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Abstract. In this paper, we introduce the concept of (RC)-condition and present some sufficient conditions for the
(RC)-condition. We show that a sequence in a metric space satisfying the (RC)-condition is Cauchy. Some new
fixed point theorems and new simultaneous generalizations of celebrated fixed point theorems for (RC)-condition
are established.
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1. INTRODUCTION AND PRELIMINARIES

Let (X ,d) be a metric space. For x ∈ X and a subset A of X , define d(x,A) = infy∈A d(x,y).
Denote by N (X) the family of all nonempty subsets of X and C B(X) the class of all nonempty
closed and bounded subsets of X . A function H : C B(X)×C B(X)→ [0,∞) defined by

H (A,B) = max
{

sup
x∈B

d(x,A), sup
x∈A

d(x,B)
}

is said to be the Hausdorff metric on C B(X) induced by the metric d on X . A point v in X
is said to be a fixed point of of a mapping T if v ∈ T v (when T : X →N (X) is a multivalued
mapping) or T v = v (when T : X → X is a single-valued mapping). The set of fixed points of
T is denoted by F (T ). The symbols N and R are used to denote the sets of positive integers
and real numbers, respectively. An extended real valued function f : X → (−∞,∞] is said to be
lower semicontinuous (in short l.s.c.) (resp. upper semicontinuous, in short u.s.c.) at v∈X if for
any sequence {xn} in X with xn→ v, we have f (v)≤ liminf

n→∞
f (xn) ( resp. f (v)≥ limsup

n→∞

f (xn)

). The function f is called to be l.s.c. (resp. u.s.c.) on X if f is l.s.c. (resp. u.s.c.) at every
point of X . The function f is said to be proper if f 6≡ ∞. An extended real valued function
g : X → (−∞,∞] is said to be
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(i) lower semicontinuous f rom above (abbreviated as lsca) at v ∈ X [4, 27] if for any se-
quence {xn} in X with xn → v and g(xn) ≥ g(xn+1) for all n ∈ N imply that g(v) ≤
lim
n→∞

g(xn) ;
(ii) upper semicontinuous f rom below (abbreviated as uscb) at v ∈ X [27] if for any se-

quence {xn} in X with xn → v and g(xn) ≤ g(xn+1) for all n ∈ N imply that g(v) ≥
lim
n→∞

g(xn) .

It is obvious that a function is l.s.c. (resp. u.s.c.) then it is lsca (resp. uscb), but the reverse is
not true (see [4, Example 1.3]).

Theorem 1.1 (Banach contraction principle [1]). Let (X ,d) be a complete metric space and
T : X → X be a self-mapping. Assume that there exists a nonnegative number γ < 1 such that
d(T (x),T (y))≤ γd(x,y) for all x,y ∈ X. Then T admits a unique fixed point in X.

Since the establishment of the famous Banach contraction principle, fixed point theory and
its applications have developed rapidly in the past one hundred years, spawning many academic
papers to study its promotion and application in nonlinear analysis, applied mathematics and
other fields. A large number of authors devoted their attention to investigating generalizations in
various different directions of the well-known fixed point theorems; see [2–32] and references
therein.

In 1969, Kannan [24] established his interesting fixed point theorem as follows:

Theorem 1.2 (Kannan’s fixed point theorem [24]). Let (X ,d) be a complete metric space and
T : X → X be a self-mapping on X. Suppose that there exists γ ∈

[
0, 1

2

)
such that

d(T x,Ty)≤ γ(d(x,T x)+d(y,Ty)) for all x,y ∈ X .

Then T admits a unique fixed point in X.

In 1972, Chatterjea established so-called the Chatterjea’s fixed point theorem [3] as follows:

Theorem 1.3 (Chatterjea’s fixed point theorem [3]). Let (X ,d) be a complete metric space
and T : X → X be a self-mapping on X. Suppose that there exists γ ∈

[
0, 1

2

)
such that

d(T x,Ty)≤ γ(d(x,Ty)+d(y,T x)) for all x,y ∈ X.

Then T admits a unique fixed point in X.

Nadler’s fixed point theorem [29] is a well-known generalization of Banach contraction prin-
ciple, which extends Banach contraction principle from single-valued mappings to multivalued
mappings.

Theorem 1.4 (Nadler’s fixed point theorem [29]). Let (X ,d) be a complete metric space and
T : X → C B(X) be a k-contraction; that is, there exists a nonnegative number k < 1 such that
H (T x,Ty)≤ kd(x,y) for all x,y ∈ X. Then F (T ) 6= /0 .

