

SOME SIMULTANEOUS GENERALIZATIONS OF CELEBRATED FIXED POINT THEOREMS INDUCED BY THE (RC)-CONDITION

WEI-SHIH DU

Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 824004, Taiwan

Abstract. In this paper, we introduce the concept of (RC)-condition and present some sufficient conditions for the (RC)-condition. We show that a sequence in a metric space satisfying the (RC)-condition is Cauchy. Some new fixed point theorems and new simultaneous generalizations of celebrated fixed point theorems for (RC)-condition are established.

Keywords. Caristi's fixed point theorem; Kannan's fixed point theorem; Mizoguchi-Takahashi fixed point theorem; Nadler's fixed point theorem.

2020 Mathematics Subject Classification. 47H10.

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space. For $x \in X$ and a subset A of X , define $d(x, A) = \inf_{y \in A} d(x, y)$. Denote by $\mathcal{N}(X)$ the family of all nonempty subsets of X and $\mathcal{CB}(X)$ the class of all nonempty closed and bounded subsets of X . A function $\mathcal{H} : \mathcal{CB}(X) \times \mathcal{CB}(X) \rightarrow [0, \infty)$ defined by

$$\mathcal{H}(A, B) = \max \left\{ \sup_{x \in B} d(x, A), \sup_{x \in A} d(x, B) \right\}$$

is said to be the Hausdorff metric on $\mathcal{CB}(X)$ induced by the metric d on X . A point v in X is said to be a fixed point of a mapping T if $v \in Tv$ (when $T : X \rightarrow \mathcal{N}(X)$ is a multivalued mapping) or $Tv = v$ (when $T : X \rightarrow X$ is a single-valued mapping). The set of fixed points of T is denoted by $\mathcal{F}(T)$. The symbols \mathbb{N} and \mathbb{R} are used to denote the sets of positive integers and real numbers, respectively. An extended real valued function $f : X \rightarrow (-\infty, \infty]$ is said to be lower semicontinuous (in short *l.s.c.*) (resp. upper semicontinuous, in short *u.s.c.*) at $v \in X$ if for any sequence $\{x_n\}$ in X with $x_n \rightarrow v$, we have $f(v) \leq \liminf_{n \rightarrow \infty} f(x_n)$ (resp. $f(v) \geq \limsup_{n \rightarrow \infty} f(x_n)$). The function f is called to be *l.s.c.* (resp. *u.s.c.*) on X if f is *l.s.c.* (resp. *u.s.c.*) at every point of X . The function f is said to be proper if $f \not\equiv \infty$. An extended real valued function $g : X \rightarrow (-\infty, \infty]$ is said to be

E-mail address: wsdu@mail.nknu.edu.tw

Received June 15, 2024; Accepted December 27, 2024.

- (i) *lower semicontinuous from above* (abbreviated as lsca) at $v \in X$ [4, 27] if for any sequence $\{x_n\}$ in X with $x_n \rightarrow v$ and $g(x_n) \geq g(x_{n+1})$ for all $n \in \mathbb{N}$ imply that $g(v) \leq \lim_{n \rightarrow \infty} g(x_n)$;
- (ii) *upper semicontinuous from below* (abbreviated as uscb) at $v \in X$ [27] if for any sequence $\{x_n\}$ in X with $x_n \rightarrow v$ and $g(x_n) \leq g(x_{n+1})$ for all $n \in \mathbb{N}$ imply that $g(v) \geq \lim_{n \rightarrow \infty} g(x_n)$.

It is obvious that a function is l.s.c. (resp. u.s.c.) then it is lsca (resp. uscb), but the reverse is not true (see [4, Example 1.3]).

Theorem 1.1 (Banach contraction principle [1]). *Let (X, d) be a complete metric space and $T : X \rightarrow X$ be a self-mapping. Assume that there exists a nonnegative number $\gamma < 1$ such that $d(T(x), T(y)) \leq \gamma d(x, y)$ for all $x, y \in X$. Then T admits a unique fixed point in X .*

Since the establishment of the famous Banach contraction principle, fixed point theory and its applications have developed rapidly in the past one hundred years, spawning many academic papers to study its promotion and application in nonlinear analysis, applied mathematics and other fields. A large number of authors devoted their attention to investigating generalizations in various different directions of the well-known fixed point theorems; see [2–32] and references therein.

In 1969, Kannan [24] established his interesting fixed point theorem as follows:

Theorem 1.2 (Kannan's fixed point theorem [24]). *Let (X, d) be a complete metric space and $T : X \rightarrow X$ be a self-mapping on X . Suppose that there exists $\gamma \in [0, \frac{1}{2})$ such that*

$$d(Tx, Ty) \leq \gamma(d(x, Tx) + d(y, Ty)) \quad \text{for all } x, y \in X.$$

Then T admits a unique fixed point in X .

In 1972, Chatterjea established so-called the Chatterjea's fixed point theorem [3] as follows:

Theorem 1.3 (Chatterjea's fixed point theorem [3]). *Let (X, d) be a complete metric space and $T : X \rightarrow X$ be a self-mapping on X . Suppose that there exists $\gamma \in [0, \frac{1}{2})$ such that*

$$d(Tx, Ty) \leq \gamma(d(x, Ty) + d(y, Tx)) \quad \text{for all } x, y \in X.$$

Then T admits a unique fixed point in X .

Nadler's fixed point theorem [29] is a well-known generalization of Banach contraction principle, which extends Banach contraction principle from single-valued mappings to multivalued mappings.

Theorem 1.4 (Nadler's fixed point theorem [29]). *Let (X, d) be a complete metric space and $T : X \rightarrow \mathcal{CB}(X)$ be a k -contraction; that is, there exists a nonnegative number $k < 1$ such that $\mathcal{H}(Tx, Ty) \leq kd(x, y)$ for all $x, y \in X$. Then $\mathcal{F}(T) \neq \emptyset$.*

Definition 1.1 (see [9, Definition 1.1]). A function $\varphi : [0, \infty) \rightarrow [0, 1)$ is said to be a \mathcal{MT} -function (or \mathcal{R} -function) if $1 > \limsup_{s \rightarrow t^+} \varphi(s) := \inf_{\varepsilon > 0} \sup_{t < s < t + \varepsilon} \varphi(s)$ for all $t \in [0, \infty)$.

Clearly, if $\varphi : [0, \infty) \rightarrow [0, 1)$ is a nondecreasing function or a nonincreasing function, then φ is a \mathcal{MT} -function. So the set of \mathcal{MT} -functions is a rich class.

