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FAST STABILITY TEST OF LINEAR TIME-DELAY SYSTEMS WITH REPEATED
CRITICAL IMAGINARY ROOTS SIMPLY BY INTEGRAL EVALUATION
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Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract. Complete stability analysis of a linear time-delay system with parameters in given interval/region is
not a new topic, yet a hard problem in general. In the application of the widely used methods or algorithms, even
for a system with a single delay, it is necessary to use transformation, to solve nonlinear equation, to determine
crossing direction of characteristic root, or to calculate Puiseux series expansion, and so on, so as to get to know
properties of the characteristic quasi-polynomial required in stability analysis. This paper shows that the complete
stability of a time-delay system with repeated critical imaginary roots can be carried out, directly and simply by
integral evaluation and effectively, with low computational cost. It does not need any special knowledge of the
quasi-polynomial such as the critical delay values and the branches of Puiseux series expansion near a repeated
critical imaginary root, and it does not impose restriction on the number of delays.
Keywords. Puiseux series; Integral evaluation; Repeated root; Stability switch; Time delay.
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1. INTRODUCTION

In control applications, a time delay is the time that takes to perceive, measure, formulate, act,
and so on, and it exists commonly in controllers, filters and actuators. Without a control design,
a time delay may lead to undesirable outcomes of a delayed system, even makes the controlled
system unstable. Thus, stability analysis of time-delay systems (TDSs for short) has been a
major topic in control applications over the past few decades, see [1, 2, 3, 4, 5, 6, 7, 8, 9] for
example. An equilibrium of a retarded TDS is asymptotical stable if all the characteristic roots
have negative real parts, and it is unstable if there is a characteristic root with positive real part,
where a characteristic root with positive real part is usually called unstable root (UR for short).
The characteristic quas-polynomial p(λ ) of a TDS is analytic in the whole complex plane, it
has finite number of roots in any bounded region. Thus, let κ = max{ℜ(λ ) : p(λ ) = 0}, where
ℜ(z) is the real part of complex number z, then κ is well-defined, and it is usually called spectral
abscissa. An equilibrium of a retarded TDS is asymptotical stable if κ < 0, and it is unstable
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if κ > 0. In a sense, therefore, stability analysis of TDSs can be considered as an optimization
problem.

In many applications, time delays are usually hard to be identified exactly, thus they are
frequently taken as parameters varing in given intervals. Then it is essentially to know for what
delay combination the TDS is asymptotically stable or unstable, namely to find out the stable
regions and unstable regions in the parameter space. This is the complete stability problem [10],
which is divided into two problems: Problem 1), an exhaustive detection (if any) of the critical
imaginary roots (CIRs for short); Problem 2), the asymptotic behavior analysis of the CIRs, for
which lots of calculation are necessary. For a TDS with a single delay or with commensurate
delays, the complete stability problem can be solved by using the method of stability switch [2,
3]. This method works only if the CIRs are simple characteristic roots. A frequency sweeping
method [11] and a geometric method [12] were proposed to draw the critical curves in the
plane of two arbitrary selected delays. When the characteristic quasi-polynomial has repeated
CIRs, the method based on Puiseux series expansion [10, 13, 14] can be very useful and very
effective but maybe not for TDSs with multiple-delays. Actually, as pointed out in [15], the
complete stability problem of a TDS can be NP-hard when the delays are unbounded. Thus,
more strightforward methods or algorithms with less computation are still welcomed for the
complete stability analysis of TDSs.

Based on the Argument Principle or equivalently the Cauchy Theorem, the number of URs
of a given TDS with single delay or multi-delays can be calculated directly by using the char-
acteristic quasi-polynomial and its derivative. The stability criteria derived in this way can be
very effective, as done in Nyquist criterion [16], Mihkalov criterion [2], Stepan criterion [1] and
Hassard criterion [17] for retarded TDSs. These criteria have been generalized for fractional-
delay systems [18, 19] and for neutral TDSs [20, 21] under the condition of strong stability.
The Difinite Integral Evaluation Method [19, 20, 21] (DIEM for short) works in particularly
effective, it provides a simple method to find a delay-free upper limit of the test integral, and
thus it simplifies the calculation of the test definite integral over the right half infinite interval
to the one over a delay free finite interval. In many applications, the upper limits can be very
small, which reduces the computational time substantially. In addition, DIEM works too for
neutral TDSs with accumulation points [22].

