed subspace of the Banach space .Z(¥,X) in
the uniform operator topology. Hence .2 (Y, X) is also a Banach space. Let Z be another real
Banach space. The space % (Y,X) has the following properties. For any T € J# (Y,X) and
Le £(X,Z),LT € #(Y,Z) and similarly for any S € Z(Z,Y), TS € #(Z,X). In particular,
2 (X) is a two sided ideal in the Banach algebra of bounded linear operators .Z'(X). In recent
years, several interesting results on characterization of compact subsets of .# (¥,X) have ap-
peared in the literature [12,13]. We present here a result due to Mayoral [12]. This result has
found interesting applications in control theory [1,2]. For some degree of completeness we state
this result here.

Theorem 3.1 Let {X,Y} be a pair of real Banach spaces with ¥ not containing a copy of ¢;.
Then, a set M C % (Y, X) is relatively compact in the uniform operator topology if, and only if,
(1):The set M is uniformly completely continuous and (ii): Foreachy € Y, M(y) = {Ty, T € M}
is a relatively compact subset of X .

For detailed proof of the above result see Mayoral [12, Theorem 1]. The proof makes el-
egant use of the abstract Ascoli’s theorem [ Willard,14, Theorem 43.15, p287] characterizing
precontract sets of C(Y,X) where Y and X are uniform (topological) spaces.

4. APPLICATION TO FEEDBACK CONTROL AND OPTIMIZATION

Results presented in the preceding sections have interesting applications in control theory
for systems governed differential equations on Banach spaces [1, 2]. Here we are interested
in feedback control and its optimization. Let X,Y be any pair of real Banach spaces with
X representing the state space and Y the output space. Consider the dynamic system on the
Banach space X with an observer G that maps the state space X to the observable output space
Y

(1) = Ax(1) + F(x(0)) + B}y (1), 5(0) = o, @)
y(t) =G(x(1)),t €1, 4.2)

where A is the infinitesimal generator of a Cy semigroup S(z),r > 0, on X, F is a Lipschitz
map in X and G is a Lipschitz map from the state space X to the output space Y and B is an
operator valued function (considered as an output feedback operator) with values in .2 (Y, X).
The observation space is the Banach space Y considered as the output space. In applications, Y
may be a closed subspace of the state space X or even a finite dimensional space determined by
practical constraints or limitations on the acquisition of data on the state of the system. Using
the semigroup S(z),¢ € I, the system (4.1)-(4.2) can be written as the following integral equation

x(t) = S(t)xo + /O St — )F(x(s))ds + /0 St — $)B(s)Glx(s))ds,t € 1. 43)

For each given xp € X, and the operator valued function B(t),r € I, with values in .Z(Y,X),
and the nonlinear maps {F, G} satisfying Lipschitz conditions, one can easily verify that this
integral equation has a unique solution x € C(1,X). In other words, the system (4.1)-(4.2) has
a unique mild solution x € C(I,X). Let .Z;,(Y,X) denote the space .Z(Y,X) endowed with the
strong operator topology. The space B (I,-Z;,(Y,X)) is the class of bounded measurable func-
tions on I, taking values in .%5,(Y,X). The admissible set of output feedback control operators
is given by the set %,; = B(I,2/) where </ is a compact subset of the topological space
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Zs0(Y,X). It is known that the set %,,4, endowed with the Tychonoff product topology 7, [14],
is a compact Hausdorff space. Recently, the author of this paper introduced a more general class
of admissible feedback control laws containing Lipschitz maps; see [3]. The problem is to find
an element B € %,,; that minimizes the following cost functional

J(B) = /0 " Ut x(0))dt + D((T)), 4.4)

where ¢ and & are suitable Borel measurable functions defined on 7 x X and X respectively. We
present a result on existence of optimal feedback law in the following theorem.

