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FULLY PROBABILISTIC DESIGN FOR OPTIMAL TRANSPORT
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Abstract. The relationship between entropy-regularized Kantorovich optimal transport (OT) and fully probabilistic
design (FPD) of probability models is derived. In FPD, the (unattainable) zero-cost plan (i.e. probability measure)
—called the ideal, πI—is projected (in a minimum KLD sense) into the set of feasible plans constrained by fixed
marginals, µ and ν . We show that πI has a Gibbs structure. The regularizing measure, φ , acts as its base measure,
and the cost metric, c, acts as its energy term. Important insights and design opportunities flow from this FPD-OT
setting: (i) the fixed objects in regularized OT are classified either as constraints on the actual transport plan (µ , ν)
or else as constraints on the ideal plan (φ , c and regularization constant, ε); and (ii) the modulation of φ by c and
ε , in the ideal plan, πI , allows a c-dependent φ to be designed, favouring plans that meet detailed cost-dependent
constraints. Extensive examples are presented, illustrating both of these insights. In particular, we show how the
FPD-OT setting of discrete regularized OT allows high-cost transport paths to be quenched.
Keywords. Entropic regularization; Fully probabilistic design; Ideal design; Kullback-Leibler divergence; Opti-
mal transport.
2020 MSC. 68T37, 62F15, 94A17.

1. INTRODUCTION

Many machine learning (ML) problems reduce to the question of summarizing and compar-
ing probability measures. For example, problems in domain adaptation, adversarial training and
distributed learning fall withing this setting. Quantifying the relationship between two proba-
bility measures can be addressed via an appropriate divergence function [28]. However, such
functions often do not consider the the semantics of the domain on which the set of measures
is defined, be they spatial properties, physical distances, etc. Optimal transport (OT), on the
other hand, converts this domain structure into a distance between probability measures, and, in
doing so, endows the space of probability measures with a topology. If the domain is Euclidean,
then the induced distance in the space of probability measures is Wasserstein, and so concepts
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of interpolation, barycentres and gradient of functions are naturally extended to the space of
measures [22]. For these reasons, OT has enjoyed widespread application in areas such as com-
puter vision [24], computer graphics [28] and natural language processing [20], as well as in
control [6], filtering [25] and sequential decision-making [31].

Notwithstanding these OT successes, when it comes to the practical requirement of modelling
uncertainty in the marginals, or, equivalently, processing nonlinear moment constraints, there
exists no systematic or generic methodology. This motivates our interest in fully probabilistic
design (FPD). FPD is the axiomatic framework for designing probability measures subject to
knowledge constraints, with choices ranked in respect of a (generally unattainable) ideal [17].
The knowledge constraints express any prior information about the unknown probability mea-
sure, in the form of a set membership, physical laws, etc. [23]. In this paper, we prove that
entropy-regularized OT is a special case of FPD. Indeed, by formulating the OT problem as the
constrained design of a joint probability measure, the connection with FPD emerges naturally.
We refer to this FPD setting of regularized OT as FPD-OT.

The paper is structured as follows. In Section 2, we review the key concepts of OT, intro-
ducing the mathematical objects used later in the document. In Section 3, we review FPD and
establish the connection between OT and FPD in Section 4. In Section 5, we illustrate the FPD-
OT formalism with an example involving the processing of uncertainty in the marginals. An
extensive simulation-based example in provided in Section 6, illustrating the detailed design of
a plan subject to a cost-sensitive regularizing base measure. The main insights and additivities
that follow from FPD-OT are discussed in Section 7, and the paper concludes with Section 8.

2. OPTIMAL TRANSPORT (OT)

Let (Ω, F, P) be a probability space. X : Ω 7→ ΩS and Y : Ω 7→ ΩT denote two random
variables, inducing (ΩS, FS, µ) and (ΩT , FT , ν), the source and target probability spaces, re-
spectively, where ΩS and ΩT are two compact metric spaces. In the sequel, µ and ν denote
probability measures, described by their Radon-Nikodym densities w.r.t the dominating mea-
sure, λ , which can be instantiated as either the Lebesgue measure or the counting measure,
depending on the context. We overload µ and ν to denote the induced probability density func-
tions (pdfs) in the continuous case, and probability mass functions (pmfs) in the discrete case.