The aim of this paper is to show with four examples that DIEM [19, 20, 21] works effectively
for the complete stability problem of TDSs with repeated CIRs. Compared with the previous
commonly used methods or algorithms, the application of DIEM is more straightforward, less
computation and easier understandable, and it works also for the complete stability problem
with multiple (delay or non-delay) parameters.

2. PROBLEM STATEMENT

For simplicity in presentation, this paper focuses on the stability of a linear retarded time-
delay system described by

ẋxx(t) = AAA0xxx(t)+
m

∑
k=1

AAAkxxx(t− τk), (xxx ∈ Rn, AAA0, AAAk ∈ Rn×n), (2.1)
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where the positive numbers τ1, τ2, · · · , τm are the time delays. Let IIIn be the identity matrix of
order n, then the characteristic function

p(λ )≡ det(λ IIIn−AAA0−
m

∑
k=1

AAAke−λτk)

is a quasi-polynomial in the form of

p(λ ) = λ
n +

n

∑
i=1

ai(e−λτ1 , e−λτ2, · · · , e−λτm)λ n−i, (2.2)

where the coefficients ai(z1, z2, · · · , zm) are polynomials with respect to z1, z2, · · · , zm.
For simplicity and comparison, the paper is devoted to the case of single delay τ = τ1 = · · ·=

τm only. As τ increases in a given interval, the stability of an equilibrium may change from
stable to unstable, or from unstable to stable, probably change repeatedly many times, which is
a phenomenum called stability switch. The problem of stability switch were studied intensively
in [2, 3]. Two major steps are required. One is to find all the critical delay values for which
p(λ ) has a CIR, say, assume that at τ = τ0 one has a CIR λ = iω0. The other is to determine

S = sgn
(

ℜ
dλ

dτ

∣∣∣
(τ,λ )=(τ0, iω0)

)
, (2.3)

As τ passes through τ0 from the left to the right, the TDS increases (decreases) a pair of conju-
gate URs if S > 0 (S < 0). Then the complete stability can be obtained by checking the number
of URs in each open interval between two adjacent crirical delay values. This method works
only if the corresponding derivative in (2.3) exists, which is true if λ = iω0 is simple.

When λ = iω0 is not simple, with multiplicity larger than 1, the derivative given in (2.3)
does not exist, the method of stability switch widely used in [2, 3] does not work. In this case,
the Puiseux series can be used as done in [10, 13, 14]. In [10], by using Puiseux series, a
new frequency-sweeping framework from an analytic curve perspective was established, with
which the asymptotic behavior of TDSs can be classified into the regular and the singular cases,
and consequently the complete stability problem was fully determined. In these works, the
Taylor series approximation of the characteristic quasi-polynomial p(λ ) at (τ, λ ) = (τ0, iω0) is
required, and then the Puiseux series expansion near (τ, λ ) = (τ0, iω0), in the form of

λ = iω0 + c1(τ− τ0)
ξ + c2(τ− τ0)

2ξ + · · · , (ξ =
1
d
), (2.4)

is found to determine the crossing direction of the characteristic root passing through λ = iω0,
where d ≥ 2 is the multiplicity of λ = iω0. Usually a very careful analysis on the multiplicity
of p(λ ) with respect to λ and τ is required in the calculation of the Puiseux series expansion.

In this paper, DIEM is firstly extended and then is used to simplify the stability analysis for
TDSs with repeated CIRs, without a need of the information of Problem 1 and Problem 2, and
it can be also used for the stability of TDSs with multiple delays.