Theorem 4.1 Consider the system given by equations (4.1),(4.2) with the admissible set of
feedback control laws %B,; = B-(I, /) as introduced above. Suppose the operator A is the
infinitesimal generator of a Cy-semigroup {S(¢),z € I} of operators in the Banach space X sat-
isfying sup{|| S(¢) || #(x),* € I} <M with 0 < M < oo and the pair {F,G} are nonlinear Borel
measurable maps satisfying the following Lipschitz conditions

| F(x1) = F(x2) [x< K [[x1 —x2 [[x,x1,02 €X
| G(x1) = G(x2) || 2(x,v)< K || x1 —x2 [|x,%1,%2 € X

for some constant K > 0. The functions {¢,®} are real valued Borel measurable and lower
semicontinuous in the state variable on X satisfying

0l <a+Blxly  [PE)[<a+pllx]k
for any pair of positive numbers {o, 3} and 1 < p < . Then there exists an optimal control
law B, € %,, minimizing the cost functional (4.4).

Proof First we verify that the control to solution map B — x = x(B) is continuous from %, to
C(1,X) with respect to Tychonoff product topology 7, on %,, and the uniform norm topology

on C(I,X). Let B, . B, and let x, € C (1,X) and x, € C(I,X) denote the corresponding mild
solutions of equations (4.1),(4.2) in the sense that

Xn(t) = S(t)x0 + /OIS(t —8)F (xu(s))ds + /Ol S(t —5)B,(5)G(x,(s))ds,t €1, 4.5)

Xo(t) = S(t)xo + /OIS(I —8)F (x,(s))ds + /OtS(t —35)By(5)G(x,(s))ds,t € 1. (4.6)

By assumption the set .27 is a compact subset of .Z, (Y, X) and hence there exists finite positive
number b such that

sup{|| T | v T € /3 <.
Since the maps F, G satisfy Lipschitz conditions and {S(¢),t € I} is a Cy semigroup in .Z(X),
and <7 is a compact set in %, (Y, X) each of the above integral equations has unique solution

xn € C(1,X) and x, € C(I,X) respectively. Subtracting equation (4.5) from equation (4.6) term
by term and using triangle inequality one can easily verify that

0 (1) — (1) lx < en(t) + MK (1 +b) /0’ o (6) = xn(2) [, €1, @7
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where
en(t) = M/Ot | [Bo(s) — Bn(5)]|G(x0(5)) ||x ds,t € L. (4.8)

Using Gronwall inequality applied to the expression (inequality) (4.7) we obtain the following
inequality

t
| X0 (1) =2 (1) ||x < enlt) + / MEAHD)NI=9) g (§Vds,t € 1. (4.9)
0

It follows from the same expression (4.8) and the fact that the set <7 is compact in the strong op-
erator topology (and hence bounded) that {e, (), € I} is uniformly bounded. Since G(x,(s)) €
Y for s € I and B, converges to B, in the Tychonoff product topology 7, it follows from the
expression (4.8) that e, (1) — 0 for each ¢ € I. Thus letting n — o in the expression (4.9) we
find that x,, converges to x, in the norm topology of C(I,X). Since both ¢ and & are lower
semicontinuous in the state variable we have

0(t,x,(2)) <liml(t,x,(t)) a.et €1 ,P(x,(T)) < limP(x,(T)). (4.10)

Hence
J(B,) = /1 0t x0(1))dt + B (xo(T)) < /1 lim £(, %, (1))t + lim @ (x, (T))
< lim [ (0,%,())di + Lim(x, (7)) = limJ (B,).  @.11)

Note that by virtue of the growth properties of £ and & as stated in the theorem, and the fact that
the solutions {x,,x, },>1 are contained in a bounded subset of the Banach space C(/,X), all the
integrals in the expression (4.11) are well defined (finite) and J(B,) > —oo. Hence

J(Bo) <limJ(B,)

proving that B — J(B) is lower semicontinuous in the Tychonoff product topology 7, on %,,.
Since %, is compact in this topology, J attains its minimum on it. This proves the existence of
an optimal feedback control law. e

Next, we consider an interesting confinement problem. Let B, C X denote the closed ball of
radius r > 0 centered at the origin containing the initial state xg in its interior. The objective is to
find a feedback law that forces the solution trajectory to stay inside the ball as long as possible.
Let Ip,(-) denote the indicator function of the set B, given by Ip.(x) = 1 for x € B, and 0 for x ¢
B,. The problem as stated is equivalent to finding a feedback control law in %, that maximizes
the following functional

1(8)= [ 15, 6B 0.

Corollary 4.2 Consider the system (4.1), (4.2) and suppose the assumptions of Theorem 4.1
hold. Then there exists an optimal (feedback control) policy B, € %,4 that maximizes the
functional J;.

