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1. INTRODUCTION AND PRELIMINARIES

Let (X,d) be a metric space. For x € X and a subset A of X, define d(x,A) = infycad(x,y).
Denote by .4 (X) the family of all nonempty subsets of X and ¥’ %(X) the class of all nonempty
closed and bounded subsets of X. A function 57 : € Z(X) x € B(X) — [0,0) defined by

€ (A,B) = max {supd(x,A),supd(x,B)}
xXEB xXEA
is said to be the Hausdorff metric on ¥’ %(X) induced by the metric d on X. A point v in X
is said to be a fixed point of of a mapping T if v € Tv (when T : X — A4/(X) is a multivalued
mapping) or Tv =v (when T : X — X is a single-valued mapping). The set of fixed points of
T is denoted by .% (T'). The symbols N and R are used to denote the sets of positive integers
and real numbers, respectively. An extended real valued function f : X — (—oo, 0| is said to be
lower semicontinuous (in short /.s.c.) (resp. upper semicontinuous, in short u.s.c.) at v € X if for

any sequence {x,} in X with x,, — v, we have f(v) < lirr_1>inf f(xn) (resp. f(v) > limsup f(x,)
n—oo n—c0
). The function f is called to be L.s.c. (resp. u.s.c.) on X if f is l.s.c. (resp. u.s.c.) at every

point of X. The function f is said to be proper if f # . An extended real valued function
g:X — (—oo,00] is said to be
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(1) lower semicontinuous from above (abbreviated as lIsca) at v € X [4,27] if for any se-
quence {x,} in X with x, — v and g(x,) > g(x,+1) for all n € N imply that g(v) <
nlgrolo g(xn)

(i1) upper semicontinuous from below (abbreviated as uscb) at v € X [27] if for any se-
quence {x,} in X with x, — v and g(x,) < g(x,41) for all n € N imply that g(v) >
lim g(x,) .
n—yoo

It is obvious that a function is Ls.c. (resp. u.s.c.) then it is Isca (resp. uscb), but the reverse is
not true (see [4, Example 1.3]).

Theorem 1.1 (Banach contraction principle [1]). Let (X,d) be a complete metric space and
T : X — X be a self-mapping. Assume that there exists a nonnegative number y < 1 such that
d(T (x),T(y)) < vd(x,y) for all x,y € X. Then T admits a unique fixed point in X.

Since the establishment of the famous Banach contraction principle, fixed point theory and
its applications have developed rapidly in the past one hundred years, spawning many academic
papers to study its promotion and application in nonlinear analysis, applied mathematics and
other fields. A large number of authors devoted their attention to investigating generalizations in
various different directions of the well-known fixed point theorems; see [2-32] and references
therein.

In 1969, Kannan [24] established his interesting fixed point theorem as follows:

Theorem 1.2 (Kannan’s fixed point theorem [24]). Let (X,d) be a complete metric space and
T : X — X be a self-mapping on X. Suppose that there exists Yy € [0, %) such that

d(Tx,Ty) <y(d(x,Tx)+d(y,Ty)) forallx,ycX.
Then T admits a unique fixed point in X.

In 1972, Chatterjea established so-called the Chatterjea’s fixed point theorem [3] as follows:
Theorem 1.3 (Chatterjea’s fixed point theorem [3]). Ler (X,d) be a complete metric space
and T : X — X be a self-mapping on X. Suppose that there exists 'y € [0, %) such that

d(Tx,Ty) < y(d(x,Ty)+d(y,Tx)) for all x,y € X.
Then T admits a unique fixed point in X.
Nadler’s fixed point theorem [29] is a well-known generalization of Banach contraction prin-

ciple, which extends Banach contraction principle from single-valued mappings to multivalued
mappings.

Theorem 1.4 (Nadler’s fixed point theorem [29]). Let (X,d) be a complete metric space and
T :X — €A(X) be a k-contraction; that is, there exists a nonnegative number k < 1 such that
J(Tx,Ty) < kd(x,y) for all x,y € X. Then F(T) #0.