3. THE CROSSING DIRECTION DETERMINED BY USING THE DIE METHOD

Under the assumption that p(λ ) has no roots on the imaginary axis, by using the Argument
Principle or the equivalent Cauchy Theorem, say as done in [19, 20, 21], the number of URs of
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p(λ ) defined in (2.2) can be calculated from

N = lim
R→+∞

∆Carg p(λ )
2π

= lim
R→+∞

1
2πi

∮
C

p′(λ )
p(λ )

dλ , (3.1)

where C is the contour depicted in Fig.1(a). The TDS (2.1) is asymptotically stable if and only
if N = 0, and it is unstable if N > 0.

The integral formula is more convenient in applications. A key step in simplifying the calcu-
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FIGURE 1. The contour C and C̃ for contour integrals, C = C̃ if r→ 0.

lation of N is to evaluate the integrals along C1 and C2 respectively, which yields to

N =
n
2
− 1

π

∫ +∞

0
ℜ

(
p′(iω)

p(iω)

)
dω. (3.2)

The number N of URs takes non-negative integers only, one can further prove that there exists
a sufficient large number T > 0 such that

N = round
(

n
2
− 1

π

∫ T

0
ℜ

(
p′(iω)

p(iω)

)
dω

)
. (3.3)

Once the upper limit T is known, N can be simply and easily figured out by using the available
algorithms for numerical integration, without a need of preliminary knowledge of p(λ ).

Assume that p(λ ) has a CIR λ =±iω0 at τ = τ0, then in a small ε-neighborhood of τ0, as τ

passes through τ0 from the left to the right, the change of N can be calculated from

∆N ≡N (τ2)−N (τ1). (3.4)

It does not need to know any information about the critical values τ0 and the CIRs, and it does
not to calculate a derivative similar to that given in (2.3).

3.1. Determination of an uniform upper limit. In the applications of DIEM [3], a key step is
to find an upper limit T for the evalation of N . It is done by using the Hassard’technique [4].
Separating the real and imaginary parts of i−n p(ω i) gives

α(ω)+ iβ (ω) = i−n p(iω). (3.5)
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The real part α(ω) can be expressed as a polynomial with respect to sin(ωτ), cos(ωτ), sin(2ωτ),
cos(2ωτ), · · · , sin(qωτ) and cos(qωτ), it depends on the delays. When the delay-dependent
functions sin(ωτi) and cos(ωτi) in α(ω) were replaced with 1 or −1 respectively, a lower
bound function α(ω) independent of τ is easily obtained to satisfy

α(ω)≥ α(ω). (3.6)

The maximal zero T0 of the polynomial α(ω) can be easily obtaioned (if it exists). In addition,
it is easy to prove that

d
dω

arctan
β (ω)

α(ω)
=

β ′(ω)α(ω)−α ′(ω)β (ω)

α2(ω)+β 2(ω)
= ℜ

(
p′(iω)

p(iω)

)
. (3.7)

Thus, the following lemma is proved true [3], not only for retarded TDSs, but also for neutral
TDSs under the strong stability condition.

Lemma 3.1. Assume that p(λ ) has no roots on the imaginary axix. Let T0 be the maximal
positive root of α(ω) (if exists), then for a T > T0, N can be calculated from

N = round
(

n
2
− 1

π

∫ T

0

β ′(ω)α(ω)−α ′(ω)β (ω)

α2(ω)+β 2(ω)
dω

)
. (3.8)

If α(ω) has no positive root, one can choose T0 = 0 and find N = round(n/2).

In many applications, T0 can be a small positive number, thus calculation of N with an
definite integral over unbounded interval [0,+∞) can be simplified to that with an definite
integral over a finite interval [0, T ] with T > T0. Thus, the stability test could be effective.