Definition 1.1 (see [9, Definition 1.1]). A function ϕ : [0,∞)→ [0,1) is said to be a MT -
function (or R- function) if 1 > limsup

s→t+
ϕ(s) := inf

ε>0
sup

t<s<t+ε

ϕ(s) for all t ∈ [0,∞).

Clearly, if ϕ : [0,∞)→ [0,1) is a nondecreasing function or a nonincreasing function, then ϕ

is a MT -function. So the set of MT -functions is a rich class.
In 2012, Du [9] established the following characterizations of MT -functions.
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Theorem 1.5 (Du [9, Theorem 2.1]). Let ϕ : [0,∞)→ [0,1) be a function. Then the following
statements are equivalent.

(a) ϕ is an MT -function.
(b) For each t ∈ [0,∞), there exist r(1)t ∈ [0,1) and ε

(1)
t > 0 such that ϕ(s) ≤ r(1)t for all

s ∈ (t, t + ε
(1)
t ).

(c) For each t ∈ [0,∞), there exist r(2)t ∈ [0,1) and ε
(2)
t > 0 such that ϕ(s) ≤ r(2)t for all

s ∈ [t, t + ε
(2)
t ].

(d) For each t ∈ [0,∞), there exist r(3)t ∈ [0,1) and ε
(3)
t > 0 such that ϕ(s) ≤ r(3)t for all

s ∈ (t, t + ε
(3)
t ].

(e) For each t ∈ [0,∞), there exist r(4)t ∈ [0,1) and ε
(4)
t > 0 such that ϕ(s) ≤ r(4)t for all

s ∈ [t, t + ε
(4)
t ).

(f) For any nonincreasing sequence {xn}n∈N in [0,∞), we have 0≤ sup
n∈N

ϕ(xn)< 1.

(g) ϕ is a function of contractive factor; that is, for any strictly decreasing sequence {xn}n∈N
in [0,∞), we have 0≤ sup

n∈N
ϕ(xn)< 1.

In 1989, Mizoguchi and Takahashi [28] proved the following famous generalization of Nadler’s
fixed point theorem.

Theorem 1.6 (Mizoguchi-Takahashi’s fixed point theorem [28]). Let (X ,d) be a complete
metric space, ϕ : [0,∞)→ [0,1) be a MT -function and T : X → C B(X) be a multivalued
mapping. Assume that H (T x,Ty)≤ ϕ(d(x,y))d(x,y) for all x,y ∈ X. Then F (T ) 6= /0.

In 2017, Du [13] present the following fixed point theorem which simultaneously generalizes
and improves Mizoguchi-Takahashi’s fixed point theorem, Nadler’s fixed point theorem, Ba-
nach contraction principle, Kannan’s fixed point theorem and Chatterjea’s fixed point theorem.

Theorem 1.7 (Du [13, Theorem 1.7]). Let (X ,d) be a complete metric space and T : X →
C B(X) be a multivalued mapping. Suppose that there exists an MT -function ϕ : [0,∞)→
[0,1) such that

H (T x,Ty)≤ ϕ(d(x,y))max
{

d(x,y),
d(x,T x)+d(y,Ty)

2
,
d(x,Ty)+d(y,T x)

2

}
for all x,y ∈ X. Then T admits a fixed point in X.

Caristi’s fixed point theorem [2] is undoubtedly one of the most valuable generalizations
of Banach’s contraction principle. It is well-known that the Caristi’s fixed point theorem is
equivalent to the Ekeland’s variational principle, to the Takahashi’s nonconvex minimizationth
eorem, to the Daneš’ drop theorem, to the petal theorem, and to the Oettli-Théra’s theorem;
see, e.g., [10, 12, 16, 22, 23, 25–27, 30, 31] and references therein for more details. In 2016,
Du [11] gave a new, simple and direct proof of Caristi’s fixed point theorem without using Zorn’s
lemma, transfinite induction and any well-known principle. For more detailed information, the
interested readers can refer to [11].

Theorem 1.8 (Caristi’s fixed point theorem [2]). Let (X ,d) be a complete metric space and
f : X →R be a lower semicontinuous and bounded below function. Suppose that T is a Caristi
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type mapping on X dominated by f ; that is, T : X → X satisfies d(x,T x) ≤ f (x)− f (T x) for
each x ∈ X. Then T has a fixed point in X.

In this work, we introduce the concept of (RC)-condition and present some sufficient condi-
tions for the (RC) -condition in section 2. We show that a sequence in a metric space satisfies
(RC)-condition, then it is Cauchy. Some new fixed point theorems and new simultaneous gen-
eralizations of well-known fixed point theorems for (RC)-condition are established in section
3.