Optimal Transport (OT) was originally introduced by the French mathematician, Gaspard
Monge, to study the problem of shovelling—with minimal total cost—a pile of sand into a hole
of the same volume [5]. This early formulation was too restrictive since there exists no feasible
solution to the Monge problem for many choices of µ and ν . Kantorovitch later proposed a
probabilistic relaxation, allowing transported mass to split [30]. In this new setting, the objective
is to design a transport plan, i.e. a joint distribution, π , satisfying:

π
o
OT (x,y|K )

def.
= argmin

π∈ΠK

{∫
ΩS×ΩT

c(x,y)π(x,y)dλ (x,y)
}
. (2.1)

c : ΩS ×ΩT 7→ R+ is a measurable cost function, π(x,y) denotes an unknown (variational)
distribution with support in the product space, ΩS×ΩT , and ΠK denotes the set of joint distri-
butions, π(x,y|K ), with support in ΩS×ΩT , on which we impose some knowledge constraints,
K . These knowledge constraints relate to any information which should be processed in the
optimization problem (2.1) when designing the optimal solution, πo

OT (x,y|K ). In the context
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of classical OT, K represents the marginal constraints, that is,

ΠK
def.
= Π(µ,ν)

def.
=
{

π ∈P(ΩS×ΩT ) | PΩS#π ≡ µ, PΩT #π ≡ ν

}
. (2.2)

P(ΩS×ΩT ) denotes the set of distributions with support in ΩS×ΩT . Furthermore, PΩS# and
PΩT # are the push-forward operators associated with the (surjective) projections, PΩS(x,y) = x
and PΩT (x,y) = y, respectively. It follows that∫

ΩT

π(x,y|K )dλ (y) ≡ µ(x),∫
ΩS

π(x,y|K )dλ (x) ≡ ν(y).

are the source and target marginal densities imposed as prior knowledge constraints, K .

Remark 2.1. The objective in (2.1) does not require a parametric model of π . This distinguishes
OT from parametric design methods for π , mainly via copula design [27].

In its discrete form, the Kantorovitch OT problem is a linear program (LP) and so it would
be tempting to apply LP optimization to solve it. However, this program can be prohibitively
expensive, especially in big data regimes. Indeed, if X and Y are discrete random variables,
with #(ΩS) = n and #(ΩT ) = m, then the complexity of the LP scales at least in O(d3 log(d)),
where d = max(n,m) [12].

Entropy regularization is a widely deployed formulation for computationally efficient OT
[22], in which an appropriate entropy functional of π is used to smooth the original problem.
Towards defining entropy-regularized OT, recall the Kullback-Leibler divergence (KLD) [19]—
also called the relative (or sometimes, confusingly, the cross [26]) entropy—from variational
distribution, π , to a fixed one, ζ :

KL(π||ζ )≡


∫

ΩS×ΩT

π(x,y) log
(

π(x,y)
ζ (x,y)

)
dλ (x,y) if π � ζ ,

+∞ otherwise.
(2.3)

The regularized OT problem reads:

π
o
OT,ε,φ (x,y|K )≡ argmin

π∈ΠK

{∫
ΩS×ΩT

c(x,y)π(x,y)dλ (x,y)+ εKL(π||φ)
}
. (2.4)

φ—which acts as the target or base distribution for regularization—has support in ΩS×ΩT ,
and ε > 0 is the regularization constant.

If we specialise φ to the uniform distribution, U , with support in ΩS×ΩT , then (2.4) is the
widely adopted Boltzmann-Shannon entropy-regularized OT problem [10], [12]:

π
o
OT,ε,U (x,y|K )≡ argmin

π∈ΠK

{∫
ΩS×ΩT

c(x,y)π(x,y)dλ (x,y)+ εKL(π||U )

}
. (2.5)

It is worth noting that the KLD in (2.4) can be generalised to other entropies and more general
Bregman divergences, as proposed in [12].

By introducing an entropy term, the Kantorovitch problem becomes strongly convex, and
efficient iterative scaling algorithms can be used to compute the regularized transport plan solv-
ing (2.4) (namely, Sinkhorn-Knopp in the discrete case [22], Fortet in the continuous case [13]).
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The main reason for introducing an entropy regularizer in OT is the availability of these compu-
tationally efficient algorithms. However, it is important to remember that the unique solution of
(2.4) has minimum entropy relative to a distribution—called the ideal distribution, πI—induced
by the objective, and parameterized by φ , c and ε . This insight—and the benefits that flow from
it—are the focus of the FPD-OT reformulation of the regularized OT problem (Section 4).