3.2. A generalization of DIEM. It is worthy of pointing out that Eq. (3.8) works too if p(λ )
has repeated CIRs. For simplication in presentation, assume that p(λ ) exactly a pair of conju-
gate pure imaginary roots ±iω0 with multiplicity γ ≥ 1, then the contour C shown in Fig.1(a)
should be replaced with the one shown in Fig.1(b), where C3 : λ = iω0+reiθ with θ varies from
π/2 to −π/2, and C5 : λ =−iω0 + reiθ with θ varies from π/2 to −π/2, then it is required to
calculate

lim
r→0

∮
C3

p′(λ )
p(λ )

dλ , lim
r→0

∮
C5

p′(λ )
p(λ )

dλ ,

where the integrand has singular points ±iω0. In a small neighborhood of λ0 = iω0 or λ0 =
−iω0, the function p(λ ) can be approximated in the form of

p(λ ) = a(λ −λ0)
γ +h.o.t

by using Taylor expansion, where h.o.t stands for higher order terms, a is a constant, thus, the
Laurant series of the operand p′(λ )/p(λ ) is in the form of

p′(λ )
p(λ )

=
γ

λ −λ0
+h.o.t.

It follows that

lim
r→0

1
2πi

∮
C3

p′(λ )
p(λ )

dλ =
γ

2π
(
π

2
− (−π

2
)) =

γ

2
, lim

r→0

1
2πi

∮
C5

p′(λ )
p(λ )

dλ =
γ

2
. (3.9)
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Consequently when p(λ ) has exactly a pair of CIRs ±iω0 with multiplicity γ ≥ 1, the integral

1
2π

∫ −∞

+∞

p′(iω)

p(iω)
dω ≡ lim

r→0

1
2πi

∮
C2+C3+C4+C5+C6

p′(λ )
p(λ )

dλ

can be used to calculate N as done in (3.8).

Theorem 3.2. Assume that p(λ ) has a CIR at τ = τ0 with multiplicity γ ≥ 1, then in a small
ε-neighborhood of τ0, as τ passes through τ0 from the left to the right, the change of the number
of URs, N , can be calculated simply from

∆N = N (τ2)−N (τ1). (3.10)

4. FOUR ILLUSTRATIVE EXAMPLES

Only TDSs with a single delay are considered for simplicity in this section. Four examples
studied in [10, 13, 14] are given to illstrate the applications of Theorem 3.2, which are validated
with the combined use of the method of stability switch and the method of Puiseux series
expansion. As we will see, the proposed method is much more straightforward and simple.

4.1. Example 1. Consider a TDS with the following characteristic quasi-polynomial

p(λ , τ) = λ
2 +1+

2
3π

+
2

3π
(λ +2)e−λτ +

2
3π

(λ +1)e−2λτ .

To calculate N , we firstly compute the integrand and the upper limit of the test integral. By
separating the real and imaginary parts of i−2 p(iω, τ) = 0, one has

α(ω)≡ ω
2−1− 2

3π
− 4

3π
cos(ωτ)− 2

3π
ω sin(ωτ)− 2

3π
cos(2ωτ)− 2

3π
ω sin(2ωτ) = 0,

β (ω)≡ − 2
3π

ω cos(ωτ)+
4

3π
sin(ωτ)− 2

3π
ω cos(2ωτ)+

2
3π

sin(2ωτ) = 0,

respectively, and

α(ω)≥ α(ω)≡ ω
2−1− 8

3π
− 4

3π
ω.

Then it is easy to find that α(ω) ≥ α(ω) > 0 if ω > 1.5884. Thus, the upperlimit of the test
integral can be any number larger than 1.5884, here let T = 2.0. For any τ > 0, the unmber of
unstable characteristic roots, N , can be calculated by using

N (τ) = round
(

2
2
− 1

π

∫ 2.0

0

β ′(ω)α(ω)−α ′(ω)β (ω)

α2(ω)+β 2(ω)
dω

)
. (4.1)

With such a so small upper limit, the computation of N (τ) can be very effective.
A broad view of N in τ ∈ [0, 20] is given in Fig.2, which tells that the TDS is asymptotically

stable for τ ∈ [0, 0.3743)∪ (4.5291, 4.7039) and it unstable if τ > 4.7039.
Below let us validate the above-DIEM-derived results shown in Fig.2 alternatively by using

the method of stability switch and the method of Puiseux series expansion.
Actually, by separating the real and imaginary parts of p(iω, τ)eiωτ = 0, one has

ℜ(p(iω, τ)eiωτ)≡ − 1
3π

(3π cos(ωτ)ω2−3π cos(ωτ)−2ω sin(ωτ)−4cos(ωτ)−4) = 0,

ℑ(p(iω, τ)eiωτ)≡ − 1
3π

(3πω
2 sin(ωτ)−3π sin(ωτ)−2cos(ωτ)ω−2ω) = 0.
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FIGURE 2. The number N (τ) with respect to the change of τ ∈ [0, 20] for
Example 1.