2. THE CONCEPT OF (RC)-CONDITION AND RELATED RESULTS

In this paper, we introduce the concept of (RC)-condition.

Definition 2.1. Let (X ,d) be a metric space. A sequence {xn} in X is said to have regulated
contractility condition (abbreviated as (RC)-condition), if there exist a nonnegative real number
λ < 1 and a proper function h : X → [0,∞], such that

d(xn+2,xn+1)≤ λd(xn+1,xn)+h(xn+1)−h(xn+2) for all n ∈ N,
where x1,x2 ∈ Dom(h) := {x ∈ X : h(x)< ∞}.

The following results will play vital roles as examples of sufficient conditions for the (RC)
-condition.

Theorem 2.1. Let (X ,d) be a metric space, T : X → X be a selfmapping, f : X → (−∞,∞] be
a proper bounded below function and κ : (−∞,∞]→ [0,∞) be a nondecreasing function. If T is
Caristi type with respect to κ , that is

d(x,T x)≤ κ( f (x))( f (x)− f (T x)) for all x ∈ X. (2.1)

Then the following hold:
(a) Define a set-valued mapping Γ : X → 2X (the power set of X) by

Γ(x) = {y ∈ X : d(x,y)≤ κ( f (x))( f (x)− f (y))} for x ∈ X.

Then for any u ∈ Dom( f ), the sequence {xn}n∈N with x1 = u and xn+1 ∈ Γ(xn) satisfies
(RC)-condition.

(b) For any u ∈Dom( f ), the sequence {T nu}n∈N∪{0} satisfies (RC)-condition (here, T 0 = I
is the identity mapping).

Proof. We first prove the conclusion (a) holds. Clearly, Γ(x) 6= /0 for all x ∈ X . Let u ∈Dom( f )
be given and let the sequence {xn}n∈N satisfy x1 = u and xn+1 ∈ Γ(xn). Let λ = 0 and define a
proper function h : X → [0,∞] by

h(x) = κ( f (u))
(

f (x)− inf
x∈X

f (x)
)

.

Since xn+1 ∈ Γ(xn), we have f (xn+1) ≤ f (xn) for each n ∈ N which means that { f (xn)} is
nonincreasing. For any n ∈ N, since xn+2 ∈ Γ(xn+1) and κ is nondecreasing, the inequality
(2.1) implies

d(xn+1,xn+2)≤ κ( f (xn+1))( f (xn+1)− f (xn+2))

≤ λd(xn+1,xn)+h(xn+1)−h(xn+2).

So, {xn} satisfies (RC)-condition. Similarly, we can show that the conclusion (b) is true. �
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Theorem 2.2. Let (X ,d) be a metric space, T : X → C B(X) be a multivalued mapping,
f : X→ (−∞,∞] be a proper bounded below function and D,S : X×X→ [0,∞) be two functions.
Suppose that there exists an MT -function ϕ : [0,∞)→ [0,1) such that for each x,y∈ X, it holds

D(x,y)≤ ϕ(`(x,y))S(x,y)+ f (x)− f (z) for all z ∈ T x, (2.2)

where `(x,y) = d(x,y)+ f (x)− inf
x∈X

f (x) for x,y ∈ X. If a sequence {xn} in X satisfies x1 ∈
Dom( f ), xn+1 ∈ T xn, D(xn+1,xn) = d(xn+2,xn+1) and S(xn+1,xn) ≤ d(xn+1,xn) for all n ∈ N,
then {xn} satisfies (RC)-condition.

Proof. Define a proper function h : X → [0,∞] by h(x) = f (x)− inf
x∈X

f (x). Then `(x,y) =

d(x,y)+h(x) and inequality (2.2) implies that, for each x,y ∈ X ,

D(x,y)≤ ϕ(`(x,y))S(x,y)+h(x)−h(z) for all z ∈ T x. (2.3)

Since ϕ(t)< 1 for all t ∈ [0,∞), we can define an MT -function τ : [0,∞)→ (0,1) by

τ(t) =
1
2
(1+ϕ(t)) for all t ∈ [0,∞).

Clearly, 0 ≤ ϕ(t) < τ(t) < 1 for all t ∈ [0,∞). Let {xn} in X satisfy x1 ∈ Dom( f ) = Dom(h),
xn+1 ∈ T xn, D(xn+1,xn) = d(xn+2,xn+1) and S(xn+1,xn) ≤ d(xn+1,xn) for all n ∈ N. Clearly,
h(xn)< ∞ for all n ∈ N. Let

ξn = d(xn+1,xn)+h(xn+1), n ∈ N.