Definition 1.1 (see [9, Definition 1.1]). A function ¢ : [0,0) — [0, 1) is said to be a .# .7 -
function (or Z- function) if 1 > limsup @(s) := inf sup ¢@(s) forall s € [0,00).
st e>0r<s<t+e
Clearly, if ¢ : [0,00) — [0, 1) is a nondecreasing function or a nonincreasing function, then ¢
is a ./ .7 -function. So the set of .# .7 -functions is a rich class.
In 2012, Du [9] established the following characterizations of .# .7 -functions.



SOME SIMULTANEOUS GENERALIZATIONS 3

Theorem 1.5 (Du [9, Theorem 2.1]). Let ¢ : [0,00) — [0, 1) be a function. Then the following
statements are equivalent.
(a) @ is an M T -function.
(b) For each t € [0,00), there exist rl(l) €[0,1) and 8,(1) > 0 such that @(s) < rt(l) for all
se(t,r+e).
(c) For each t € [0,00), there exist r,(2) € [0,1) and 8,(2) > 0 such that ¢(s) < rt(z) for all
seltt+e?).
(d) For each t € [0,0), there exist r,(3) € [0,1) and Sz(3) > 0 such that ¢(s) < rt(S) for all
se i+
(e) For each t € [0,00), there exist r,(4) € [0,1) and 8,(4) > 0 such that ¢(s) < rt(4) for all
seftr+e).

(f) For any nonincreasing sequence {x}ncn in [0,00), we have 0 < sup @(x,) < 1.
neN
(g) @ is afunction of contractive factor; that is, for any strictly decreasing sequence {x, }neN

in [0,00), we have 0 < sup @(x,) < 1.
neN
In 1989, Mizoguchi and Takahashi [28] proved the following famous generalization of Nadler’s
fixed point theorem.

Theorem 1.6 (Mizoguchi-Takahashi’s fixed point theorem [28]). Let (X,d) be a complete
metric space, @ : [0,00) — [0,1) be a A T -function and T : X — € A(X) be a multivalued
mapping. Assume that 7€ (Tx,Ty) < @(d(x,y))d(x,y) for all x,y € X. Then . (T) # 0.

In 2017, Du [13] present the following fixed point theorem which simultaneously generalizes
and improves Mizoguchi-Takahashi’s fixed point theorem, Nadler’s fixed point theorem, Ba-
nach contraction principle, Kannan’s fixed point theorem and Chatterjea’s fixed point theorem.

Theorem 1.7 (Du [13, Theorem 1.7]). Let (X,d) be a complete metric space and T : X —

CAB(X) be a multivalued mapping. Suppose that there exists an M T -function @ : [0,00) —
[0, 1) such that

H(Tx,Ty) < (p(d(x,y))max{a’(x,y)7 d(x,Tx)+d(y,Ty) d(x,Ty)+d(y,Tx) }

2 ’ 2
forall x,y € X. Then T admits a fixed point in X.

Caristi’s fixed point theorem [2] is undoubtedly one of the most valuable generalizations
of Banach’s contraction principle. It is well-known that the Caristi’s fixed point theorem is
equivalent to the Ekeland’s variational principle, to the Takahashi’s nonconvex minimizationth
eorem, to the Danes’ drop theorem, to the petal theorem, and to the Oettli-Théra’s theorem:;
see, e.g., [10, 12, 16, 22,23,25-27,30,31] and references therein for more details. In 2016,
Du [11] gave a new, simple and direct proof of Caristi’s fixed point theorem without using Zorn’s
lemma, transfinite induction and any well-known principle. For more detailed information, the
interested readers can refer to [11].

Theorem 1.8 (Caristi’s fixed point theorem [2]). Letr (X,d) be a complete metric space and
f:X = R be alower semicontinuous and bounded below function. Suppose that T is a Caristi
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type mapping on X dominated by f; that is, T : X — X satisfies d(x,Tx) < f(x) — f(Tx) for
each x € X. Then T has a fixed point in X.