It follows that

sin(ωτ) =
6ωπ(ω2−1)

9π2ω4− (18π2 +12π +4)ω2 +9π2 +12π
, (4.2)

cos(ωτ) =
4((3π +1)ω2−3π)

9π2ω4− (18π2 +12π +4)ω2 +9π2 +12π
. (4.3)

Because sin2(ωτ)+ cos2(ωτ) = 1, it is necessary to have

27π
2(ω−1)2(ω +1)2(3π

2
ω

4− (6π
2 +8π +4)ω2 +3π

2 +8π) = 0, (4.4)

which has exactly three positive roots ω1 = 1, ω2 = 0.9369, ω3 = 1.4512.
When ω = ω1 = 1, Eqs.(4.2-4.3) give sinτ = 0 and cosτ =−1, which result in the first group

of critical delay values

τ1,k = (2k+1)π ≈ 3.142, 9.426, 21.99, · · · , (k = 0, 1, · · ·).
When ω = ω2, one has cos(0.9369τ) =−0.4525 and sin(0.9369τ) =−0.8907, which give the
second group of critical delay values

τ2,k =
4.2433+2kπ

ω2
≈ 4.529+

2kπ

ω2
≈ 4.529, 11.24, 17.94, 24.65, · · · , (k = 0, 1, · · ·).

When ω =ω3, one has cos(1.4512τ) = 0.8562 and sin(1.4512τ) = 0.5169, which give the third
group of critical delay values

τ3,k =
0.5432+2kπ

ω3
≈ 0.3743+

2kπ

ω3
≈ 0.3744, 4.705, 9.035, 13.36, 17.70, 22.03, · · ·

Within τ ∈ [0, 20], the critical delay values are arranged from small to big as follows

0 < τ3,0 < τ1,0 < τ2,0 < τ3,1 < τ3,2 < τ1,1 < τ2,1 < τ3,3 < τ1,2 < τ3,4 < τ2,2 < 20. (4.5)

Strightforward calculation shows that

ℜ(
dλ

dτ
)
∣∣∣
(λ ,τ)=(i,τ1,0), (i,τ1,2)

= 0, ℜ(
d2λ

dτ2 )
∣∣∣
(λ ,τ)=(i,τ1,0)

> 0, ℜ(
d2λ

dτ2 )
∣∣∣
(λ ,τ)=(i,τ1,2)

< 0,

ℜ(
dλ

dτ
)
∣∣∣
(λ ,τ)=(±0.9369i,τ2,k)

< 0, (k = 0, 1, 2, · · ·),

ℜ(
dλ

dτ
)
∣∣∣
(λ ,τ)=(±1.4512i,τ3,k)

> 0, (k = 0, 1, 2, · · ·).

Hence, as τ passes τ1,0 or τ1,2 from the left to the right, the TDS keeps the number of URs
unchanged; as τ passes τ2,k from the left to the right, the TDS decreases a pair of conjugate
URs; and as τ passes τ3,k from the left to the right, the TDS increases a pair of conjugate URs.
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Special attention should be paid to τ = τ1,1 = 3π , where λ = i is a repeated CIR with mul-
tiplicity 2. At τ = τ1,1, dλ/dτ does not exist, and Puiseux series expansion is required. When
τ− τ1,1 is small, two branches of the Puiseux series expansion are found to be

λ = i+(±0.0385±0.0698i)(τ− τ1,1)
1/2 +o((τ− τ1,1)

1/2)

one branch has positive real part 0.0385(τ−τ1,1)
1/2 and the other branch has negative real part

−0.0385(τ− τ1,1)
1/2. Thus, ∆N = N (τ1,1 + ε)−N (τ1,1− ε) = 0 for small ε > 0.