Particular applications may call for OT plans with specific structures, and/or the preservation
of specific properties of the source marginal, µ , under transport to the target, ν . Structure may
refer to the semantics of protected attributes (e.g. age, gender, ethnicity) in a classifier, spatial
correlation in an image, neighbourhood structure in a graph, etc. It can also be expressed as
stochastic constraints on the distributions (µ , ν , π) themselves. Existing methodologies to
address structured OT rely either on the notion of sub-modular functions (in particular sub-
modular cost functions with diminishing returns) [1] or the addition of a regularization term
(group Lasso, Laplacian) [8, 15] in order to encourage specific structure-preserving mappings
over others. For example, in [14], the authors propose a Laplace regularization scheme for
colour transfer in image processing. Laplace regularization encourages transport maps that
preserve the graph structure of the nodes in the source domain. In the current paper, we will
approach this problem in a different way, by imposing detailed structure on the ideal distribution
mentioned in the previous paragraph, and in a way that is sensitive to the cost of such constraints
(Section 6).

Next, we introduce fully probabilistic design (FPD), and show that this accommodates reg-
ularized OT as a special case. Resetting regularized OT as an FPD problem—which we call
FPD-OT—will facilitate the processing of structured knowledge constraints (Section 5) and
cost-sensitive ideals (Section 6).

3. FULLY PROBABILISTIC DESIGN (FPD)

Fully probabilistic design (FPD) is the axiomatically justified framework for designing prob-
ability models under uncertainty [17, 23], and is consistent with the rules of Bayesian decision-
making [3]. It generalizes classical Bayesian conditioning and Bayes’ rule, allowing the pro-
cessing of probabilistic knowledge constraints, K , into the conditional distribution, π(x,y|K ),
in cases where the joint distribution, π(x,y,K ), is unavailable [23].

The axiomatic formulation of FPD as a distributional design problem was first established
in [17], where the authors proved that it is an extension of Bayesian decision making. Later,
the FPD framework was extended to hierarchical Bayesian models in [23], yielding a stochastic
model of the uncertain joint distribution, π(x,y|K ).

More formally, FPD seeks a distribution, π(x,y|K ), which satisfies predefined design con-
straints, formalized as membership of a set, ΠK , of knowledge-constrained distributions:

π(x,y|K ) ∈ΠK . (3.1)

With ΠK being a singleton only in special cases, the ranking of choices is necessary. In FPD,
this relies on the notion of an ideal design, which encodes the designer’s zero-loss choice of
π(x,y|K ). The ideal design, denoted by π I(x,y|K ), does not satisfy the constraints in ΠK ,
except in the trivial case; i.e. we assume that π I(x,y|K ) /∈ ΠK . To compute the optimal
solution, a utility (loss) function is then used to compare and rank the candidate distributions,
based on their degree of closeness to the ideal design. In [3], the KLD is shown to be the
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expected utility for ranking these distributional preferences consistent with decision-theoretic
foundations:

π
o
FPD,π I(x,y|K )≡ argmin

π∈ΠK

{
KL(π||π I)

}
, π � π

I. (3.2)

The ideal design in (3.2) is the second argument of the KLD , and, as such, is the (infeasible)
zero-KLD datum against which all possible distributions, consistent with the constraint set ΠK ,
are ranked [23].

Given that both the Kantorovitch OT and the FPD problems seek the optimal design of a
K -consistent joint distribution (3.1), it is natural to investigate possible connections between
the two frameworks. We will establish this in the next section.

4. THE FPD FRAMEWORK FOR REGULARIZED KANTOROVICH OT (FPD-OT)

The goal of this section is formally to establish the connection between FPD and regularized
Kantorovich OT. We start with the general form of FPD-OT, then derive the special case of the
entropy-regularized problem.