In this work, we introduce the concept of (RC)-condition and present some sufficient condi-
tions for the (RC) -condition in section 2. We show that a sequence in a metric space satisfies
(RC)-condition, then it is Cauchy. Some new fixed point theorems and new simultaneous gen-
eralizations of well-known fixed point theorems for (RC)-condition are established in section
3.

2. THE CONCEPT OF (RC)-CONDITION AND RELATED RESULTS
In this paper, we introduce the concept of (RC)-condition.

Definition 2.1. Let (X,d) be a metric space. A sequence {x,} in X is said to have regulated
contractility condition (abbreviated as (RC)-condition), if there exist a nonnegative real number
A < 1 and a proper function i : X — [0, 0], such that
d(xpi2,%n+1) < Ad(xpp1,%n) +h(xX441) — h(xp42) foralln € N,
where x1,x; € Dom(h) :={x € X : h(x) < eo}.
The following results will play vital roles as examples of sufficient conditions for the (RC)

-condition.

Theorem 2.1. Let (X,d) be a metric space, T : X — X be a selfimapping, f: X — (—oo,00| be
a proper bounded below function and K : (—oo,00] — [0,00) be a nondecreasing function. If T is
Caristi type with respect to K, that is

d(x,Tx) < x(f(x))(f(x)—f(Tx)) forallxecX. (2.1)
Then the following hold:
(a) Define a set-valued mapping T : X — 2X (the power set of X ) by

I(x) ={yeX:d(x,y) <k(f(x)(f(x) = f(y))} forxeX.
Then for any u € Dom(f), the sequence {x},cny with x; = u and x,+ € I'(x,) satisfies
(RC)-condition.
(b) For any u € Dom(f), the sequence {T"u},cnuqoy satisfies (RC)-condition (here, T0=1
is the identity mapping).
Proof. We first prove the conclusion (a) holds. Clearly, I'(x) # @ for all x € X. Let u € Dom(f)

be given and let the sequence {x,},cn satisfy x; = v and x,,+1 € ['(x;,). Let A = 0 and define a
proper function 4 : X — [0, 0] by
h(x) = (7)) (100~ int 79
xeX
Since x,+1 € I['(x,), we have f(x,+1) < f(x,) for each n € N which means that {f(x,)} is
nonincreasing. For any n € N, since x,,4» € I'(x,11) and x is nondecreasing, the inequality
(2.1) implies
d(xnt1,%42) < K (1)) (f (1) — f (n42))
< Ad(Xnt1,%n) +h(Xn41) — A(Xn42).

So, {x,} satisfies (RC)-condition. Similarly, we can show that the conclusion (b) is true. UJ
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Theorem 2.2. Let (X,d) be a metric space, T : X — € AB(X) be a multivalued mapping,
f: X — (—o0,00| be a proper bounded below function and D, S : X x X — [0,0) be two functions.
Suppose that there exists an MT -function ¢ :[0,00) — [0, 1) such that for each x,y € X, it holds

D(x,y) < @(£(x,))S(x,y) + f(x) — f(z) forallz € Tx, (2.2)
where {(x,y) = d(x,y) + f(x) —;g}gf(x) for x,y € X. If a sequence {x,} in X satisfies x| €
Dom(f), xy+1 € Txp, D(Xy11,%0) = d(Xp42,%n+1) and S(xp11,%) < d(Xp+1,%n) for all n € N,
then {x,} satisfies (RC)-condition.

Proof. Define a proper function & : X — [0,00] by h(x) = f(x) — ;Iel)f( f(x). Then {(x,y) =
d(x,y) + h(x) and inequality (2.2) implies that, for each x,y € X,

D(x,y) < @(€(x,y))S(x,y) + h(x) —h(z) forall z € Tx. (2.3)

Since ¢(t) < 1 for all t € [0,00), we can define an .# .7 -function 7 : [0,0) — (0, 1) by

o) = % (1+9(t) forallte [0,00).