In 2012, Du [9] established the following characterizations of \mathcal{MT} -functions.

Theorem 1.5 (Du [9, Theorem 2.1]). *Let $\varphi : [0, \infty) \rightarrow [0, 1]$ be a function. Then the following statements are equivalent.*

- (a) φ is an \mathcal{MT} -function.
- (b) For each $t \in [0, \infty)$, there exist $r_t^{(1)} \in [0, 1)$ and $\varepsilon_t^{(1)} > 0$ such that $\varphi(s) \leq r_t^{(1)}$ for all $s \in (t, t + \varepsilon_t^{(1)})$.
- (c) For each $t \in [0, \infty)$, there exist $r_t^{(2)} \in [0, 1)$ and $\varepsilon_t^{(2)} > 0$ such that $\varphi(s) \leq r_t^{(2)}$ for all $s \in [t, t + \varepsilon_t^{(2)}]$.
- (d) For each $t \in [0, \infty)$, there exist $r_t^{(3)} \in [0, 1)$ and $\varepsilon_t^{(3)} > 0$ such that $\varphi(s) \leq r_t^{(3)}$ for all $s \in (t, t + \varepsilon_t^{(3)})$.
- (e) For each $t \in [0, \infty)$, there exist $r_t^{(4)} \in [0, 1)$ and $\varepsilon_t^{(4)} > 0$ such that $\varphi(s) \leq r_t^{(4)}$ for all $s \in [t, t + \varepsilon_t^{(4)}]$.
- (f) For any nonincreasing sequence $\{x_n\}_{n \in \mathbb{N}}$ in $[0, \infty)$, we have $0 \leq \sup_{n \in \mathbb{N}} \varphi(x_n) < 1$.
- (g) φ is a function of contractive factor; that is, for any strictly decreasing sequence $\{x_n\}_{n \in \mathbb{N}}$ in $[0, \infty)$, we have $0 \leq \sup_{n \in \mathbb{N}} \varphi(x_n) < 1$.

In 1989, Mizoguchi and Takahashi [28] proved the following famous generalization of Nadler's fixed point theorem.

Theorem 1.6 (Mizoguchi-Takahashi's fixed point theorem [28]). *Let (X, d) be a complete metric space, $\varphi : [0, \infty) \rightarrow [0, 1)$ be a \mathcal{MT} -function and $T : X \rightarrow \mathcal{CB}(X)$ be a multivalued mapping. Assume that $\mathcal{H}(Tx, Ty) \leq \varphi(d(x, y))d(x, y)$ for all $x, y \in X$. Then $\mathcal{F}(T) \neq \emptyset$.*

In 2017, Du [13] present the following fixed point theorem which simultaneously generalizes and improves Mizoguchi-Takahashi's fixed point theorem, Nadler's fixed point theorem, Banach contraction principle, Kannan's fixed point theorem and Chatterjea's fixed point theorem.

Theorem 1.7 (Du [13, Theorem 1.7]). *Let (X, d) be a complete metric space and $T : X \rightarrow \mathcal{CB}(X)$ be a multivalued mapping. Suppose that there exists an \mathcal{MT} -function $\varphi : [0, \infty) \rightarrow [0, 1)$ such that*

$$\mathcal{H}(Tx, Ty) \leq \varphi(d(x, y)) \max \left\{ d(x, y), \frac{d(x, Tx) + d(y, Ty)}{2}, \frac{d(x, Ty) + d(y, Tx)}{2} \right\}$$

for all $x, y \in X$. Then T admits a fixed point in X .

Caristi's fixed point theorem [2] is undoubtedly one of the most valuable generalizations of Banach's contraction principle. It is well-known that the Caristi's fixed point theorem is equivalent to the Ekeland's variational principle, to the Takahashi's nonconvex minimization theorem, to the Danes' drop theorem, to the petal theorem, and to the Oettli-Théra's theorem; see, e.g., [10, 12, 16, 22, 23, 25–27, 30, 31] and references therein for more details. In 2016, Du [11] gave a new, simple and direct proof of Caristi's fixed point theorem without using Zorn's lemma, transfinite induction and any well-known principle. For more detailed information, the interested readers can refer to [11].

Theorem 1.8 (Caristi's fixed point theorem [2]). *Let (X, d) be a complete metric space and $f : X \rightarrow \mathbb{R}$ be a lower semicontinuous and bounded below function. Suppose that T is a Caristi*

type mapping on X dominated by f ; that is, $T : X \rightarrow X$ satisfies $d(x, Tx) \leq f(x) - f(Tx)$ for each $x \in X$. Then T has a fixed point in X .

In this work, we introduce the concept of (RC) -condition and present some sufficient conditions for the (RC) -condition in section 2. We show that a sequence in a metric space satisfies (RC) -condition, then it is Cauchy. Some new fixed point theorems and new simultaneous generalizations of well-known fixed point theorems for (RC) -condition are established in section 3.

2. THE CONCEPT OF (RC) -CONDITION AND RELATED RESULTS

In this paper, we introduce the concept of (RC) -condition.

Definition 2.1. Let (X, d) be a metric space. A sequence $\{x_n\}$ in X is said to have regulated contractility condition (abbreviated as (RC) -condition), if there exist a nonnegative real number $\lambda < 1$ and a proper function $h : X \rightarrow [0, \infty]$, such that

$$d(x_{n+2}, x_{n+1}) \leq \lambda d(x_{n+1}, x_n) + h(x_{n+1}) - h(x_{n+2}) \text{ for all } n \in \mathbb{N},$$

where $x_1, x_2 \in \text{Dom}(h) := \{x \in X : h(x) < \infty\}$.

The following results will play vital roles as examples of sufficient conditions for the (RC) -condition.

Theorem 2.1. Let (X, d) be a metric space, $T : X \rightarrow X$ be a selfmapping, $f : X \rightarrow (-\infty, \infty]$ be a proper bounded below function and $\kappa : (-\infty, \infty] \rightarrow [0, \infty)$ be a nondecreasing function. If T is Caristi type with respect to κ , that is

$$d(x, Tx) \leq \kappa(f(x))(f(x) - f(Tx)) \text{ for all } x \in X. \quad (2.1)$$

Then the following hold:

(a) Define a set-valued mapping $\Gamma : X \rightarrow 2^X$ (the power set of X) by

$$\Gamma(x) = \{y \in X : d(x, y) \leq \kappa(f(x))(f(x) - f(y))\} \text{ for } x \in X.$$

Then for any $u \in \text{Dom}(f)$, the sequence $\{x_n\}_{n \in \mathbb{N}}$ with $x_1 = u$ and $x_{n+1} \in \Gamma(x_n)$ satisfies (RC) -condition.