Theorem 4.1 (FPD-OT). Let (ΩS, FS, µ) and (ΩT , FT , ν) be two measure spaces, and ΠK

be the set of joint distributions, π(x,y|K ), with support in ΩS ×ΩT , and with prescribed
marginals, µ and ν (2.2). Let φ be a fixed distribution, which dominates π , i.e., π � φ , let
c(x,y) ≥ 0 be a measurable cost function, also with support in ΩS×ΩT , and let ε ∈ R+ be a
regularization term. Then the unique solutions of objectives (2.4) and (3.2) are (a.s.1) equal,

π
o
FPD,π I(x,y|K ) = π

o
OT,ε,φ (x,y|K ), (4.1)

if the ideal design, π I(x,y|K ), has an extended Gibbs form, defined as

π
I(x,y|K )

def.
=

1
Kφ ,ε

φ(x,y)exp
(−c(x,y)

ε

)
. (4.2)

Here, Kφ ,ε
def.
=
∫

ΩS×ΩT
φ(x,y)exp

(
−c(x,y)

ε

)
dλ (x,y) is the normalizing constant.

Proof. From (2.4), we have

π
o
OT,ε,φ (x,y|K )

def.
= argmin

π∈ΠK

∫
ΩS×ΩT

π(x,y) log

{
π(x,y)exp(c(x,y)

ε
)

φ(x,y)

}
dλ (x,y)

= argmin
π∈ΠK

KL(π||π I)

(3.2)
= π

o
FPD,π I(x,y|K ),

(4.3)

in the case where the ideal design is as specified in (4.2). �

We note the following:

• Theorem 4.1 recasts relative-entropy-regularized Kantorovich OT as a specialization of
fully probabilistic design (FPD).

1The a.s. equality of distributions is assumed throughout.
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• The main reason why the additive KLD term (2.4) is adopted in conventional OT is
because it strongly convexifies the objective, yielding sufficient conditions for conver-
gence of efficient iterative schemes to the unique minimizer. What has not been reported
before is the way in which this KLD regularization shapes the zero-loss (i.e. datum) OT
plan—being the ideal design, π I(x,y|K ) (4.2)—in a prescribed way.
• Specifically, the optional regularizing term in (2.4) furnishes the base distribution, φ(x,y),

of an ideal design, π I(x,y|K ), which is prescriptively of the Gibbs type (4.2). Mean-
while, the pre-prior-imposed cost of transportation, c(x,y), acts as the energy term in
the Gibbs structure, modulating the base distribution, φ(x,y), with ε acting as the (pro-
portional) temperature parameter.
• φ(x,y) can be chosen judiciously by the designer in order to mitigate the (pre-imposed)

cost of transportation, c(x,y), and thereby reduce the expected loss (being the KLD)
incurred by the optimal OT plan, πo

OT,ε,φ (x,y|K ) (3.2). We will present an example of
this cost-sensitive design in Section 6.
• We refer to this FPD setting for regularized OT—and this distinct role for the regulariz-

ing kernel, φ(x,y), in shaping the ideal design of the transport plan—as FPD-OT.

Remark 4.2. The ideal design, π I(x,y|K ) (4.2), in FPD acts as the designer’s zero-loss choice
for the joint transport plan, π(x,y|K ), and may be interpreted as a pre-prior in generalized
Bayesian inference via FPD. As already noted, this ideal is typically unattainable, in that it fails
to satisfy the marginal constraints; i.e. π I(x,y|K ) /∈ΠK (2.2). Its role is to induce an expected-
loss ranking (equivalent to KLD-ordered preferences [3]) of the elements of ΠK [17].

Remark 4.3. KLD is 1-strongly convex, and so the problem stated in (3.2) is ε-strongly convex,
thereby yielding a unique solution.

Remark 4.4. When ε → ∞ in (4.2), π I → φ ; i.e.,

π
o
FPD,π I(x,y|K )

ε→∞−−−→ π
o
FPD,φ (x,y|K ). (4.4)

Note that the strong convexity of the KLD objective of FPD (3.2) is lost in the ε → 0 limit; i.e.
the (unregularized) Kantorovich OT problem cannot be expressed as an FPD problem.

Remark 4.5. The Boltzmann-Shannon entropy-regularized OT problem (2.5) is the specializa-
tion of FPD-OT in the case where π I(x,y|K ) is the Boltzmann distribution, with the transporta-
tion cost, c(x,y), as the energy functional, and the regularization term, ε , as the (proportional)
temperature, as follows.