Proof Let {B,,B,} € B4 and {x,,x,} € C(I,X) denote the corresponding mild solutions of

the system (4.1), (4.2). It follows from Theorem 4.1 that as B, BN By, Xp —> x, in C(1,X). It
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is known that indicator functions of closed sets are upper semicontinuous. Hence
lim1p, (x,(t)) <1Ip.(x,(t)) foreacht € 1.

Integrating the above expression on either side, one can easily conclude that

Fn/OTIBr(xn(t))dt < /OTHIBr(xn(t))dt < /OTIBr(x(,(t))dt.

Hence
limJy(B,,) < Jy(B,)

proving upper semicontinuity of J; on %, in the 7, topology. It follows from compactness of
the set 4,, in the same topology that J; attains its maximum on it. This proves the existence of
an optimal policy. e

One can interpret the above feedback law as an stabilizing control forcing the state trajectory
to stay inside the closed ball B, for the longest period of time. For example, if the nonlinear
terms F, G are only locally Lipschitz, having possibly polynomial growth, the system (4.1),(4.2)
has solution only locally in the sense that there exists an r > 0 such that the solution trajectory
exits the ball B, C X in finite time. In this situation one is interested to find a stabilizing feedback
control law using the output provided by the observer G.

Another closely related problem is to find a feedback control law that maximizes the first exit
time. Let B). denote the complement of the closed ball B,. Define

7(B) =inf{t > 0: x(B)(t) € B..}.

If the underlying set is empty, take 7(B) = T + . The problem is to find a feedback law B €
P.q that maximizes the exit time 7(B). Interested reader may like to prove the existence of an
optimal policy.

5. NECESSARY CONDITIONS OF OPTIMALITY

For simplicity, here we assume that X is a reflexive Banach space. Let DF(§) € £ (X) and
DG(&) € Z(X,Y) denote the Gateaux differentials of F and G evaluated at any point & € Y.
Given that the optimal policy exists, one may consider the question of construction of such
policies. We present a result which can be used to determine the optimal policy.

Theorem 5.1 Consider the system given by equations (4.1),(4.2) with the admissible feedback
control laws AB,; = B« (I, </ ) where <7 is a compact convex subset of the space %, (Y,X) and
the cost functional given by (4.4) with ¢ and ® continuously Gateaux differentiable in the state
variable on X. Suppose the operators {A, F, G} satisfy the assumptions as stated above with F
and G being continuously Gateaux differentiable in the state variable on X. Let B, € 4,4 with
X € C(I,X) being the corresponding mild solution of the system (4.1),(4.2). Then, in order for
B, to be the optimal feedback control law, it is necessary that there exists a y € C(I,X*) such
that the triple {B,,x,, ¥} satisfy the following inequality and the evolution equations:

AJ(B,B=B,) = [ < (B)=Bo0)Glra(t) . W(0) >xx- di 20, ¥ BE Zug (S.1)
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=y (1) =A"y(t) + DF (x,(1)) "W (1) + (Bo (1) DG (x0(2))) W (1) + Lu(t,%0(1)),  (5.2)
Y(T) = Pu(x(T)) = DP(xo(T)), 1 €[0,T)

and
folt) = Ay (1) + F(x0(0)) + Bo(1) G0 (1)), (5.3)
%0(0) =xp, t € (0,T],

where dJ(B,,B — B,) denotes the Gateaux differential (or the directional derivative) of J evalu-
ated at B,, in the direction B — B,,.

Proof Let B, € %,,; denote the optimal feedback (control) strategy and B € %,; any other
feedback control. It follows from convexity of the set %, that for any € € [0,1], Be = B, +
€(B—B,) € A, Clearly, it follows from optimality of B, that

(1/€)[J(Be) —J(B,)] =0V € € (0,1].
Letting € | 0 in the above expression we obtain the Gateaux differential of J at B, in the direction
B — B, giving the following inequality
dJ(B,,B—B,) >0V B € B,y. (5.4)
Let {x,,x¢} € C(I,X) denote the mild solutions of the system (4.1),(4.2) corresponding to the
elements {B,, B¢ }. Using the cost functional J given by (4.4) and computing the above expres-

sion and letting € | 0, we obtain the Gateaux differential of J at B, in the direction B — B, as
follows