(b) For any $u \in \text{Dom}(f)$, the sequence $\{T^n u\}_{n \in \mathbb{N} \cup \{0\}}$ satisfies (RC) -condition (here, $T^0 = I$ is the identity mapping).

Proof. We first prove the conclusion (a) holds. Clearly, $\Gamma(x) \neq \emptyset$ for all $x \in X$. Let $u \in \text{Dom}(f)$ be given and let the sequence $\{x_n\}_{n \in \mathbb{N}}$ satisfy $x_1 = u$ and $x_{n+1} \in \Gamma(x_n)$. Let $\lambda = 0$ and define a proper function $h : X \rightarrow [0, \infty]$ by

$$h(x) = \kappa(f(u)) \left(f(x) - \inf_{x \in X} f(x) \right).$$

Since $x_{n+1} \in \Gamma(x_n)$, we have $f(x_{n+1}) \leq f(x_n)$ for each $n \in \mathbb{N}$ which means that $\{f(x_n)\}$ is nonincreasing. For any $n \in \mathbb{N}$, since $x_{n+2} \in \Gamma(x_{n+1})$ and κ is nondecreasing, the inequality (2.1) implies

$$\begin{aligned} d(x_{n+1}, x_{n+2}) &\leq \kappa(f(x_{n+1}))(f(x_{n+1}) - f(x_{n+2})) \\ &\leq \lambda d(x_{n+1}, x_n) + h(x_{n+1}) - h(x_{n+2}). \end{aligned}$$

So, $\{x_n\}$ satisfies (RC) -condition. Similarly, we can show that the conclusion (b) is true. \square

Theorem 2.2. Let (X, d) be a metric space, $T : X \rightarrow \mathcal{CB}(X)$ be a multivalued mapping, $f : X \rightarrow (-\infty, \infty]$ be a proper bounded below function and $D, S : X \times X \rightarrow [0, \infty)$ be two functions. Suppose that there exists an MT -function $\varphi : [0, \infty) \rightarrow [0, 1)$ such that for each $x, y \in X$, it holds

$$D(x, y) \leq \varphi(\ell(x, y))S(x, y) + f(x) - f(z) \text{ for all } z \in Tx, \quad (2.2)$$

where $\ell(x, y) = d(x, y) + f(x) - \inf_{x \in X} f(x)$ for $x, y \in X$. If a sequence $\{x_n\}$ in X satisfies $x_1 \in \text{Dom}(f)$, $x_{n+1} \in Tx_n$, $D(x_{n+1}, x_n) = d(x_{n+2}, x_{n+1})$ and $S(x_{n+1}, x_n) \leq d(x_{n+1}, x_n)$ for all $n \in \mathbb{N}$, then $\{x_n\}$ satisfies (RC) -condition.

Proof. Define a proper function $h : X \rightarrow [0, \infty]$ by $h(x) = f(x) - \inf_{x \in X} f(x)$. Then $\ell(x, y) = d(x, y) + h(x)$ and inequality (2.2) implies that, for each $x, y \in X$,

$$D(x, y) \leq \varphi(\ell(x, y))S(x, y) + h(x) - h(z) \text{ for all } z \in Tx. \quad (2.3)$$

Since $\varphi(t) < 1$ for all $t \in [0, \infty)$, we can define an MT -function $\tau : [0, \infty) \rightarrow (0, 1)$ by

$$\tau(t) = \frac{1}{2}(1 + \varphi(t)) \quad \text{for all } t \in [0, \infty).$$

Clearly, $0 \leq \varphi(t) < \tau(t) < 1$ for all $t \in [0, \infty)$. Let $\{x_n\}$ in X satisfy $x_1 \in \text{Dom}(f) = \text{Dom}(h)$, $x_{n+1} \in Tx_n$, $D(x_{n+1}, x_n) = d(x_{n+2}, x_{n+1})$ and $S(x_{n+1}, x_n) \leq d(x_{n+1}, x_n)$ for all $n \in \mathbb{N}$. Clearly, $h(x_n) < \infty$ for all $n \in \mathbb{N}$. Let

$$\xi_n = d(x_{n+1}, x_n) + h(x_{n+1}), n \in \mathbb{N}.$$

By (2.3), we have

$$d(x_{n+2}, x_{n+1}) < \tau(\xi_n)d(x_{n+1}, x_n) + h(x_{n+1}) - h(x_{n+2}) \text{ for all } n \in \mathbb{N}. \quad (2.4)$$

By (2.4), we have $(1 - \tau(\xi_n))d(x_{n+1}, x_n) \leq \xi_n - \xi_{n+1}$, which deduces $0 \leq \xi_{n+1} \leq \xi_n$ for all $n \in \mathbb{N}$. Hence the sequence $\{\xi_n\}_{n=1}^{\infty}$ is nonincreasing in $[0, \infty)$. Since τ is an MT -function, by applying Theorem 1.5, we have $0 \leq \sup_{n \in \mathbb{N}} \tau(\xi_n) < 1$. Let $\lambda := \sup_{n \in \mathbb{N}} \tau(\xi_n)$. So $\lambda \in [0, 1)$. By (2.3), we get

$$d(x_{n+2}, x_{n+1}) \leq \lambda d(x_{n+1}, x_n) + h(x_{n+1}) - h(x_{n+2}) \text{ for all } n \in \mathbb{N}.$$

Hence $\{x_n\}$ satisfies (RC) -condition. The proof is completed. \square

If we take $f(x) = 0$ for all $x \in X$ in Theorem 2.2, we obtain the following result immediately.

Corollary 2.1. Let (X, d) be a metric space, $T : X \rightarrow \mathcal{CB}(X)$ be a multivalued mapping and $D, S : X \times X \rightarrow [0, \infty)$ be two mappings. Suppose that there exists an MT -function $\varphi : [0, \infty) \rightarrow [0, 1)$ such that for each $x, y \in X$, it holds $D(x, y) \leq \varphi(d(x, y))S(x, y)$. If a sequence $\{x_n\}$ in X satisfies $x_1 \in X$ is arbitrary, $x_{n+1} \in Tx_n$, $D(x_{n+1}, x_n) = d(x_{n+2}, x_{n+1})$ and $S(x_{n+1}, x_n) \leq d(x_{n+1}, x_n)$ for all $n \in \mathbb{N}$, then $\{x_n\}$ satisfies (RC) -condition.