Corollary 4.6. The entropy-regularized OT problem (2.5) is a specialization of FPD, where the
ideal design, π I , reduces to the Boltzmann distribution:

π
o
OT,ε,U (x,y|K ) = π

o
FPD,π I(x,y|K ) (4.5)

for the ideal assignment,

π
I(x,y|K )

def.
=

1
Kε

exp
(−c(x,y)

ε

)
. (4.6)
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5. AN EXAMPLE OF FPD-OT: PROCESSING A RELAXATION OF THE MARGINAL

CONSTRAINTS

By way of relaxing the standard OT formulation (2.1, 2.2), let us now assume that the
marginals of the OT plan, π , are confined to KLD balls, centred around µ and ν , which are
fixed (i.e. nominal) distributions. The respective KLD ball radii (i.e. KLD upper bounds) are
η ≥ 0 and ζ ≥ 0, respectively. The knowledge-constrained set, denoted here by Π̃K (η ,ζ ), is
now the following superset (relaxation) of (2.2):

Π̃K (η ,ζ )
def.
=
{

π ∈P(ΩS×ΩT ) | KL(PΩS#π||µ)≤ η ,KL(PΩT #π||ν)≤ ζ

}
. (5.1)

In this way, the parameters, η and ζ , of Π̃K (η ,ζ ) encode prior knowledge constraints, along
with µ and ν . Note that no stochastic model is posited2 for π or its push-forwards, PΩS#π and
PΩT #π . As before, the second prior input to the FPD formalism is the ideal design, π I(x,y|K )
(3.2). In this relaxed setting, the FPD-OT primal optimization problem reads as follows:

π
o
η ,ζ (x,y|K )

def.
= argmin

π∈Π̃K (η ,ζ )

{
KL(π||π I)

}
. (5.2)

The associated Lagrangian is

L (π,V )
def.
= KL(π||π I)+α(KL(PΩS#π||µ)−η)+β (KL(PΩT #π||ν)−ζ ), (5.3)

where V
def.
= (α , β ) < 0 are the Lagrange multipliers.

For technical ease, let us assume that the support of π in the product space, ΩS×ΩT (2.1),
is finite and equipped with the counting measure, so that π is expressible as a pmf; i.e. π ∈
P(ΩS×ΩT ) is the probability simplex of finite dimension. Since the KLD is a convex func-
tional of π , the primal problem (5.2) is convex, with unique solution, πo. Furthermore, the
problem satisfies Slater’s constraint qualification (see Section 5.3.2 of [4]); i.e. there exists
at least one element of (5.1) for which the inequalities there are strict, an example being the
product distribution, µ⊗ν . These conditions are sufficient for strong duality, i.e.

min
π∈Π̃K (η ,ζ )

{
KL(π||π I)

}
= max

V <0
min

π∈P(ΩS×ΩT )
L (π,V ). (5.4)

Denote the dual optimum by

V ∗(η ,ζ )
def.
= (α∗,β ∗)

def.
= argmax

V <0
min

π∈P(ΩS×ΩT )
L (π,V ), (5.5)

and so

π
o
η ,ζ (x,y|K )

def.
= argmin

π∈P(ΩS×ΩT )

L (π,V ∗)

= argmin
π∈P(ΩS×ΩT )

{
KL(π||π I)+α

∗KL(PΩS#π||µ)+β
∗KL(PΩT #π||ν)

}
.

(5.6)

Note, from (5.3, 5.5), that the regularization constants in objective (5.6) are α∗ ≡ α∗(η ,ζ ) and
β ∗ ≡ β ∗(η ,ζ ), i.e. deterministic functions of the prior knowledge-constraints (KLD-ball radii),
η and ζ (5.1). For this reason, ηα∗(η ,ζ ) and ζ β ∗(η ,ζ ) are (finite) constants.

2See Section 7.3 for discussion of a future hierarchical FPD attack on this problem.
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We conclude that the FPD-OT problem—in the case (5.1) which conditions on (i.e. processes)
knowledge in the form of KLD-ball constraints around nominal marginals, µ and ν—is there-
fore equivalent to the unconstrained minimization of the regularized objective (5.6). The latter
objective is the one adopted in the classical unbalanced OT (i.e. UOT) problem [2, 7], but we
emphasize that our FPD-OT problem above (5.1, 5.2) is balanced (see Remark 5.1, below). A
dividend of the FPD-OT formulation of the regularized OT problem (5.6) is the interpretabil-
ity of its input parameters, η and ζ , as knowledge constraints (i.e. KLD ball radii), something
which is not possible for α∗ and β ∗ in (5.6).