T
dJ(By,B—B,) =< ®y(x,(T)),z(T) >x*x +/0 < Ly(t,x0(t)),2(t) >x+ x dt, (5.5)

where z € C(1,X), given by z(r) = limg_0(1/€) (xe(t) — x,(¢)),¢ € (0,7, is the unique mild
solution of the variational equation

2=Az+ DF (x,(t))z+ Bo(t)DG(x,(t))z+ (B—B,)G(x,(1)),t €1,

z(0) =0. (5.6)
This follows readily from the facts that A is the generator of Cy semigroup on X and DF (x,(t))
and B,(t)DG(x,(t)) are bounded operator valued functions with values in .2 (X). For B,B, €
PBaq and G(x,(+)) € C(1,Y), we have (B— B,)G(x,) € Bo(I,X). Thus it follows from the ex-
istence of mild solution of the variational equation (5.6) that the map (B — B,)G(x,) — z is
a continuous linear map from B (I,X) to z € C(I,X). Since, by hypothesis, both ¢ and ® are

continuously Gateaux differentiable, and x, € C(I,X), we conclude that ®,(x,(7)) € X* and
le(+,x0(+) € L1 (1,X™). Hence the expression on the righthand side of equation (5.5), denoted by

T
L@) =< @ulxo(T).T) xex+ [ < 1t5o(0),20) > . 6.7
is a continuous linear functional of z € C(1,X). Thus the composition map L given by
(B—B,)G(x,) — z— L(z) = L((B—B,)G(x,)) (5.8)

is a continuous linear functional on B(/,X). In general, continuous linear functionals on
Boo(I,X) C Lw(1,X) are given by finitely additive measures with values in the dual X* of X.
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Thus there exists a 4 € .4, ,(X7,X™) (space of finitely additive measures having bounded vari-
ations) such that

L(B=Ba)G(x) = [ < (B() = Bo(1))Glxo(0)). u(dr) >x.x-

where X is the algebra of subsets of the set /. Since X is reflexive, X* is reflexive, and so it
has Radon-Nikodym property. If 1 were continuous with respect to Lebesgue measure on %,
we would have a y € L (I,X*) such that u(E) = [ y(t)dt for every E € X;. We do not know
if the vector measure U is continuous with respect to Lebesgue measure. Thus the existence
of such a Radon-Nikodym derivative ¥ cannot be guaranteed. So we follow a different route.
We note that equation (5.6) has a unique mild solution for each given f € L;(I,X) in place of
(B—B,)G(x,) € B(I,X). Since [ is a finite interval it is evident that B..(1,X) C L;(1,X) and
so (B—B,)G(x,) € Li(I,X) for all B € %A,4. Thus L is also a continuous linear functional on
Li(I,X) which is the predual of L..(I,X*). Hence there exists a ¥ € Lo (1,X*) such that

L(B = BJ)Glx)) = [ < (B(0) = Bo(1))Glaa(t)) W(0) >x.x- (5.9)
In fact y has a better regularity property as seen below. Using the non homogeneous component
(B—B,)G(x,) from equation (5.6) and substituting in equation (5.9), we obtain
L((B—B,)G(x,))
- /1 < 2= Az— DF (x(1))2— Bo(1)DG (x0(1))2, W(t) >x x- di. (5.10)
Integrating by parts one can easily verify that

Z‘((B —B,)G(x,))

=<z(T),y(T) >x x +/I< z2(t), =y (t) >x x*

+/1< 2(1), =AW (1) = (DF (x,(1))) W (1) — (Bo(1)DG(x,(2)))" w(t) >x x+ dr.(5.11)
Setting

—W =A"W+ (DF (x,(1)))" W + (Bo (1) DG (x0(1))) "W + £x(t,%0(1)),
y(T) =D®(x,(T)),t €1, (5.12)

and using these identities in the expression (5.11) we arrive at the following expression
L((B - B,)G(x,))
—< 2(T), DD (x,(T) >xx+ + /1 < 2(t), ba(t,30(1)) >x.x- . (5.13)