Clearly, 0 < ¢(t) < t(¢) < 1 for all t € [0,0). Let {x,} in X satisfy x; € Dom(f) = Dom(h),
Xnt1 € Txny D(Xpt1,%n) = d(Xp42,%n+1) and S(x,41,%,) < d(xp11,%,) for all n € N. Clearly,
h(x,) < oo forall n € N. Let

En =d(xut1,%0) + h(xpy1), n € N.
By (2.3), we have
d(xXp12,Xn+1) < T(Ep)d (xps1,%0) +h(xp11) — h(xy52) foralln e N. (2.4)

By (2.4), we have (1 —1(&,))d (xp+1,%1) < &y — &Epy1, which deduces 0 < &, <&, foralln e
N. Hence the sequence {&,}’’ , is nonincreasing in [0,c). Since 7 is an .# .7 -function, by
applying Theorem 1.5, we have 0 < sup7(§,) < 1. Let A :=supt(§,). So A € [0,1). By (2.3),

neN neN
we get
d(Xp12,Xn+1) < Ad(Xpt1,%0) +h(xps1) —h(x442) foralln € N.
Hence {x,} satisfies (RC)-condition. The proof is completed. 0

If we take f(x) = 0 for all x € X in Theorem 2.2, we obtain the following result immediately.

Corollary 2.1. Let (X,d) be a metric space, T : X — € AB(X) be a multivalued mapping
and D,S : X x X — [0,00) be two mappings. Suppose that there exists an M T -function @ :
[0,00) — [0, 1) such that for each x,y € X, it holdsD(x,y) < @(d(x,y))S(x,y). If a sequence {x,}
in X satisfies x; € X is arbitrary, x,11 € Txp, D(xp11,%,) = d(Xpi2,%p+1) and S(x,11,%,) <
d(Xn+1,Xy) for all n € N, then {x,} satisfies (RC)-condition.

The following result can be derived immediately from Theorem 2.2 with ¢(x) = 0 for all
xeX.

Corollary 2.2. Let (X,d) be a metric space, T : X — € HB(X) be a multivalued mapping,
f X — (—o0,00] be a proper bounded below function and D : X X X — [0,0) be a mapping.
Suppose that for each x,y € X, it holds D(x,y) < f(x) — f(z) for all z € Tx. If a sequence
{xn} in X satisfies x; € Dom(f), xp+1 € Txp, D(Xpt1,%n) = d(Xps2,X%011), then {x,} satisfies
(RC)-condition.
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The following result is a single-valued version of Theorem 2.2 and follows directly from
Theorem 2.2.

Theorem 2.3. Let (X,d) be a metric space, T : X — X be a self-mapping, f: X — (—oo,00| be a
proper bounded below function and D,S : X x X — [0,0) be two mappings. Suppose that there
exists an M T -function @ : [0,00) — [0, 1) such that for each x,y € X, it holds

D(x,y) < @(£(x,))S(x,y) + f(x) = f(Tx),
where ((x,y) = d(x,y)+ f(x) — 12}f(f(x) for x,y € X. If a sequence {x,} in X satisfies x| €

Dom(f), xy+1 = Txp, D(Xpt1,%n) = d(Xp12,Xn+1) and S(xXp+1,%n) < d(Xp41,%,) for all n € N,
then {x,} satisfies (RC)-condition.

Corollary 2.3. Let (X,d) be a metric space, T : X — X be a self-mapping and D,S : X x X —
[0,00) be two mappings. Suppose that there exists an .# 7 -function @ : [0,00) — [0,1) such
that for each x,y € X, it holds D(x,y) < @(d(x,y))S(x,y). If a sequence {x,} in X satisfies
x1 € X is arbitrary, x,11 = Txp, D(Xpi1,%n) = d(Xp12,%n+1) and S(xp11,%n) < d(Xp41,%n) for
all n € N, then {x,} satisfies (RC)-condition.

Corollary 2.4. Corollary 2.4. Let (X,d) be a metric space, T : X — X be a self-mapping,
f X — (—o0,00| be a proper bounded below function and D : X x X — [0,00) be a mappings.
Suppose that for each x,y € X, it holds D(x,y) < f(x) — f(Tx). If a sequence {x,} in X satisfies
x1 € Dom(f), xp+1 = Txpn, D(Xpt1,%n) = d(Xpt2,%n+1) for all n € N, then {x,} satisfies (RC)-
condition.