Finally, we note that the FPD-OT problem in (5.1, 5.2) specializes in obvious ways at extreme
values of the KLD ball radii, η and ζ :

(i) Consider the case in which the KLD-ball radii, η and ζ , are both set to zero. It follows
directly from (5.3) and (5.5) that α∗(0,0)→ ∞ and β ∗(0,0)→ ∞ for the general case
of unconstrained π in (5.6). This forces the minimizer to belong to the set in which
the second and third KLD terms in (5.6) are both zero (i.e. the two push-forwards are
identically µ and ν , respectively). Hence, in this case, the relaxed FPD-OT problem in
(5.6) specializes to one of minimizing KL(π||π I), in the set (2.2), which is the original
FPD-OT problem (3.2).

(ii) The (trivial) case—in which no knowledge constraints are imposed on π—arises when
the KLD-ball radii are unboundedly large. Then, the ideal design is attained:

π
o
η ,ζ (x,y|K )

η→∞, ζ→∞−−−−−−−→ π
I(x,y|K ) (5.7)

Remark 5.1. The processing of uncertainty bounds—in the form of KLD-ball radii, η and
ζ , in (5.1)—can be understood as a contribution to robust OT, in a manner similar to the set-
up for unbalanced OT [2, 7]. To be clear, however: unit (normalizing) mass is conserved in
our example, and so the transport is balanced. The purpose of the example in Section 5 is
to demonstrate how FPD-OT can formulate and process relaxations (5.1) of the conventional
knowledge constraints of OT (2.2). A more mature response to the problem of robust OT—
involving the elicitation of uncertainty in the optimal plan, πo (4.1)—will be addressed in future
work via hierarchical FPD [23]. See Section 7.3 for further comment on this future direction.

6. SIMULATION: INFLUENCE OF THE IDEAL BASE MEASURE, φ

In this Section, we will compute OT plans for various choices of the regularizing distribution,
φ(x,y) (2.4), now repurposed in FPD-OT as the base distribution of our ideal design, π I(x,y)
(4.2). The composition of φ(x,y) and the cost function, c(x,y), in π I(x,y) will facilitate the
elicitation of richer structures in the OT plan, providing an alternative to techniques based only
on notions of regularization and sub-modular functions. Indeed, the cost function, c(x,y), in
(2.4) is generally dictated by the physical or geometrical constraints of the underlying metric
space (the ground metric [12]). In contrast, the regularizing distribution, φ(x,y), can be used to
express subjective and subsidiary design preferences, via (4.2), including cost-sensitive choices,
φ ≡ φ(c). By rewriting the regularized OT objective in (2.4) as the FPD-OT objective (3.2,
4.2)—i.e. as a KLD minimization problem—we explicitly reveal the role of φ(x,y) as the ideal
base distribution, modulated by a cost-dependent Gibbs term.

As a motivating example, we consider the problem of energy transportation from a source
domain (producers) to a target domain (consumers) with the objective of minimizing the total
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(A) (B) (C)

FIGURE 1. (A) Quadratic cost matrix, c(x,y); (B) regions of low- and high-cost
pathways, (x,y), as defined in (6.5); and (C) binary map of quenched (0) and
unquenched (1) pathways when φ(x,y) is the cost-sensitive Bernoulli random
matrix realization (6.2, 6.3), with α = 1.

transportation cost, and, consequently, the carbon footprint of the electric grid [21]. Respond-
ing dynamically to the demand, and adjusting the transportation plan, is a key element in the
optimization of the overall carbon budget. In addition to the cost, we may need to implement
additional constraints, imposed by technical and physical considerations. For example, we may
not be able to use all transportation pathways simultaneously for capacity reasons, or we may
want to block (i.e. quench) a proportion of the available pathways. Designing OT plans with
particular capacity constraints was studied in [18], where the set of feasible solutions, ΠK (2.2),
was dominated by a fixed transportation plan, modelling the capacity constraint. The authors
showed that the resulting OT plan was sparse. In the FPD-OT approach in Section 6.2, we
instead impose sparsity constraints in the optimization procedure via zeroes in the base distri-
bution, φ(x,y), of the ideal (4.2). We achieve this in either a cost-insensitive way (Section 6.2.1)
or as a function of the cost metric (Section 6.2.2).