The following result can be derived immediately from Theorem 2.2 with $\varphi(x) = 0$ for all $x \in X$.

Corollary 2.2. Let (X, d) be a metric space, $T : X \rightarrow \mathcal{CB}(X)$ be a multivalued mapping, $f : X \rightarrow (-\infty, \infty]$ be a proper bounded below function and $D : X \times X \rightarrow [0, \infty)$ be a mapping. Suppose that for each $x, y \in X$, it holds $D(x, y) \leq f(x) - f(z)$ for all $z \in Tx$. If a sequence $\{x_n\}$ in X satisfies $x_1 \in \text{Dom}(f)$, $x_{n+1} \in Tx_n$, $D(x_{n+1}, x_n) = d(x_{n+2}, x_{n+1})$, then $\{x_n\}$ satisfies (RC) -condition.

The following result is a single-valued version of Theorem 2.2 and follows directly from Theorem 2.2.

Theorem 2.3. *Let (X, d) be a metric space, $T : X \rightarrow X$ be a self-mapping, $f : X \rightarrow (-\infty, \infty]$ be a proper bounded below function and $D, S : X \times X \rightarrow [0, \infty)$ be two mappings. Suppose that there exists an \mathcal{MT} -function $\varphi : [0, \infty) \rightarrow [0, 1)$ such that for each $x, y \in X$, it holds*

$$D(x, y) \leq \varphi(\ell(x, y))S(x, y) + f(x) - f(Tx),$$

where $\ell(x, y) = d(x, y) + f(x) - \inf_{x \in X} f(x)$ for $x, y \in X$. If a sequence $\{x_n\}$ in X satisfies $x_1 \in \text{Dom}(f)$, $x_{n+1} = Tx_n$, $D(x_{n+1}, x_n) = d(x_{n+2}, x_{n+1})$ and $S(x_{n+1}, x_n) \leq d(x_{n+1}, x_n)$ for all $n \in \mathbb{N}$, then $\{x_n\}$ satisfies (RC)-condition.

Corollary 2.3. *Let (X, d) be a metric space, $T : X \rightarrow X$ be a self-mapping and $D, S : X \times X \rightarrow [0, \infty)$ be two mappings. Suppose that there exists an \mathcal{MT} -function $\varphi : [0, \infty) \rightarrow [0, 1)$ such that for each $x, y \in X$, it holds $D(x, y) \leq \varphi(d(x, y))S(x, y)$. If a sequence $\{x_n\}$ in X satisfies $x_1 \in X$ is arbitrary, $x_{n+1} = Tx_n$, $D(x_{n+1}, x_n) = d(x_{n+2}, x_{n+1})$ and $S(x_{n+1}, x_n) \leq d(x_{n+1}, x_n)$ for all $n \in \mathbb{N}$, then $\{x_n\}$ satisfies (RC)-condition.*

Corollary 2.4. *Corollary 2.4. Let (X, d) be a metric space, $T : X \rightarrow X$ be a self-mapping, $f : X \rightarrow (-\infty, \infty]$ be a proper bounded below function and $D : X \times X \rightarrow [0, \infty)$ be a mappings. Suppose that for each $x, y \in X$, it holds $D(x, y) \leq f(x) - f(Tx)$. If a sequence $\{x_n\}$ in X satisfies $x_1 \in \text{Dom}(f)$, $x_{n+1} = Tx_n$, $D(x_{n+1}, x_n) = d(x_{n+2}, x_{n+1})$ for all $n \in \mathbb{N}$, then $\{x_n\}$ satisfies (RC)-condition.*

Theorem 2.4. *Let (X, d) be a metric space and $T : X \rightarrow X$ be a self-mapping. Suppose that*

(H) *there exists an \mathcal{MT} -function $\varphi : [0, \infty) \rightarrow [0, 1)$ such that*

$$\min\{d(Tx, Ty), d(x, Tx)\} \leq \varphi(d(x, y)) \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2} \right\}$$

for all $x, y \in X$.

Then for any $u \in X$, the sequence $\{T^n u\}_{n \in \mathbb{N} \cup \{0\}}$ satisfies (RC)-condition (here, $T^0 = I$ is the identity mapping).

Proof. Define two mappings $D, S : X \times X \rightarrow [0, \infty)$ by

$$D(x, y) = \min\{d(Tx, Ty), d(x, Tx)\}$$

and

$$S(x, y) = \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2} \right\}$$

respectively. Then, by (H), we obtain

$$D(x, y) \leq \varphi(d(x, y))S(x, y) \text{ for all } x, y \in X.$$

Let $u \in X$ be given. Define a sequence $\{x_n\}_{n \in \mathbb{N}}$ by $x_1 = u$ and $x_{n+1} = Tx_n = T^n u$ for all $n \in \mathbb{N}$. For any $n \in \mathbb{N}$, we have

$$D(x_{n+1}, x_n) = d(x_{n+2}, x_{n+1}) \text{ for all } x, y \in X. \quad (2.5)$$

and

$$S(x_{n+1}, x_n) = \max \left\{ d(x_{n+1}, x_n), d(x_{n+1}, x_{n+2}), d(x_n, x_{n+1}), \frac{d(x_n, x_{n+2})}{2} \right\}. \quad (2.6)$$

Assume there exists $j \in \mathbb{N}$ such that $d(x_{j+1}, x_j) < d(x_{j+2}, x_{j+1})$. Then, by (H), (2.5) and (2.6), we have

$$d(x_{j+2}, x_{j+1}) = D(x_{j+1}, x_j) < S(x_{j+1}, x_j) = d(x_{j+2}, x_{j+1}),$$

a contradiction. Hence it must be $d(x_{n+2}, x_{n+1}) \leq d(x_{n+1}, x_n)$ and hence we have $S(x_{n+1}, x_n) \leq d(x_{n+1}, x_n)$ for all $n \in \mathbb{N}$. By Corollary 2.3, $\{x_n\}$ satisfies (RC)-condition. The proof is completed. \square

Remark 2.1. Let T be a self-mapping on a metric space (X, d) . Then, by Theorem 2.4, for any $u \in X$, the sequence $\{T^n u\}_{n \in \mathbb{N} \cup \{0\}}$ satisfies (RC)-condition if T is Banach type or Kannan type or Chatterjea type.

3. SOME FIXED POINT THEOREMS FOR (RC)-CONDITION

The following is one of main results in this paper.