Theorem 2.4. Let (X,d) be a metric space and T : X — X be a self-mapping. Suppose that
(H) there exists an M T -function @ : [0,0) — [0, 1) such that

min{d(Tx,Ty),d(x,Tx)} < ¢(d(x,y)) max {d(x,y),d(x, Tx),d(y,Ty),

forall x,y € X.
Then for any u € X, the sequence {T"u},cnu oy satisfies (RC)-condition (here, T0 =1 is the
identity mapping).

d(x,Ty)+d(y,Tx) }
2

Proof. Define two mappings D, S : X X X — [0, ) by
D(x,y) = min{d(Tx,Ty),d(x,Tx)}

and

S(ry) = max { d(x). (5 ). 0.7).
respectively. Then, by (H), we obtain
D(x,y) < 9(d(x,y))S(x,y) forallx,y € X.

Let u € X be given. Define a sequence {x, },en by x; = u and x,,4.1 = Tx, = T"u for all n € N.
For any n € N, we have

d(x,Ty)+d(y,Tx) }
2

D(xpy1,%) = d(xp42,x,4+1) forallx,y € X. (2.5)

and
d('xVZ?xl’H-Z)} } ) (26)

S(Xp41,Xn) = max {d(xn+17xn)7d(xn+17xn+2)7d(xnvxn+l)a >
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Assume there exists j € N such that d(x;1,x;) < d(xj12,xj+1). Then, by (H), (2.5) and (2.6),
we have

d(xj12,Xj11) = Dxji1, %)) <S(xjp1,x7) = d(xj42,%j11),
a contradiction. Hence it must be d(x,,42,Xx,+1) < d(x,+1,X,) and hence we have S(x,11,x,) <

d(xp+1,%x,) for all n € N. By Corollary 2.3, {x,} satisfies (RC)-condition. The proof is com-
pleted. U

Remark 2.1. Let T be a self-mapping on a metric space (X,d). Then, by Theorem 2.4, for any
u € X, the sequence {T"u},cnqoy satisfies (RC)-condition if 7' is Banach type or Kannan type
or Chatterjea type.

3. SOME FIXED POINT THEOREMS FOR (RC)-CONDITION
The following is one of main results in this paper.

Theorem 3.1. Let (X,d) be a metric space. If a sequence {x,} in X satisfies (RC)-condition,
then {x,} is Cauchy.

Proof. Since {x,} satisfies (RC)-condition, there exist a nonnegative real number A < 1 and a
proper function 4 : X — [0, 0] with x; € Dom(h), such that

d(xpi2,%n+1) < Ad(xpp1,%n) +h(x441) — h(xpy2) forallm e N. (3.1)
Clearly, h(x,) < oo forall n € N. Let &, = d(x,11,%,) + h(xn11), n € N. By (3.1), we get
(1 =2A)d(xns1,%0) < d(Xns1,%0) +h(Xn41) = [d(Xnr2,%n41) + h(xnt2)], (3.2)

which deduces 0 <, <&, for all n € N. Hence the sequence {&,}"_, is nonincreasing in
[0,00) and

f:= lim &, = inf exists.
n—oo én neN gn

By (3.2), we have

1
d(xn,xn+1) S m(én—én_i_l) for all n € N. (33)
For m, n € N with m > n, we have form (3.3) that
m—1 1
d(xmxm) < Z d(xj7xj+1) = m(én _gm)
j=n

Since lim &, = ¢, we have lim,, . sup{d(xp, X,y ) : m > n} = 0. This prove that {x,} is a Cauchy
n—yoo
sequence in X. O

Applying Theorem 3.1, we present the following new fixed point theorem for Caristi type
mappings and Isca functions.