By (2.3), we have

d(xn+2,xn+1)< τ(ξn)d(xn+1,xn)+h(xn+1)−h(xn+2) for all n ∈ N. (2.4)

By (2.4), we have (1−τ(ξn))d(xn+1,xn)≤ ξn−ξn+1, which deduces 0≤ ξn+1 ≤ ξn for all n ∈
N. Hence the sequence {ξn}∞

n=1 is nonincreasing in [0,∞). Since τ is an MT -function, by
applying Theorem 1.5, we have 0≤ sup

n∈N
τ(ξn)< 1. Let λ := sup

n∈N
τ(ξn). So λ ∈ [0,1). By (2.3),

we get
d(xn+2,xn+1)≤ λd(xn+1,xn)+h(xn+1)−h(xn+2) for all n ∈ N.

Hence {xn} satisfies (RC)-condition. The proof is completed. �

If we take f (x) = 0 for all x ∈ X in Theorem 2.2, we obtain the following result immediately.

Corollary 2.1. Let (X ,d) be a metric space, T : X → C B(X) be a multivalued mapping
and D,S : X ×X → [0,∞) be two mappings. Suppose that there exists an MT -function ϕ :
[0,∞)→ [0,1) such that for each x,y∈ X, it holdsD(x,y)≤ ϕ(d(x,y))S(x,y). If a sequence {xn}
in X satisfies x1 ∈ X is arbitrary, xn+1 ∈ T xn, D(xn+1,xn) = d(xn+2,xn+1) and S(xn+1,xn) ≤
d(xn+1,xn) for all n ∈ N, then {xn} satisfies (RC)-condition.

The following result can be derived immediately from Theorem 2.2 with ϕ(x) = 0 for all
x ∈ X .

Corollary 2.2. Let (X ,d) be a metric space, T : X → C B(X) be a multivalued mapping,
f : X → (−∞,∞] be a proper bounded below function and D : X ×X → [0,∞) be a mapping.
Suppose that for each x,y ∈ X, it holds D(x,y) ≤ f (x)− f (z) for all z ∈ T x. If a sequence
{xn} in X satisfies x1 ∈ Dom( f ), xn+1 ∈ T xn, D(xn+1,xn) = d(xn+2,xn+1), then {xn} satisfies
(RC)-condition.
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The following result is a single-valued version of Theorem 2.2 and follows directly from
Theorem 2.2.

Theorem 2.3. Let (X ,d) be a metric space, T : X→ X be a self-mapping, f : X→ (−∞,∞] be a
proper bounded below function and D,S : X×X → [0,∞) be two mappings. Suppose that there
exists an MT -function ϕ : [0,∞)→ [0,1) such that for each x,y ∈ X, it holds

D(x,y)≤ ϕ(`(x,y))S(x,y)+ f (x)− f (T x),

where `(x,y) = d(x,y)+ f (x)− inf
x∈X

f (x) for x,y ∈ X. If a sequence {xn} in X satisfies x1 ∈
Dom( f ), xn+1 = T xn, D(xn+1,xn) = d(xn+2,xn+1) and S(xn+1,xn) ≤ d(xn+1,xn) for all n ∈ N,
then {xn} satisfies (RC)-condition.

Corollary 2.3. Let (X ,d) be a metric space, T : X → X be a self-mapping and D,S : X ×X →
[0,∞) be two mappings. Suppose that there exists an MT -function ϕ : [0,∞)→ [0,1) such
that for each x,y ∈ X, it holds D(x,y) ≤ ϕ(d(x,y))S(x,y). If a sequence {xn} in X satisfies
x1 ∈ X is arbitrary, xn+1 = T xn, D(xn+1,xn) = d(xn+2,xn+1) and S(xn+1,xn) ≤ d(xn+1,xn) for
all n ∈ N, then {xn} satisfies (RC)-condition.

Corollary 2.4. Corollary 2.4. Let (X ,d) be a metric space, T : X → X be a self-mapping,
f : X → (−∞,∞] be a proper bounded below function and D : X ×X → [0,∞) be a mappings.
Suppose that for each x,y ∈ X, it holds D(x,y)≤ f (x)− f (T x). If a sequence {xn} in X satisfies
x1 ∈ Dom( f ), xn+1 = T xn, D(xn+1,xn) = d(xn+2,xn+1) for all n ∈ N, then {xn} satisfies (RC)-
condition.