Theorem 3.1. *Let (X, d) be a metric space. If a sequence $\{x_n\}$ in X satisfies (RC)-condition, then $\{x_n\}$ is Cauchy.*

Proof. Since $\{x_n\}$ satisfies (RC)-condition, there exist a nonnegative real number $\lambda < 1$ and a proper function $h : X \rightarrow [0, \infty]$ with $x_1 \in \text{Dom}(h)$, such that

$$d(x_{n+2}, x_{n+1}) \leq \lambda d(x_{n+1}, x_n) + h(x_{n+1}) - h(x_{n+2}) \quad \text{for all } n \in \mathbb{N}. \quad (3.1)$$

Clearly, $h(x_n) < \infty$ for all $n \in \mathbb{N}$. Let $\xi_n = d(x_{n+1}, x_n) + h(x_{n+1})$, $n \in \mathbb{N}$. By (3.1), we get

$$(1 - \lambda)d(x_{n+1}, x_n) \leq d(x_{n+1}, x_n) + h(x_{n+1}) - [d(x_{n+2}, x_{n+1}) + h(x_{n+2})], \quad (3.2)$$

which deduces $0 \leq \xi_{n+1} \leq \xi_n$ for all $n \in \mathbb{N}$. Hence the sequence $\{\xi_n\}_{n=1}^\infty$ is nonincreasing in $[0, \infty)$ and

$$\ell := \lim_{n \rightarrow \infty} \xi_n = \inf_{n \in \mathbb{N}} \xi_n \text{ exists.}$$

By (3.2), we have

$$d(x_n, x_{n+1}) \leq \frac{1}{1 - \lambda}(\xi_n - \xi_{n+1}) \quad \text{for all } n \in \mathbb{N}. \quad (3.3)$$

For $m, n \in \mathbb{N}$ with $m > n$, we have from (3.3) that

$$d(x_n, x_m) \leq \sum_{j=n}^{m-1} d(x_j, x_{j+1}) = \frac{1}{1 - \lambda}(\xi_n - \xi_m).$$

Since $\lim_{n \rightarrow \infty} \xi_n = \ell$, we have $\lim_{n \rightarrow \infty} \sup\{d(x_n, x_m) : m > n\} = 0$. This prove that $\{x_n\}$ is a Cauchy sequence in X . \square

Applying Theorem 3.1, we present the following new fixed point theorem for Caristi type mappings and lsca functions.

Theorem 3.2. *Let (X, d) be a complete metric space, $f : X \rightarrow (-\infty, \infty]$ a proper lsca and bounded below function and $\kappa : (-\infty, \infty] \rightarrow (0, \infty)$ a nondecreasing function. Suppose that $T : X \rightarrow X$ is a self-mapping satisfying*

$$d(x, Tx) \leq \kappa(f(x))(f(x) - f(Tx)) \quad \text{for each } x \in X. \quad (3.4)$$

Then $\mathcal{F}(T) \neq \emptyset$. Moreover, there exists a sequence $\{x_n\}$ in X such that it satisfies (RC)-condition and converges to a fixed point v of T with $f(v) < \infty$.

Proof. Define a set-valued mapping $\Gamma : X \rightarrow 2^X$ by

$$\Gamma(x) = \{y \in X : d(x, y) \leq \kappa(f(x))(f(x) - f(y))\} \text{ for } x \in X.$$

Since $Tx \in \Gamma(x)$, we have $\Gamma(x) \neq \emptyset$ for all $x \in X$. First, we claim that for each $y \in \Gamma(x)$, we have $f(y) \leq f(x)$ and $\Gamma(y) \subseteq \Gamma(x)$. Let $y \in \Gamma(x)$ be given. Thus $d(x, y) \leq \kappa(f(x))(f(x) - f(y))$ and hence $f(y) \leq f(x)$. Let us verify $\Gamma(y) \subseteq \Gamma(x)$. Given $z \in \Gamma(y)$. Then $d(y, z) \leq \kappa(f(y))(f(y) - f(z))$. So $f(z) \leq f(y) \leq f(x)$. Let $u \in \text{Dom}(f)$. We shall construct a sequence $\{x_n\}$ in X by induction, starting with $x_1 = u$. Suppose that $x_n \in X$ is known. Then choose $x_{n+1} \in \Gamma(x_n)$ such that

$$f(x_{n+1}) \leq \inf_{z \in \Gamma(x_n)} f(z) + \frac{1}{n} \text{ for } n \in \mathbb{N}. \quad (3.5)$$

Applying Theorem 2.1 (a), we know that $\{x_n\}$ satisfies (RC) -condition. Hence, by Theorem 3.1, $\{x_n\}$ is a Cauchy sequence in X . By the completeness of X , there exists $v \in X$ such that $x_n \rightarrow v$ as $n \rightarrow \infty$. We now verify $v \in \mathcal{F}(T)$. For any $n \in \mathbb{N}$, since $x_{n+1} \in \Gamma(x_n)$, we have

$$d(x_n, x_{n+1}) \leq \kappa(f(x_n))(f(x_n) - f(x_{n+1})), \quad (3.6)$$

and hence

$$f(x_{n+1}) \leq f(x_n). \quad (3.7)$$

Since f is bounded below,

$$\xi := \lim_{n \rightarrow \infty} f(x_n) = \inf_{n \in \mathbb{N}} f(x_n) \text{ exists.} \quad (3.8)$$

Since f is lsca, by taking into account (3.7) and (3.8), we get

$$f(v) \leq \lim_{n \rightarrow \infty} f(x_n) = \xi \leq f(x_j) < \infty \text{ for all } j \in \mathbb{N}. \quad (3.9)$$

We claim that $\bigcap_{n=1}^{\infty} \Gamma(x_n) = \{v\}$. Let $n \in \mathbb{N}$ be fixed. For $m > n$ with $m, n \in \mathbb{N}$, since κ is nondecreasing, by (3.6), (3.7) and (3.9), we obtain

$$d(x_n, x_m) \leq \sum_{j=n}^{m-1} d(x_j, x_{j+1}) \leq \kappa(f(x_n))(f(x_n) - f(v)). \quad (3.10)$$