Theorem 3.2. Let (X,d) be a complete metric space, f :X — (—o0,| a proper Isca and
bounded below function and K : (—eo,00] — (0,00) a nondecreasing function. Suppose that
T : X — X is a self-mapping satisfying

d(x,Tx) < x(f(x))(f(x)— f(Tx)) foreachx € X. (3.4)

Then F(T) # 0. Moreover, there exists a sequence {x,} in X such that it satisfies (RC)-
condition and converges to a fixed point v of T with f(v) < ce.
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Proof. Define a set-valued mapping I": X — 2X by

I(x) ={ye X :d(x,y) < x(f(x)(f(x) = f(y)} forxeX.
Since Tx € I'(x), we have I"(x) # 0 for all x € X. First, we claim that for each y € I'(x), we have
£() < £(x) and T(y) C T(x). Let y € T(x) be given. Thus d(x,y) < (f(x))(£(x) — £(»)) and
hence f(y) < f(x). Let us verify I'(y) C I'(x). Given z € I'(y). Then d(y,z) < x(f(y))(f(y) —
f(2). So f(z) < f(y) < f(x). Let u € Dom(f). We shall construct a sequence {x,} in X by
induction, starting with x; = u. Suppose that x,, € X is known. Then choose x;+1 € I'(x,) such
that

f(xps1) < inf f(z)—f—% forn e N. (3.5)

z€l(x,)
Applying Theorem 2.1 (a), we know that {x,} satisfies (RC)-condition. Hence, by Theorem
3.1, {x,} is a Cauchy sequence in X. By the completeness of X, there exists v € X such that
Xp — v as n — . We now verify v € .7 (T). For any n € N, since x,11 € I'(x,), we have

d(xn, Xn1) < KO () (f () = f (nt1), (3.6)
and hence
FCong1) < F(n). (3.7)
Since f is bounded below,
&= r}glgof(xn) = niglgf(xn) exists. (3.8)
Since f is Isca, by taking into account (3.7) and (3.8), we get
f(v)gggigof(xn):égf(xj)<m forall j € N. (3.9)

We claim that (_; T'(x,) = {v}. Let n € N be fixed. For m > n with m,n € N, since « is
nondecreasing, by (3.6), (3.7) and (3.9), we obtain

m—1

d(xn,2m) < Y dxj,xj51) < K(f () (f (xa) = £(v)). (3.10)
j=n
Since x,,, — v as m — oo, by (3.10), we obtain d(x,,v) < k(f(x,))(f(x,) — f(v)) foralln €N,
which shows v € M,_;T'(x,). Hence ,_;I'(x,) # 0 and I'(v) C N> I'(x,). For any w €
M- T'(x,), taking into account (3.5) and (3.7), we have

i) < () (Fx) — F0))
SKU@ﬂ)(ﬂM%—iM)ﬂO)

z€l(xy

< (/) £05) — f5e0)+ 1)

for all n € N. Let B, = k(f(x1)) (f(xn) — f(xnt1) + 1), n € N. So lim,_,e B, = 0 and hence
lgll d(xn,w) = 0. This shows that x,, — w as n — oo. By the uniqueness of limit of a sequence,
n—o0

we have w = v. So we prove (| I'(x,) = {v}. Since I'(v) # 0 and

(¥ € (\T) = (v}
n=1
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we get I'(v) = {v}. Since Tv € I'(v), it must be Tv = v. Therefore T has a fixed point v in X.
Clearly, f(v) < oo. The proof is completed. O

Now, we establish the following new fixed point theorem which generalizes and improves
Mizoguchi-Takahashi’s fixed point theorem, Kannan’s fixed point theorem and Chatterjea’s
fixed point theorem simultaneously.

Theorem 3.3. Let (X,d) be a complete metric space and T : X — CB(X) be a multivalued
mapping. Define two mapping D,S : X x X — [0,0) by

D(x,y) = min{s(Tx,Ty),d(x,Tx)}
and

S(x,y) = max {d(X,)’), d(x, Tx) ;‘d(% Ty) 7 d(x,Ty) -;d(y, Tx)

respectively. Suppose that there exists an .# T -function @ : [0,00) — [0, 1) such that

D(x,y) < @(d(x,y))S(x,y) forallx,y€X. (3.11)

Then T admits a fixed point in X. Moreover, there exists a sequence {x,} in X such that it satisfies
(RC)-condition and converges to a fixed point v of T.