Because p(λ , 0) has a pair of conjugate complex zeros −0.0303± 1.0585i, N = 0 when
τ = 0. Thus, the value of N in the intervals [0, τ3,0), (τ3,0, τ1,0), (τ1,0, τ2,0), (τ2,0, τ3,1),
(τ3,1, τ3,2), (τ3,2, τ1,1), (τ1,1, τ2,1), (τ2,1, τ3,3), (τ3,3, τ1,2), (τ1,2, τ3,4), (τ3,4, τ2,2), (τ2,2, 20] are

0, 2, 2, 0, 2, 4, 4, 2, 4, 4, 6, 4,

respectively, and 8 jumps of N (τ) happen at τ = τ2,k, (k= 0, 1, 2) and τ = τ3,k, (k= 0, 1, 2, 3, 4)
accordingly. This confirms the results shown in Fig.2.

4.2. Example 2. Let us consider a TDS with the following characteristic quasi-polynomial

p(λ , τ) = λ
4 +2λ

2 +3e−λτ −3e−2λτ + e−3λτ .

By separating the real and imaginary parts of i−4 p(iω, τ) = 0, one has

α(ω) = ω
4−2ω

2 +3cos(ωτ)−3cos(2ωτ)+ cos(3ωτ) = 0,

β (ω) = −3sin(ωτ)+3sin(2ωτ)− sin(3ωτ) = 0,

respectively, and
R(ω)≥ R(ω)≡ ω

4−2ω
2−7.

Then R(ω)≥ R(ω)> 0 if ω > 1.9566. Thus, for any τ > 0, the unmber of unstable character-
istic roots, N , can be calculated by using

N (τ) = round
(

4
2
− 1

π

∫ 2.0

0

β ′(ω)α(ω)−α ′(ω)β (ω)

α2(ω)+β 2(ω)
dω

)
. (4.6)

The plot of N in τ ∈ [0, 20] is given in Fig.3, satisfying N ≥ 2, thus the time-delay system is
unstable for all τ ∈ [0, 20], which can be validated as done in Example 1.

FIGURE 3. The number N (τ) with respect to the change of τ ∈ [0, 20] for
Example 2.

In fact, p(iω, τ) = 0 if and only if α(ω) = β (ω) = 0, where

α(ω) = ω
4−2ω

2−6cos2(τω)+3+4cos3(τω),

β (ω) = −2sin(τω)(2cos(τω)−1)(cos(τω)−1).
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It follows that sin(τω) = 0, cos(τω) = 1, ω4 − 2ω2 + 1 = 0; or sin(τω) = 0, cos(τω) =
−1, ω4− 2ω2− 7 = 0. The first three conditions give ω = ±1, τ1,k = 2kπ (k = 0, 1, 2, · · ·)
and λ =±i are a pair of repeated conjugate imaginary roots with multiplicity 2; and the second
three conditions give ω =±1.9566, τ2,k = 1.6056+ 2kπ

1.9566 (k = 0, 1, 2, · · ·) and λ =±1.9566i
are a pair of conjugate simple imaginary roots.

At τ = τ2,k where λ =±1.9566i are simple characteristic roots, it is easy to know that

ℜ(
dλ

dτ
)
∣∣∣
(λ ,τ)=(±1.9566i,τ2,k)

> 0, (k = 0, 1, 2, · · ·).

This means that as τ passes τ2,k from the left to the right, the TDS increases a pair of conjugate
unstable characteristic roots. While at τ1,k where λ =±i are not simple, Puiseux series approxi-
mation is needed to dtermine the crossing direction. At (λ , τ) = (i, τ1,k) and (λ , τ) = (−i, τ1,k),
the Puiseux series has the following approximation

λ = i± (0.3536+0.3536i)(τ− τ1,k)
3/2 +o((τ− τ1,k)

3/2),

λ = − i± (−0.3536+0.3536i)(τ− τ1,k)
3/2 +o((τ− τ1,k)

3/2),

respectively. It means that as τ passes τ1,k from the left to the right, the croosing increases two
URs and decreases two URs simultaneously, N (τ) is kept unchanged. Thus, N (τ) can be
changed only when τ passes τ2,k from the left to the right of the complex plane, 2 increased at
each τ2,k. Let the critical delay values are arranged in order:

0 = τ1,0 < τ2,0 < τ2,1 < τ1,1 < τ2,2 < τ2,3 < τ1,2 < τ2,4 < τ2,5 < τ1,3 < 20.