Since $x_m \rightarrow v$ as $m \rightarrow \infty$, by (3.10), we obtain $d(x_n, v) \leq \kappa(f(x_n))(f(x_n) - f(v))$ for all $n \in \mathbb{N}$, which shows $v \in \bigcap_{n=1}^{\infty} \Gamma(x_n)$. Hence $\bigcap_{n=1}^{\infty} \Gamma(x_n) \neq \emptyset$ and $\Gamma(v) \subseteq \bigcap_{n=1}^{\infty} \Gamma(x_n)$. For any $w \in \bigcap_{n=1}^{\infty} \Gamma(x_n)$, taking into account (3.5) and (3.7), we have

$$\begin{aligned} d(x_n, w) &\leq \kappa(f(x_n))(f(x_n) - f(w)) \\ &\leq \kappa(f(x_1)) \left(f(x_n) - \inf_{z \in \Gamma(x_n)} f(z) \right) \\ &\leq \kappa(f(x_1)) \left(f(x_n) - f(x_{n+1}) + \frac{1}{n} \right) \end{aligned}$$

for all $n \in \mathbb{N}$. Let $\beta_n = \kappa(f(x_1)) \left(f(x_n) - f(x_{n+1}) + \frac{1}{n} \right)$, $n \in \mathbb{N}$. So $\lim_{n \rightarrow \infty} \beta_n = 0$ and hence $\lim_{n \rightarrow \infty} d(x_n, w) = 0$. This shows that $x_n \rightarrow w$ as $n \rightarrow \infty$. By the uniqueness of limit of a sequence, we have $w = v$. So we prove $\bigcap_{n=1}^{\infty} \Gamma(x_n) = \{v\}$. Since $\Gamma(v) \neq \emptyset$ and

$$\Gamma(v) \subseteq \bigcap_{n=1}^{\infty} \Gamma(x_n) = \{v\}$$

we get $\Gamma(v) = \{v\}$. Since $Tv \in \Gamma(v)$, it must be $Tv = v$. Therefore T has a fixed point v in X . Clearly, $f(v) < \infty$. The proof is completed. \square

Now, we establish the following new fixed point theorem which generalizes and improves Mizoguchi-Takahashi's fixed point theorem, Kannan's fixed point theorem and Chatterjea's fixed point theorem simultaneously.

Theorem 3.3. *Let (X, d) be a complete metric space and $T : X \rightarrow CB(X)$ be a multivalued mapping. Define two mapping $D, S : X \times X \rightarrow [0, \infty)$ by*

$$D(x, y) = \min\{\mathcal{H}(Tx, Ty), d(x, Tx)\}$$

and

$$S(x, y) = \max \left\{ d(x, y), \frac{d(x, Tx) + d(y, Ty)}{2}, \frac{d(x, Ty) + d(y, Tx)}{2} \right\} \text{ for } x, y \in X.$$

respectively. Suppose that there exists an \mathcal{MT} -function $\varphi : [0, \infty) \rightarrow [0, 1)$ such that

$$D(x, y) \leq \varphi(d(x, y))S(x, y) \quad \text{for all } x, y \in X. \quad (3.11)$$

Then T admits a fixed point in X . Moreover, there exists a sequence $\{x_n\}$ in X such that it satisfies (RC)-condition and converges to a fixed point v of T .

Proof. Since $\varphi(t) < 1$ for all $t \in [0, \infty)$, we can define a function $\tau : [0, \infty) \rightarrow (0, 1)$ by

$$\tau(t) = \frac{1}{2}(1 + \varphi(t)) \quad \text{for all } t \in [0, \infty).$$

Clearly, $0 \leq \varphi(t) < \tau(t) < 1$ for all $t \in [0, \infty)$. Thus, by (3.11), we obtain

$$D(x, y) < \tau(d(x, y))S(x, y) \quad \text{for all } x, y \in X.$$

Let $z \in X$ be given. Take $x_1 = z \in X$ and choose $x_2 \in Tx_1$. If $x_2 = x_1$, then $x_1 \in Tx_1$ and we are done. Otherwise, if $x_2 \neq x_1$, then $d(x_2, x_1) > 0$. Since $D(x_2, x_1) = d(x_2, Tx_2)$ and

$$\begin{aligned} S(x_2, x_1) &= \max \left\{ d(x_2, x_1), \frac{d(x_2, Tx_2) + d(x_1, Tx_1)}{2}, \frac{d(x_1, Tx_2)}{2} \right\} \\ &\leq \max \left\{ d(x_2, x_1), \frac{d(x_2, Tx_2) + d(x_1, x_2)}{2}, \frac{d(x_1, Tx_2)}{2} \right\}, \end{aligned}$$

by (3.11), we have

$$d(x_2, Tx_2) < \tau(d(x_2, x_1)) \max \left\{ d(x_2, x_1), \frac{d(x_2, Tx_2) + d(x_1, x_2)}{2}, \frac{d(x_1, Tx_2)}{2} \right\}.$$

Hence there exists $x_3 \in Tx_2$ such that

$$d(x_2, x_3) < \tau(d(x_2, x_1)) \max \left\{ d(x_2, x_1), \frac{d(x_2, x_3) + d(x_1, x_2)}{2}, \frac{d(x_1, x_3)}{2} \right\}. \quad (3.12)$$

Assume $d(x_2, x_1) < d(x_3, x_2)$. Thus we have

$$\max \left\{ d(x_2, x_1), \frac{d(x_2, x_3) + d(x_1, x_2)}{2}, \frac{d(x_1, x_3)}{2} \right\} = \frac{d(x_2, x_3) + d(x_1, x_2)}{2}. \quad (3.13)$$

So, by (3.12) and (3.13), we get

$$d(x_2, x_3) < \frac{1}{2}(d(x_2, x_3) + d(x_1, x_2))$$

which implies $d(x_2, x_3) < d(x_2, x_1)$, a contradiction. Hence it must be $d(x_3, x_2) \leq d(x_2, x_1)$ and (3.12) deduces $d(x_2, x_3) < \tau(d(x_2, x_1))d(x_2, x_1)$. If $x_3 = x_2$, then $x_2 \in Tx_2$ and the desired conclusion is proved. Assume $x_3 \neq x_2$. By (3.11) again, we obtain

$$d(x_3, Tx_3) < \tau(d(x_3, x_2)) \max \left\{ d(x_3, x_2), \frac{d(x_3, Tx_3) + d(x_2, x_3)}{2}, \frac{d(x_2, Tx_3)}{2} \right\}.$$

So there exists $x_4 \in Tx_3$ such that

$$d(x_3, x_4) < \tau(d(x_3, x_2)) \max \left\{ d(x_3, x_2), \frac{d(x_3, x_4) + d(x_2, x_3)}{2}, \frac{d(x_2, x_4)}{2} \right\}.$$

Following a similar argument as above, we obtain $d(x_3, x_4) < \tau(d(x_3, x_2))d(x_3, x_2)$. Hence, by induction, we can obtain a sequence $\{x_n\}_{n \in \mathbb{N}}$ satisfying the following: for each $n \in \mathbb{N}$,

- (i) $x_{n+1} \in Tx_n$ with $x_n \neq x_{n-1}$;
- (ii) $d(x_{n+2}, x_{n+1}) < \tau(d(x_{n+1}, x_n))d(x_{n+1}, x_n)$.