} forx,y € X.

Proof. Since @(t) < 1 for all t € [0,0), we can define a function 7 : [0,0) — (0,1) by

() = % (1+9(t) forallt€ [0,0).

Clearly, 0 < @(t) < t(¢) < 1 for all t € [0,0). Thus, by (3.11), we obtain
D(x,y) < t(d(x,y))S(x,y) forallx,y€X.

Let z € X be given. Take x; = z € X and choose x; € Tx;. If xo = x1, then x; € Tx; and we are
done. Otherwise, if x, # x1, then d(x3,x1) > 0. Since D(x3,x) = d(x2,Tx,) and

d(x2,Txp) +d(x1,Tx1) d(x1,Txz) }

S(x2,x1) = max {d(xz,xl),

2 ’ 2
T T
< max {d(xZ,xl),d(x% x2)2+d(x17x2),d()€1,2 xz)}’

by (3.11), we have

d T d d T
d(xz,sz)<T(d(xz,xl))max{d(xz,xl), (2, x2)2+ (xl’xz), <x1’2 xz)}.

Hence there exists x3 € Tx, such that

d d d
deae) < oldlezon)) max {dag, ), A2V TAOI) DI )
Assume d(xp,x1) < d(x3,x2). Thus we have
max {d(x%)q), d(xZ,X3) —;d(xl ,XZ) 7 d(X1Z,X3) } _ d()Q,Xj,) —;d(xl,)Q). (3.13)

So, by (3.12) and (3.13), we get

d(xa,x3) < %(a’(xz,)@) +d(x1,x))
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which implies d(x,x3) < d(x2,x1), a contradiction. Hence it must be d(x3,x2) < d(x2,x1)
and (3.12) deduces d(xp,x3) < T(d(x2,x1))d(x2,x1). If x3 = x2, then x, € Tx; and the desired
conclusion is proved. Assume x3 # x,. By (3.11) again, we obtain
d(X3, TX3) + d(x27x3) d()C2, TX3) }

2 ’ 2 '

d()C3, T)C3) < T(d(X3,x2)) max {d()C3,XQ>,

So there exists x4 € Tx3 such that

d(xs, 1) < T(d(x3,xQ))max{d(x3,x2), d(x3,x3) +d(x2,%3) d(x2,%4) } .

2 2
Following a similar argument as above, we obtain d(x3,x4) < 7(d(x3,x2))d(x3,x2). Hence, by
induction, we can obtain a sequence {x, },cn satisfying the following: for each n € N,

() xp41 € Tx, with x, # X, 15

(i) d(xps2,%n+1) < T(d(Xnr1,%0))d (Xn41,%n)-
Since 7(r) < 1 for all 7 € [0,00), by (ii), we know that the sequence {d(x,+1,%n) }nen is strictly
decreasing in [0,o0). Since @ is an .# .7 -function, by applying Theorem 1.5, we have

0 < sup @(d(xn41,%n)) <1
neN
and hence deduces
1
0 < supT(d(xpt1,%n)) = B 1+sup@(d(x,11,%,))| < L.
neN neN
Let A := sup 7(d(x;+1,%n)). So A € (0,1). Define a proper function 2 : X — [0,0] by h(x) =0

neN
for all x € X. Then for any n € N, by (ii) again, we have

d(Xnt2,%n11) < T(d(Xnt1,%n))d (Xt 1, Xn)
< yd(xpt1,%n) +h(xps1) —h(xy42) foralln € N.
Hence {x,} satisfies (RC)-condition. Using Theorem 3.1, we know that {x, },cn is a Cauchy

sequence in X. By the completeness of X, there exists v € X such that x, — v as n — co. In
order to finish the proof, it is sufficient to show v € .% (T'). For any n € N, by (3.11), we have

min{d(x,+1,7v),d(v,Tv)}
< min{A(Tx,, Tv),d(v,Tv)}
d(xy, dv,Tv) d(x,,T d(v,
< (p(d(xn,v))max {d(Xn,V), (x xn+1>2+ (V V)’ (-xn V)—; (V xn+1)}
for all n € N. Since the function x — d(x,Tv) is continuous and x,, — v as n — oo, by taking
the limit as n — oo on both sides of the last inequality, we acquire

1
dv,Tv) < Ed(v, Tv)
which implies d(v,Tv) = 0. Therefore we obtain v € .%(T'). The proof is completed. O
Remark 3.1. Theorem 1.7 is a special case of Theorem 3.3.