As a result, the values of N (τ) in intervals [τ1,0, τ2,0), (τ2,0, τ2,1), (τ2,1, τ1,1), (τ1,1, τ2,2),
(τ2,2, τ2,3), (τ2,3, τ1,2), (τ1,2, τ2,4), (τ2,4, τ2,5), (τ2,5, τ1,3), (τ1,3, 20) are

2, 4, 6, 6, 8, 10, 10, 12, 14, 14,

respectively, and 6 jumps of N (τ) happen at τ = τ2,k, (k = 0, 1, 2, 3, 4, 5) accordingly. The
results shown in Fig.3 have been fully confirmed by the above analysis.

4.3. Example 3. Let us consider a TDS with the following characteristic quasi-polynomial

p(λ , τ) = λ
5−a4λ

4−a3λ
3−a2λ

2−a1λ −a0− (b4λ
4 +b3λ

3 +b2λ
2 +b1λ +b0)e−λτ ,

where the coefficients are a0 = π/2−π2/8−1, a1 = π/2−2, a2 = π−π2/4−10, a3 = π/2−3,
a4 = π/2−π2/8−8, b0 = b1 = b3 =−1, b2 =−10 and b4 =−8. Let α(ω) and β (ω) be the
real and imaginary parts of i−5 p(iω, τ) respectively, then one finds that α(ω)> 0 if ω > 8.1451
for all τ > 0. Thus, N can be calculated from

N (τ) = round
(

5
2
− 1

π

∫ 9.0

0

β ′(ω)α(ω)−α ′(ω)β (ω)

α2(ω)+β 2(ω)
dω

)
. (4.7)

The plot of N (τ) in τ ∈ [0, 20] is given in Fig.4, which can be validated as done above.
Actually, p(λ , τ) has three groups of critical delays:

τ1,k = (2k+1)π, (k = 0, 1, 2, · · ·), satisfying p(±i, τ1,k) = 0,

τ2,k = 1.9457/0.3339+2kπ/0.3339, (k = 0, 1, · · ·), satisfying p(±0.3339i, τ2,k) = 0,

τ3,k = 2.8081/2.2421+2kπ/2.2421, (k = 0, 1, · · ·), satisfying p(±2.2421i, τ3,k) = 0.
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FIGURE 4. The number N (τ) with respect to the change of τ ∈ [0, 20] for
Example 3.

Except τ1,0 = π for which λ = ±i are characteristic roots with multiplicity 2, all the critical
characteristic roots at other critical delay values are simple. Straightforward calculation gives

ℜ(
dλ

dτ
)
∣∣∣
(λ ,τ)=(±1.4512i,τ3,k)

> 0, ℜ(
dλ

dτ
)
∣∣∣
(λ ,τ)=(±0.9369i,τ2,k)

> 0, (k = 0, 1, 2, · · ·).

This means that as τ passes through every τ2,k or τ3,k, the TDS increases two UCRs. In addition,
in a neighborhood of (λ , τ) = (i, τ1,0), the Puiseux series has the following approximation

λ = i±0.1468i(τ− τ1,0)
1/2 +(−0.0033−0.1473i)(τ− τ1,0)+o(τ− τ1,0),

and in a neighborhood of (λ , τ)= (−i, τ1,0), the Puiseux series has the following approximation

λ =−i±0.1468i(τ− τ1,0)
1/2 +(−0.0033+0.1473i)(τ− τ1,0)+o(τ− τ1,0).