Since $\tau(t) < 1$ for all $t \in [0, \infty)$, by (ii), we know that the sequence $\{d(x_{n+1}, x_n)\}_{n \in \mathbb{N}}$ is strictly decreasing in $[0, \infty)$. Since φ is an \mathcal{MT} -function, by applying Theorem 1.5, we have

$$0 \leq \sup_{n \in \mathbb{N}} \varphi(d(x_{n+1}, x_n)) < 1$$

and hence deduces

$$0 < \sup_{n \in \mathbb{N}} \tau(d(x_{n+1}, x_n)) = \frac{1}{2} \left[1 + \sup_{n \in \mathbb{N}} \varphi(d(x_{n+1}, x_n)) \right] < 1.$$

Let $\lambda := \sup_{n \in \mathbb{N}} \tau(d(x_{n+1}, x_n))$. So $\lambda \in (0, 1)$. Define a proper function $h : X \rightarrow [0, \infty]$ by $h(x) = 0$ for all $x \in X$. Then for any $n \in \mathbb{N}$, by (ii) again, we have

$$\begin{aligned} d(x_{n+2}, x_{n+1}) &< \tau(d(x_{n+1}, x_n))d(x_{n+1}, x_n) \\ &\leq \gamma d(x_{n+1}, x_n) + h(x_{n+1}) - h(x_{n+2}) \quad \text{for all } n \in \mathbb{N}. \end{aligned}$$

Hence $\{x_n\}$ satisfies (RC)-condition. Using Theorem 3.1, we know that $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in X . By the completeness of X , there exists $v \in X$ such that $x_n \rightarrow v$ as $n \rightarrow \infty$. In order to finish the proof, it is sufficient to show $v \in \mathcal{F}(T)$. For any $n \in \mathbb{N}$, by (3.11), we have

$$\begin{aligned} &\min\{d(x_{n+1}, Tv), d(v, Tv)\} \\ &\leq \min\{\mathcal{H}(Tx_n, Tv), d(v, Tv)\} \\ &\leq \varphi(d(x_n, v)) \max \left\{ d(x_n, v), \frac{d(x_n, x_{n+1}) + d(v, Tv)}{2}, \frac{d(x_n, Tv) + d(v, x_{n+1})}{2} \right\} \end{aligned}$$

for all $n \in \mathbb{N}$. Since the function $x \mapsto d(x, Tv)$ is continuous and $x_n \rightarrow v$ as $n \rightarrow \infty$, by taking the limit as $n \rightarrow \infty$ on both sides of the last inequality, we acquire

$$d(v, Tv) \leq \frac{1}{2}d(v, Tv)$$

which implies $d(v, Tv) = 0$. Therefore we obtain $v \in \mathcal{F}(T)$. The proof is completed. \square

Remark 3.1. Theorem 1.7 is a special case of Theorem 3.3.

The following new fixed point theorem is a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem and Chatterjea's fixed point theorem.

Theorem 3.4. *Let (X, d) be a complete metric space and $T : X \rightarrow X$ be a self-mapping. Define two mapping $D, S : X \times X \rightarrow [0, \infty)$ by*

$$D(x, y) = \min\{d(Tx, Ty), d(x, Tx)\}$$

and

$$S(x, y) = \max \left\{ d(x, y), \frac{d(x, Tx) + d(y, Ty)}{2}, \frac{d(x, Ty) + d(y, Tx)}{2} \right\}$$

respectively. Suppose that there exists an \mathcal{MT} -function $\varphi : [0, \infty) \rightarrow [0, 1)$ such that

$$D(x, y) \leq \varphi(d(x, y))S(x, y) \quad \text{for all } x, y \in X. \quad (3.14)$$

Then $\mathcal{F}(T) \neq \emptyset$. Moreover, for any $u \in X$, the sequence $\{T^n u\}_{n \in \mathbb{N} \cup \{0\}}$ satisfies (RC)-condition and converges to a fixed point of T .

Proof. Let $u \in X$ be given. Define a sequence $\{x_n\}_{n \in \mathbb{N}}$ by $x_1 = u$ and $x_{n+1} = Tx_n = T^n u$ for all $n \in \mathbb{N}$. Clearly, the condition (H) in Theorem 2.4 holds from (3.14). By Theorem 2.4, the sequence $\{T^n u\}_{n \in \mathbb{N} \cup \{0\}}$ satisfies (RC)-condition. Applying Theorem 3.1, $\{x_n\}$ is a Cauchy sequence in X . By the completeness of X , there exists $v \in X$ such that $x_n \rightarrow v$ as $n \rightarrow \infty$. Now, we verify that $v \in \mathcal{F}(T)$. For any $n \in \mathbb{N}$, by (3.14), we have

$$\begin{aligned} & \min\{d(Tv, x_{n+1}), d(v, Tv)\} \\ & \leq \varphi(d(v, x_n)) \max \left\{ d(v, x_n), \frac{d(v, Tv) + d(x_n, x_{n+1})}{2}, \frac{d(v, x_{n+1}) + d(x_n, Tv)}{2} \right\}. \end{aligned}$$

Since $x_n \rightarrow v$ as $n \rightarrow \infty$, by taking the limit as $n \rightarrow \infty$ on both sides of the last inequality, we get

$$d(v, Tv) \leq \frac{1}{2}d(v, Tv)$$

which implies $d(v, Tv) = 0$. Therefore we obtain $v \in \mathcal{F}(T)$. The proof is completed. \square

Theorem 3.5. *Let (X, d) be a complete metric space and $T : X \rightarrow X$ be a self-mapping. Suppose that there exists an \mathcal{MT} -function $\varphi : [0, \infty) \rightarrow [0, 1)$ such that*

$$d(Tx, Ty) \leq \varphi(d(x, y)) \max \left\{ d(x, y), \frac{d(x, Tx) + d(y, Ty)}{2}, \frac{d(x, Ty) + d(y, Tx)}{2} \right\} \quad (3.15)$$

for all $x, y \in X$. Then T admits a unique fixed point v in X . Moreover, for any $u \in X$, the sequence $\{T^n u\}_{n \in \mathbb{N} \cup \{0\}}$ satisfies (RC)-condition and converges to v .