Theorem 2.4. Let (X ,d) be a metric space and T : X → X be a self-mapping. Suppose that
(H) there exists an MT -function ϕ : [0,∞)→ [0,1) such that

min{d(T x,Ty),d(x,T x)} ≤ ϕ(d(x,y))max
{

d(x,y),d(x,T x),d(y,Ty),
d(x,Ty)+d(y,T x)

2

}
for all x,y ∈ X.

Then for any u ∈ X, the sequence {T nu}n∈N∪{0} satisfies (RC)-condition (here, T 0 = I is the
identity mapping).

Proof. Define two mappings D,S : X×X → [0,∞) by

D(x,y) = min{d(T x,Ty),d(x,T x)}
and

S(x,y) = max
{

d(x,y),d(x,T x),d(y,Ty),
d(x,Ty)+d(y,T x)

2

}
respectively. Then, by (H), we obtain

D(x,y)≤ ϕ(d(x,y))S(x,y) for all x,y ∈ X .

Let u ∈ X be given. Define a sequence {xn}n∈N by x1 = u and xn+1 = T xn = T nu for all n ∈ N.
For any n ∈ N, we have

D(xn+1,xn) = d(xn+2,xn+1) for all x,y ∈ X . (2.5)

and

S(xn+1,xn) = max
{

d(xn+1,xn),d(xn+1,xn+2),d(xn,xn+1),
d(xn,xn+2)}

2

}
. (2.6)
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Assume there exists j ∈ N such that d(x j+1,x j)< d(x j+2,x j+1). Then, by (H), (2.5) and (2.6),
we have

d(x j+2,x j+1) = D(x j+1,x j)< S(x j+1,x j) = d(x j+2,x j+1),
a contradiction. Hence it must be d(xn+2,xn+1)≤ d(xn+1,xn) and hence we have S(xn+1,xn)≤
d(xn+1,xn) for all n ∈ N. By Corollary 2.3, {xn} satisfies (RC)-condition. The proof is com-
pleted. �

Remark 2.1. Let T be a self-mapping on a metric space (X ,d). Then, by Theorem 2.4, for any
u ∈ X , the sequence {T nu}n∈N∪{0} satisfies (RC)-condition if T is Banach type or Kannan type
or Chatterjea type.

3. SOME FIXED POINT THEOREMS FOR (RC)-CONDITION

The following is one of main results in this paper.

Theorem 3.1. Let (X ,d) be a metric space. If a sequence {xn} in X satisfies (RC)-condition,
then {xn} is Cauchy.

Proof. Since {xn} satisfies (RC)-condition, there exist a nonnegative real number λ < 1 and a
proper function h : X → [0,∞] with x1 ∈ Dom(h), such that

d(xn+2,xn+1)≤ λd(xn+1,xn)+h(xn+1)−h(xn+2) for all n ∈ N. (3.1)

Clearly, h(xn)< ∞ for all n ∈ N. Let ξn = d(xn+1,xn)+h(xn+1), n ∈ N. By (3.1), we get

(1−λ )d(xn+1,xn)≤ d(xn+1,xn)+h(xn+1)− [d(xn+2,xn+1)+h(xn+2)], (3.2)

which deduces 0 ≤ ξn+1 ≤ ξn for all n ∈ N. Hence the sequence {ξn}∞
n=1 is nonincreasing in

[0,∞) and
` := lim

n→∞
ξn = inf

n∈N
ξn exists.

By (3.2), we have

d(xn,xn+1)≤
1

1−λ
(ξn−ξn+1) for all n ∈ N. (3.3)

For m, n ∈ N with m > n, we have form (3.3) that

d(xn,xm)≤
m−1

∑
j=n

d(x j,x j+1) =
1

1−λ
(ξn−ξm).

Since lim
n→∞

ξn = `, we have limn→∞ sup{d(xn,xm) : m > n}= 0. This prove that {xn} is a Cauchy
sequence in X . �

Applying Theorem 3.1, we present the following new fixed point theorem for Caristi type
mappings and lsca functions.

Theorem 3.2. Let (X ,d) be a complete metric space, f : X → (−∞,∞] a proper lsca and
bounded below function and κ : (−∞,∞]→ (0,∞) a nondecreasing function. Suppose that
T : X → X is a self-mapping satisfying

d(x,T x)≤ κ( f (x))( f (x)− f (T x)) for each x ∈ X. (3.4)

Then F (T ) 6= /0. Moreover, there exists a sequence {xn} in X such that it satisfies (RC)-
condition and converges to a fixed point v of T with f (v)< ∞.
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Proof. Define a set-valued mapping Γ : X → 2X by

Γ(x) = {y ∈ X : d(x,y)≤ κ( f (x))( f (x)− f (y))} for x ∈ X .