Thus, as τ passes through τ1,0, the TDS descreses two UCRs, a case unlike in the above two
examples where the unmber of UCRs is kept unchanged. While for k = 1, 2 · · · , one has

ℜ(
dλ

dτ
)
∣∣∣
(λ ,τ)=(i,τ1,k)

= 0, ℜ(
d2λ

dτ2 )
∣∣∣
(λ ,τ)=(i,τ1,k)

= 0, ℜ(
d3λ

dτ3 )
∣∣∣
(λ ,τ)=(i,τ1,k)

< 0.

This means that as τ passes through every τ1,1, τ1,2, · · · , the TDS decreases two UCRs. A jump
occurs at τ1,0, τ1,1, τ1,2; τ2,0, τ2,1; τ3,0, τ3,1, · · · , τ3,5, totally 11 times in τ ∈ [0, 20]. The TDS is
asymptotically stable for τ ∈ [0, τ3,0)∪ (τ1,0, τ3,1) = [0, 1.2524)∪ (π, 4.0548) and it is unstable
for other delay values. Thus, the results shown in Fig.4 have been fully confirmed.

4.4. Example 4. Finally, consider a time-delay system with quasi-polynomial of the form

p(λ , τ) = a0(λ )+
4

∑
k=1

ak(λ )e−kλτ ,

where

a0 =
15π2

8
λ

6 +(
11π

4
− 15π2

8
)λ 4 +

9π

2
λ

3 +(1+
π

2
− 75π2

8
)λ 2 +(3+

9π

2
)λ +1− 9π

4
− 45π2

8
,

a1 =
5π

4
λ

5 +
11π

2
λ

4 +(1+
7π

2
)λ 3 +(π +7)λ 2 +(11+

9π

4
)λ +4− 9π

2
,

a2 =
5π

4
λ

5 +
11π

4
λ

4 +(3−π)λ 3 +(13+
π

2
)λ 2 +(15− 9π

4
)λ +6− 9π

4
,

a3 = 3λ
3 +9λ

2 +9λ +4, a4 = λ
3 +2λ

2 +2λ +1.
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Let α(ω) and β (ω) be the real and imaginary parts of i−6 p(iω, τ) respectively, then one finds
that α(ω)> 0 if ω > 1.5662 for all τ > 0. Thus, N can be calculated from

N (τ) = round
(

6
2
− 1

π

∫ 2.0

0

β ′(ω)α(ω)−α ′(ω)β (ω)

α2(ω)+β 2(ω)
dω

)
. (4.8)

The plot of N in τ ∈ [0, 20] is given in Fig.5. Here, at τ = π, 3π, 5π , the multiplicity of λ =±i

FIGURE 5. The number N (τ) with respect to the change of τ ∈ [0, 20] for
Example 4.

is 2, 3, 4 respectively, the corresponding approximated Puiseux series are given in [14]. As a
direct application of the above extended DIEM, one finds N (π − 0.05) = N (π + 0.07) = 5,
N (3π±0.04) = 7, and N (5π±0.01) = 7, which imply that as τ passes through τ = π, 3π, 5π

respectively, the integer N (τ) is kept unchanged. Thus, the time-delay system is unstable for
all τ ∈ [0, 20]. The results shown in Fig.5 can be confirmed, and the points where a jump of
N (τ) occurs can be found, as done in the above three examples.

It is worthy of pointing out that for TDSs with multiple delays (or non-delay parameters), one
can firstly mesh the delay intervals and then calculate N at each node of the meshing network,
and thus all the regions with N = 0 can be determined, as done above.

5. CONCLUSION

In this paper, the DIEM that requires integral evaluation only is extended for the fast stability
test of linear TDSs with repeated CIRs. As shown in the four illustrative examples, the com-
plete stability analysis based on DIEM for TDSs with a single delay can be very simple and
straightforward. The merits of the proposed method includes: 1) the integration is evaluated
over a very short delay-free interval, rather than over [0,+∞), thus the computational cost for
the complete stability analysis could be very low; 2) the evaluation does not need priliminary
knowledge of the critical delay values and the corresponding charcteristic roots; 3) the method
works not only for TDSs with a single delay, but also for the ones with multiple delays.
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