Proof. Clearly, (3.15) implies (3.14). Applying Theorem 3.4, we have $\mathcal{F}(T) \neq \emptyset$. We claim that $\mathcal{F}(T)$ is a singleton set. Assume there exist $w, v \in \mathcal{F}(T)$ with $w \neq v$. Thus $d(w, v) > 0$. By (3.15), we have $d(w, v) = d(Tw, Tv) \leq \varphi(d(w, v))d(w, v) < d(w, v)$, a contradiction. Hence we prove that $\mathcal{F}(T)$ is a singleton set, say $\mathcal{F}(T) = \{v\}$. Therefore T has a unique fixed point v in X . Moreover, for any $u \in X$, by using Theorem 3.4 again, the sequence $\{T^n u\}_{n \in \mathbb{N} \cup \{0\}}$ satisfies (RC)-condition and converges to v . The proof is completed. \square

4. CONCLUSIONS

For more than a century, fixed point theory has been a fascinating theory in various fields including linear and nonlinear analysis, optimization, differential equations, economics, game theory, dynamical systems theory, control theory, signal and image processing, and so forth. In this paper, the concept of (RC) -condition and its sufficient conditions are studied. We show that a sequence in a metric space satisfies (RC) -condition, then it is Cauchy. We establish some new fixed point theorems and new simultaneous generalizations of well-known fixed point theorems for (RC) -condition.

Acknowledgements

The author would like to express his hearty thanks to the anonymous referees for their valuable suggestions and comments. The author was partially supported by Grant No. NSTC 113-2115-M-017-004 of the National Science and Technology Council of the Republic of China.

REFERENCES

- [1] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, *Fundamenta Mathematicae* 3 (1922) 133-181.
- [2] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, *Trans. Amer. Math. Soc.* 215 (1976), 241-251.
- [3] S.K. Chatterjea, Fixed-point theorems, *C.R. Acad. Bulgare Sci.*, 25 (1972), 727-730.
- [4] Y. Chen, Y.J. Cho, L. Yang, Note on the results with lower semi-continuity, *Bull. Korean Math. Soc.* 39(4)(2002) 535-541.
- [5] W.-S. Du, On some nonlinear problems induced by an abstract maximal element principle, *J. Math. Anal. Appl.* 347 (2008) 391-399.
- [6] W.-S. Du, Some new results and generalizations in metric fixed point theory, *Nonlinear Analysis, Theory, Methods & Applications* 73 (2010) 1439-1446.
- [7] W.-S. Du, Critical point theorems for nonlinear dynamical systems and their applications, *Fixed Point Theory and Applications*, Volume 2010, Article ID 246382, 16 pages, doi:10.1155/2010/246382.
- [8] W.-S. Du, A note on cone metric fixed point theory and its equivalence, *Nonlinear Anal.* 72 (2010), 2259-2261.
- [9] W.-S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, *Topology and its Applications* 159 (2012) 49-56.
- [10] W.-S. Du, On Caristi-type mappings without lower semicontinuity assumptions, *Journal of Fixed Point Theory and Applications* 17(4) (2015) 733-752.
- [11] W.-S. Du, A direct proof of Caristi's fixed point theorem, *Applied Mathematical Sciences* 10(46) (2016) 2289-2294.
- [12] W.-S. Du, On generalized Caristi's fixed point theorem and its equivalence, *Nonlinear Analysis and Differential Equations* 4(13) (2016) 635-644.
- [13] W.-S. Du, Simultaneous generalizations of fixed point theorems of Mizoguchi-Takahashi type, Nadler type Banach type, Kannan type and Chatterjea type, *Nonlinear Analysis and Differential Equations* 5(4) (2017) 171-180.
- [14] W.-S. Du, E. Karapinar, Z. He, Some simultaneous generalizations of well-known fixed point theorems and their applications to fixed point theory, *Mathematics* 6 (2018), 117.
- [15] W.-S. Du, Existence and uniqueness of zeros for vector-valued functions with K -adjustability convexity and their applications, *Mathematics* 7 (2019), 809.
- [16] W.-S. Du, Some generalizations of fixed point theorems of Caristi type and Mizoguchi-Takahashi type under relaxed conditions, *Bulletin of the Brazilian Mathematical Society, New Series*, 50 (2019) 603-624.

- [17] W.-S. Du, Minimization of functionals with adjustability quasiconvexity and its applications to eigenvector problem and fixed point theory, *Journal of Nonlinear and Convex Analysis* 22 (2021) 1389-1398.
- [18] W.-S. Du, New existence theorems for vector-valued functions with essential vectorial semicontinuity and adjustability convexity, *Commun. Optim. Theory* 2025 (2025) 6.
- [19] K. Goebel, W.A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [20] H. Huang, W.-S. Du, J.-Y. Chen, On \mathbb{BID} -cone b -metric spaces over Banach algebras: New topological properties and fixed point theorems, *Mathematics* 10 (2022) 1425.
- [21] S.-Y. Huang, W.-S. Du, New fixed point theorems for generalized Meir-Keeler type nonlinear mappings with applications to fixed point theory, *Symmetry* 16 (2024), 1088.
- [22] D.H. Hyers, G. Isac and Th. M. Rassias, *Topics in Nonlinear Analysis and Applications*, World Scientific Publ. Co., Singapore, New Jersey, London, 1997.
- [23] J. R. Jachymski, Caristi's fixed point theorem and selections of set-valued contractions, *J. Math. Anal. Appl.* 227 (1998) 55–67.
- [24] R. Kannan, Some results on fixed point - II, *Amer. Math. Monthly*, 76 (1969), 405-408.
- [25] M.A. Khamsi, W.A. Kirk, *An introduction to metric spaces and fixed point theory*, Pure and Applied Mathematics, Wiley-Interscience, New York, 2001.
- [26] W.A. Kirk, N. Shahzad, *Fixed point theory in distance spaces*, Springer, Cham, 2014.
- [27] L.-J. Lin, W.-S. Du, Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, *J. Math. Anal. Appl.* 323 (2006) 360-370.
- [28] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, *J. Math. Anal. Appl.* 141 (1989) 177–188.
- [29] S.B. Nadler, Jr., Multi-valued contraction mappings, *Pacific J. Math.*, 30 (1969) 475-488.
- [30] S. Reich, A.J. Zaslavski, *Genericity in nonlinear analysis*, Springer, New York, 2014.
- [31] W. Takahashi, *Nonlinear Functional Analysis*, Yokohama Publishers, Yokohama, Japan, 2000.
- [32] A. Uderzo, Fixed points for directional multi-valued $k(\cdot)$ -contractions, *J. Global Optim.* 31 (2005) 455-469.