The following new fixed point theorem is a simultaneous generalization of Banach contrac-
tion principle, Kannan’s fixed point theorem and Chatterjea’s fixed point theorem.
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Theorem 3.4. Let (X,d) be a complete metric space and T : X — X be a self-mapping. Define
two mapping D,S : X x X — [0,00) by

D(x,y) = min{d(Tx,Ty),d(x,Tx)}

and

dx, T d(y,Ty) d(x,T d(y, T
S(x,y) = max d d(x,y), (x,Tx) +d(y, y)) (x,Ty) +d(y, Tx)
2 2
respectively. Suppose that there exists an .# T -function @ : [0,00) — [0, 1) such that
D(x,y) < @(d(x,y))S(x,y) forallx,y€X. (3.14)

Then 7 (T) # 0. Moreover, for any u € X, the sequence {T"u},enujoy satisfies (RC)-condition
and converges to a fixed point of T.

Proof. Let u € X be given. Define a sequence {x,},cn by x; = u and x,,1 = Tx, = T"u for
all n € N. Clearly, the condition (H) in Theorem 2.4 holds from (3.14). By Theorem 2.4, the
sequence {T"u},cnuqoy satisfies (RC)-condition. Applying Theorem 3.1, {x,} is a Cauchy
sequence in X. By the completeness of X, there exists v € X such that x,, — v as n — co. Now,
we verify that v € % (T). For any n € N, by (3.14), we have

min{d(Tv,x,+1),d(v,Tv)}

< @(d(v,x,)) max {d(V,xn), d(v,Tv) +2d(xn,xn+1) 7 d(v,x,41) -zl-d(xn, Tv) } |

Since x, — v as n — oo, by taking the limit as n — oo on both sides of the last inequality, we get

d(v,Tv) < =d(v,Tv)

| =

which implies d(v, Tv) = 0. Therefore we obtain v € .%(T'). The proof is completed. O

Theorem 3.5. Let (X, d) be a complete metric space and T : X — X be a self-mapping. Suppose
that there exists an M T -function @ : [0,0) — [0, 1) such that

d(x, Tx) ;Ld(y, Ty) d(x.Ty) ;d (v, Tx) } (3.15)

d(Tx,Ty) < qv(d(x,y))maX{d(x,y),

forall x,y € X. Then T admits a unique fixed point v in X. Moreover, for any u € X, the sequence
{T"u}wenugoy satisfies (RC)-condition and converges to v.

Proof. Clearly, (3.15) implies (3.14). Applying Theorem 3.4, we have .% (T) # 0. We claim
that .7 (T) is a singleton set. Assume there exist w,v € .% (T') with w # v. Thus d(w,v) > 0. By
(3.15), we have d(w,v) =d(Tw,Tv) < @(d(w,v))d(w,v) < d(w,v), a contradiction. Hence we
prove that .% (T) is a singleton set, say .% (T) = {v}. Therefore T has a unique fixed point v in
X. Moreover, for any u € X, by using Theorem 3.4 again, the sequence {T"u},cnuqo) satisfies
(RC)-condition and converges to v. The proof is completed.
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4. CONCLUSIONS

For more than a century, fixed point theory has been a fascinating theory in various fields
including linear and nonlinear analysis, optimization, differential equations, economics, game
theory, dynamical systems theory, control theory, signal and image processing, and so forth. In
this paper, the concept of (RC)-condition and its sufficient conditions are studied. We show that
a sequence in a metric space satisfies (RC)-condition, then it is Cauchy. We establish some new
fixed point theorems and new simultaneous generalizations of well-known fixed point theorems
for (RC)-condition.
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