Since T x ∈ Γ(x), we have Γ(x) 6= /0 for all x ∈ X . First, we claim that for each y∈ Γ(x), we have
f (y)≤ f (x) and Γ(y)⊆ Γ(x). Let y ∈ Γ(x) be given. Thus d(x,y)≤ κ( f (x))( f (x)− f (y)) and
hence f (y)≤ f (x). Let us verify Γ(y)⊆ Γ(x). Given z ∈ Γ(y). Then d(y,z)≤ κ( f (y))( f (y)−
f (z)). So f (z) ≤ f (y) ≤ f (x). Let u ∈ Dom( f ). We shall construct a sequence {xn} in X by
induction, starting with x1 = u. Suppose that xn ∈ X is known. Then choose xn+1 ∈ Γ(xn) such
that

f (xn+1)≤ inf
z∈Γ(xn)

f (z)+
1
n

for n ∈ N. (3.5)

Applying Theorem 2.1 (a), we know that {xn} satisfies (RC)-condition. Hence, by Theorem
3.1, {xn} is a Cauchy sequence in X . By the completeness of X , there exists v ∈ X such that
xn→ v as n→ ∞. We now verify v ∈F (T ). For any n ∈ N, since xn+1 ∈ Γ(xn), we have

d(xn,xn+1)≤ κ( f (xn))( f (xn)− f (xn+1), (3.6)

and hence
f (xn+1)≤ f (xn). (3.7)

Since f is bounded below,

ξ := lim
n→∞

f (xn) = inf
n∈N

f (xn) exists. (3.8)

Since f is lsca, by taking into account (3.7) and (3.8), we get

f (v)≤ lim
n→∞

f (xn) = ξ ≤ f (x j)< ∞ for all j ∈ N. (3.9)

We claim that
⋂

∞
n=1 Γ(xn) = {v}. Let n ∈ N be fixed. For m > n with m,n ∈ N, since κ is

nondecreasing, by (3.6), (3.7) and (3.9), we obtain

d(xn,xm)≤
m−1

∑
j=n

d(x j,x j+1)≤ κ( f (xn))( f (xn)− f (v)). (3.10)

Since xm→ v as m→∞, by (3.10), we obtain d(xn,v)≤ κ( f (xn))( f (xn)− f (v)) for all n ∈N,
which shows v ∈

⋂
∞
n=1 Γ(xn). Hence

⋂
∞
n=1 Γ(xn) 6= /0 and Γ(v) ⊆ ∩∞

n=1Γ(xn). For any w ∈⋂
∞
n=1 Γ(xn), taking into account (3.5) and (3.7), we have

d(xn,w)≤ κ( f (xn))( f (xn)− f (w))

≤ κ( f (x1))

(
f (xn)− inf

z∈Γ(xn)
f (z)

)
≤ κ( f (x1))

(
f (xn)− f (xn+1)+

1
n

)
for all n ∈ N. Let βn = κ( f (x1))

(
f (xn)− f (xn+1)+

1
n

)
, n ∈ N. So limn→∞ βn = 0 and hence

lim
n→∞

d(xn,w) = 0. This shows that xn→ w as n→ ∞. By the uniqueness of limit of a sequence,

we have w = v. So we prove
⋂

∞
n=1 Γ(xn) = {v}. Since Γ(v) 6= /0 and

Γ(v)⊆
∞⋂

n=1

Γ(xn) = {v}
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we get Γ(v) = {v}. Since T v ∈ Γ(v), it must be T v = v. Therefore T has a fixed point v in X .
Clearly, f (v)< ∞. The proof is completed. �

Now, we establish the following new fixed point theorem which generalizes and improves
Mizoguchi-Takahashi’s fixed point theorem, Kannan’s fixed point theorem and Chatterjea’s
fixed point theorem simultaneously.

Theorem 3.3. Let (X ,d) be a complete metric space and T : X → CB(X) be a multivalued
mapping. Define two mapping D,S : X×X → [0,∞) by

D(x,y) = min{H (T x,Ty),d(x,T x)}
and

S(x,y) = max
{

d(x,y),
d(x,T x)+d(y,Ty)

2
,
d(x,Ty)+d(y,T x)

2

}
for x,y ∈ X.

respectively. Suppose that there exists an MT -function ϕ : [0,∞)→ [0,1) such that

D(x,y)≤ ϕ(d(x,y))S(x,y) for all x,y ∈ X. (3.11)

Then T admits a fixed point in X. Moreover, there exists a sequence {xn} in X such that it satisfies
(RC)-condition and converges to a fixed point v of T .