Note that the expression on the right hand side of the above identity coincides with the functional
(5.7) as required by the implications stated in the expression (5.8). Thus the necessary condition
given by the inequality (5.1) follows from the expressions (5.4),(5.5) (5.9) and (5.13). The
necessary condition(5.2) follows from (5.12). Thus the adjoint variable y, whose existence
was guaranteed by the continuity of the linear functional L on L;(1,X), can be determined by
solving the backward evolution equation (5.2) (same as equation (5.12)). Since by assumption
X is reflexive, the adjoint semi group {S*(¢),7 > 0} is also strongly continuous and hence this
equation has a unique mild solution y € C(I,X*) C L(I,X*). The necessary condition (5.3) is
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simply the system equation (4.1) and (4.2) corresponding to the optimal policy B,; so nothing
to prove. This completes the proof. e

Algorithm and its Convergence: Using Theorem 5.1 we can construct the optimal feedback
control law. Here we present the necessary steps in the following theorem. For simplicity, we
assume that both the state space X and the output space Y are reflexive Banach spaces.

Theorem 5.2 Consider the necessary conditions of optimality (5.1),(5.2),(5.3) given by theorem
5.1 and suppose both X and Y are reflexive Banach spaces. Then there exists a sequence of
feedback control laws {B,} in %,, along which the cost functional J decreases monotonically
as indicated below

J(B1) > J(By) > J(Bs) > ---J(Byr) > J(By) >

Proof The proof is based on several steps. Choose an arbitrary B| € %,; and solve the state
equation (5.3) with B; replacing B, and denote the solution by x; € C(I,X). Use the pair
{B1,x1} in place of {B,,x,} and solve the adjoint equation (5.2) giving y; € C(I,X*). De-
fine the operator valued function C; given by the tensor product Ci(t) = G(x;(¢)) ® y;(¢) €
Y ®X*,t € 1. Let .1(Z) denote the unit sphere of any real Banach space Z. Choose v € .71 (Y*)
and w; € .7 (X) so that

<v,G(x1 (1)) >y+y=l G(x1(t)) [ly, and <wy,yi(t) >x x=| wt) ||x= -

Existence of such a pair follows from [Dunford & Schwartz, [10], p65] and the fact that X
is a reflexive Banach space. It is clear from the above expressions that the pair {v],w;} also
depends on ¢ € I. Introduce the operator valued function D (¢) = w (1) ® vi(r) € Z(Y,X) for
t €1, and note that || Dy (¢) || #(y x)= 1. Then for any € > 0, define the operator valued function
B> as
By(t) =Bi(t)— €D, (t),t € 1.

Choose € > 0 sufficiently small, so that we have By € %,,. If the inequality (5.1) holds for
{B1,G(x1),y1}, we have By optimal (a rare event). Ignoring this, we continue the algorithm
with B; and we find that the Gateaux differential of J at By in the direction B, — By, denoted by
dJ(B1,B, — By), is given by

dJ(B1,By—By) — /1 < (Ba(t) = By (1)) G(x1 (1)), wi (£) >x x- dt,

— e / <Dy(1)G(x1 (1)), wi(t) >x x- di +o(€)
— ¢ / <Vi(),G(x1(1)) >yey < wi(0), Wi (t) >x x+ di +o(€)
— ¢ [ 116en() Iyl vi(0) - dr +ofe).

Computing the cost functional J at B, and using the above expression we obtain

J(By) = J(B,)+dJ(B;,By—B))+o(€)
—(B1)~¢ [ |G () ly 1| vae) - e+ ofe)

This shows that for € > 0 sufficiently small, J(B,) < J(B;). To continue the process, use the
operator B; (in place of B,) and solve the state equation (5.3) giving x», and the adjoint equation
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(5.2) corresponding to the pair {B;,xp} giving y». Then take v5 € S;(Y*) and wy € §;(X)
satisfying

<v3,G(x2(1)) >y y=| G(x2(¢)) ||y, and < wo,ya(t) >x x+=| V(1) ||x*

for r € I. Again,recalling that the pair {v5,w,} may very well depend on ¢ € I, we construct the
operator valued function D;(f) = wy(t) @ v;(t) € £ (Y,X),t € I. Then for any € > 0, define the
operator valued function B3 as

B3(t) = B(t) — €Dy (t),t € 1.

Using the above operators in the expression (5.1) and replacing the triple {B,,x,, ¥} by the
triple {B»,x2, Y» }, again we find that the directional derivative of the functional J evaluated at
B> in the direction Bz — B, is given by

dJ (B, B —By) — /1 < (B3(t) = Bo(1))Goa (1)), W (1) >x.x» d,

= —8/ << Dy,G(x2) @y >>dt +0(g)

— ¢ [ 16tx2) ]| va lix- di +ofe).
Computing the cost functional corresponding to B3, we find that
J(B3) =J(B2) +dJ(By,B3 — By) +0(€)
=J(Ba) —8/ 1G(x2) [ly || wa [lx- dt +o(e).

This shows that for € > 0 small, J(B3) < J(B;). Repeating this step-by-step process ad infini-
tum, we arrive at a sequence {B,} in %, satisfying

J(By1)>J(By) >J(B3) >---J(By—1) > J(By) >

This completes the proof. e

Some Recent Developments: Here we present references to some notable recent developments
on systems governed by differential equations on infinite dimensional Banach spaces and their
optimal control. In a recent book [6], we developed optimal control theory for systems driven
by vector measures. In [5], we considered optimal feedback control problems for stochastic
systems on Hilbert spaces presenting solutions to a broad range of standard and nonstandard
optimal control problems. We have also studied a very large class of nonlinear deterministic
as well as stochastic systems admitting unbounded and measurable vector fields [7]. These
systems do not admit classical, strong, or even mild solutions. It is shown that they have only
generalized (or measure valued) solutions which can be controlled to optimize both standard and
nonstandard objective functionals. For optimal control of stochastic systems on Hilbert spaces
subject to Brownian motion and Lévy process admitting only generalized solutions (measure-
valued), interested reader is referred to the recent paper of the author [4].

Acknowledgments
The author would like to acknowledge the past and long time financial support of the National
Science and Engineering Research Council of Canada under the grant no. A7109.



COMPACT SETS IN THE SPACE OF BOUNDED LINEAR OPERATORS 13

REFERENCES

[1] N.U. Ahmed, Necessary conditions of optimality of output feedback control law for infinite dimensional
uncertain dynamic systems, Pure Appl. Funct. Anal. 1 ((2020) 159-184.
[2] N.U. Ahmed, Weak solutions of stochastic reaction-diffusion equations and their optimal control, DCDS-S,
11(2018) 1011-1029.
[3] N.U. Ahmed, Partially observed stochastic evolution equations on Banach spaces and their optimal Lipschitz
feedback control law, SIAM J. Control Optim. 57 (2019) 3101-3117.
[4] N.U. Ahmed, Measure-valued solutions for stochastic differential equations on Hilbert spaces driven by Lévy
measure and their optimal control, Commun. f Korean Math. Soc. 39 (2024) 1035-1057.
[5] N.U. Ahmed, Optimal feedback control of stochastic systems on Hilbert space based on compact sets in the
space of Hilbert-Schmidt operators, Differential Inclusions Control and Optimization, 44 (2024) 127-128.
[6] N.U. Ahmed, S. Wang, Optimal Control of Dynamic Systems Driven by Vector Measures, Theory and Ap-
plications, Springer, 2021. doi: 10.1007/978-3-030-82139-5
[7] N.U. Ahmed, S. Wang, Measure-Valued Solutions for Nonlinear Evolution Equations on Banach Spaces and
Their Optimal Control, Springer, 2023. doi: 10.1007/978-3-031-37260-5
[8] E.M. Bednarczuk, K. Lesniewski, On weakly sequentially complete Banach spaces, aviv:1602.04718v1,
2016.
[9] H.P. Rosenthal, A Characterization of Banach spaces Containing ¢|, Proc. Nat. Acad. Sci. USA, 71 (1974)
2411-2413.
[10] N. Dunford, J.T. Schwartz, Linear Operators, Part.1, Second Printing, Inter Science Pub. 1964.
[11] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo,
1984.
[12] F. Mayoral, Compact Sets of Compact Operators in Absence of 1, Proc. Amer. Math. Soc. 120 (2000), 79-82.
[13] T.W. Palmer, Totally Bounded Sets of Precontract Linear Operators, Proc. Amer, Math. Soc. 20 (1969) 101-
106.
[14] S. Willard, General Topology, Addison-Wesley Publishing Company Inc. 1970,