Proof. Since ϕ(t)< 1 for all t ∈ [0,∞), we can define a function τ : [0,∞)→ (0,1) by

τ(t) =
1
2
(1+ϕ(t)) for all t ∈ [0,∞).

Clearly, 0≤ ϕ(t)< τ(t)< 1 for all t ∈ [0,∞). Thus, by (3.11), we obtain

D(x,y)< τ(d(x,y))S(x,y) for all x,y ∈ X .

Let z ∈ X be given. Take x1 = z ∈ X and choose x2 ∈ T x1. If x2 = x1, then x1 ∈ T x1 and we are
done. Otherwise, if x2 6= x1, then d(x2,x1)> 0. Since D(x2,x1) = d(x2,T x2) and

S(x2,x1) = max
{

d(x2,x1),
d(x2,T x2)+d(x1,T x1)

2
,
d(x1,T x2)

2

}
≤max

{
d(x2,x1),

d(x2,T x2)+d(x1,x2)

2
,
d(x1,T x2)

2

}
,

by (3.11), we have

d(x2,T x2)< τ(d(x2,x1))max
{

d(x2,x1),
d(x2,T x2)+d(x1,x2)

2
,
d(x1,T x2)

2

}
.

Hence there exists x3 ∈ T x2 such that

d(x2,x3)< τ(d(x2,x1))max
{

d(x2,x1),
d(x2,x3)+d(x1,x2)

2
,
d(x1,x3)

2

}
. (3.12)

Assume d(x2,x1)< d(x3,x2). Thus we have

max
{

d(x2,x1),
d(x2,x3)+d(x1,x2)

2
,
d(x1,x3)

2

}
=

d(x2,x3)+d(x1,x2)

2
. (3.13)

So, by (3.12) and (3.13), we get

d(x2,x3)<
1
2
(d(x2,x3)+d(x1,x2))
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which implies d(x2,x3) < d(x2,x1), a contradiction. Hence it must be d(x3,x2) ≤ d(x2,x1)
and (3.12) deduces d(x2,x3) < τ(d(x2,x1))d(x2,x1). If x3 = x2, then x2 ∈ T x2 and the desired
conclusion is proved. Assume x3 6= x2. By (3.11) again, we obtain

d(x3,T x3)< τ(d(x3,x2))max
{

d(x3,x2),
d(x3,T x3)+d(x2,x3)

2
,
d(x2,T x3)

2

}
.

So there exists x4 ∈ T x3 such that

d(x3,x4)< τ(d(x3,x2))max
{

d(x3,x2),
d(x3,x4)+d(x2,x3)

2
,
d(x2,x4)

2

}
.

Following a similar argument as above, we obtain d(x3,x4) < τ(d(x3,x2))d(x3,x2). Hence, by
induction, we can obtain a sequence {xn}n∈N satisfying the following: for each n ∈ N,

(i) xn+1 ∈ T xn with xn 6= xn−1;
(ii) d(xn+2,xn+1)< τ(d(xn+1,xn))d(xn+1,xn).

Since τ(t)< 1 for all t ∈ [0,∞), by (ii), we know that the sequence {d(xn+1,xn)}n∈N is strictly
decreasing in [0,∞). Since ϕ is an MT -function, by applying Theorem 1.5, we have

0≤ sup
n∈N

ϕ(d(xn+1,xn))< 1

and hence deduces

0 < sup
n∈N

τ(d(xn+1,xn)) =
1
2

[
1+ sup

n∈N
ϕ(d(xn+1,xn))

]
< 1.

Let λ := sup
n∈N

τ(d(xn+1,xn)). So λ ∈ (0,1). Define a proper function h : X → [0,∞] by h(x) = 0

for all x ∈ X . Then for any n ∈ N, by (ii) again, we have

d(xn+2,xn+1)< τ(d(xn+1,xn))d(xn+1,xn)

≤ γd(xn+1,xn)+h(xn+1)−h(xn+2) for all n ∈ N.

Hence {xn} satisfies (RC)-condition. Using Theorem 3.1, we know that {xn}n∈N is a Cauchy
sequence in X . By the completeness of X , there exists v ∈ X such that xn → v as n→ ∞. In
order to finish the proof, it is sufficient to show v ∈F (T ). For any n ∈ N, by (3.11), we have

min{d(xn+1,T v),d(v,T v)}
≤ min{H (T xn,T v),d(v,T v)}

≤ ϕ(d(xn,v))max
{

d(xn,v),
d(xn,xn+1)+d(v,T v)

2
,
d(xn,T v)+d(v,xn+1)

2

}
for all n ∈ N. Since the function x 7−→ d(x,T v) is continuous and xn→ v as n→ ∞, by taking
the limit as n→ ∞ on both sides of the last inequality, we acquire

d(v,T v)≤ 1
2

d(v,T v)

which implies d(v,T v) = 0. Therefore we obtain v ∈F (T ). The proof is completed. �

Remark 3.1. Theorem 1.7 is a special case of Theorem 3.3.

The following new fixed point theorem is a simultaneous generalization of Banach contrac-
tion principle, Kannan’s fixed point theorem and Chatterjea’s fixed point theorem.
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Theorem 3.4. Let (X ,d) be a complete metric space and T : X → X be a self-mapping. Define
two mapping D,S : X×X → [0,∞) by

D(x,y) = min{d(T x,Ty),d(x,T x)}

and

S(x,y) = max
{

d(x,y),
d(x,T x)+d(y,Ty)

2
,
d(x,Ty)+d(y,T x)

2

}
respectively. Suppose that there exists an MT -function ϕ : [0,∞)→ [0,1) such that

D(x,y)≤ ϕ(d(x,y))S(x,y) for all x,y ∈ X. (3.14)

Then F (T ) 6= /0. Moreover, for any u ∈ X, the sequence {T nu}n∈N∪{0} satisfies (RC)-condition
and converges to a fixed point of T .

Proof. Let u ∈ X be given. Define a sequence {xn}n∈N by x1 = u and xn+1 = T xn = T nu for
all n ∈ N. Clearly, the condition (H) in Theorem 2.4 holds from (3.14). By Theorem 2.4, the
sequence {T nu}n∈N∪{0} satisfies (RC)-condition. Applying Theorem 3.1, {xn} is a Cauchy
sequence in X . By the completeness of X , there exists v ∈ X such that xn→ v as n→ ∞. Now,
we verify that v ∈F (T ). For any n ∈ N, by (3.14), we have

min{d(T v,xn+1),d(v,T v)}

≤ ϕ(d(v,xn))max
{

d(v,xn),
d(v,T v)+d(xn,xn+1)

2
,
d(v,xn+1)+d(xn,T v)

2

}
.

Since xn→ v as n→ ∞, by taking the limit as n→ ∞ on both sides of the last inequality, we get

d(v,T v)≤ 1
2

d(v,T v)

which implies d(v,T v) = 0. Therefore we obtain v ∈F (T ). The proof is completed. �

Theorem 3.5. Let (X ,d) be a complete metric space and T : X→ X be a self-mapping. Suppose
that there exists an MT -function ϕ : [0,∞)→ [0,1) such that

d(T x,Ty)≤ ϕ(d(x,y))max
{

d(x,y),
d(x,T x)+d(y,Ty)

2
,
d(x,Ty)+d(y,T x)

2

}
(3.15)

for all x,y∈ X. Then T admits a unique fixed point v in X. Moreover, for any u∈ X, the sequence
{T nu}n∈N∪{0} satisfies (RC)-condition and converges to v.

Proof. Clearly, (3.15) implies (3.14). Applying Theorem 3.4, we have F (T ) 6= /0. We claim
that F (T ) is a singleton set. Assume there exist w,v ∈F (T ) with w 6= v. Thus d(w,v)> 0. By
(3.15), we have d(w,v) = d(Tw,T v) ≤ ϕ(d(w,v))d(w,v) < d(w,v), a contradiction. Hence we
prove that F (T ) is a singleton set, say F (T ) = {v}. Therefore T has a unique fixed point v in
X . Moreover, for any u ∈ X , by using Theorem 3.4 again, the sequence {T nu}n∈N∪{0} satisfies
(RC)-condition and converges to v. The proof is completed. �
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4. CONCLUSIONS

For more than a century, fixed point theory has been a fascinating theory in various fields
including linear and nonlinear analysis, optimization, differential equations, economics, game
theory, dynamical systems theory, control theory, signal and image processing, and so forth. In
this paper, the concept of (RC)-condition and its sufficient conditions are studied. We show that
a sequence in a metric space satisfies (RC)-condition, then it is Cauchy. We establish some new
fixed point theorems and new simultaneous generalizations of well-known fixed point theorems
for (RC)-condition.
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