In Section 6.1, we choose φ with a sampled Gaussian profile, which includes the special
case of uniform φ . Then, in Section 6.2, we realize φ from a Bernoulli random matrix process.
This choice of φ allows the implementation of capacity constraints in the OT plan (above),
where only a proportion θ < 1 of the pathways are active. We aim for a constant proportion,
θ = 0.85. Note that—although we simulate the base distribution, φ , from an appropriate prior
in Section 6.2 (i.e. as a realization of a random process satisfying the structural constraints
we wish to impose on π via π I (4.2))—this prior is not part of the knowledge structure (2.2)
processed by FPD-OT.

In both experiments (Sections 6.1 and 6.2), we adopt the following settings:
• ΩS ≡ {0, . . . ,m−1}, m≡ 50; ΩT ≡ {0, . . . ,n−1}, n≡ 50;
• c(x,y)≡ ||x− y||2 (Fig. 1 (A));
• ε ≡ 10−2;
• Maximum iterations of the Sinkhorn-Knopp (SK) algorithm [9] ≡ 1000;
• Stopping threshold for SK ≡ 10−9.
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(A) Σr = Σ1 (B) Σr = 100×Σ1

FIGURE 2. OT plans in the case of ideal base pmf, φ ∝ N (υ ,Σr), where Σr ≡
rΣ1, for two cases of r > 0: (A) r ≡ 1 and (B) r ≡ 100.

6.1. Ideal base pmf, φ ∝ N (υ ,Σr) (sampled Gaussian). In this first experiment, we choose
the marginals as follows (∝ denotes ‘proportional to’):

• µ(x) ∝ N (10,10), i.e. the pmf defined by evaluating a scalar Gaussian pdf at x ∈ΩS;
• ν(y) ∝ N (40,10), i.e. the pmf defined by evaluating a scalar Gaussian pdf at x ∈ΩT .

Furthermore, φ(x,y)—the base pmf in the Gibbs ideal design (4.2)—is chosen to be the pmf
induced by a bivariate Gaussian pdf, when confined to the support ΩS×ΩT . The mean of
the underlying bivariate Gaussian is chosen as υ ≡ [20,20]T (where the superscript denotes
transposition). Its covariance matrix is parameterized as Σr ≡ rΣ1 ∈ R2×2, with

Σ1 ≡
[

2 2
2 6

]
,

and we will vary r ∈R+, in order to study its effect on the smoothness of the OT plan. Inserting
this base pmf, along with the quadratic cost metric, c(x,y), into (4.2), we obtain the ideal pmf,

π
I(x,y|K ) ∝ exp

{
−
(
x−m

)T
( 1

2r
Σ
−1
1 +

1
ε

[
+1 −1
−1 +1

])(
x−m

)}
, (6.1)

where x≡ [x,y]T , and the ideal mean, m, is a (deterministic) function of the remaining param-
eters. This reveals the fact that the regularization constant, ε (2.4), and the variance controller,
r, of the base distribution, φ , both have the same role as temperature (annealing) parameters
of the Gibbs-type ideal plan (4.2). The entropy (smoothness) of the induced OT plan there-
fore increases as either (or both) are increased. This is corroborated empirically by the results
shown in Fig. 2, where we display the OT plan obtained for two values of r ∈ {1,100}. The
former yields an OT plan relatively concentrated on the graph of the corresponding Monge map
[30], whereas the latter yields an OT plan with high entropy. Indeed, as r→ ∞ in (4.2), then
π I(x,y)→ K−1

ε exp
(
−c(x,y)

ε

)
(4.6), and we recover the solution of the entropy-regularized OT

problem (2.5), corresponding to the case where φ is the uniform pmf, i.e. φ ≡U . The resulting
OT plan then has maximum entropy among all members of the knowledge-constrained set of
transport plans, ΠK (2.2) [10].
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6.2. Ideal base pmf, φ , with elements realized as i.i.d. Bernoulli r.v.s. In this experiment,
we again adopt marginal pmfs with a Gaussian profile, but this time they are chosen equal:

• µ(x) ∝ N (20,10), i.e. the pmf defined by sampling a scalar Gaussian pdf at x ∈ΩS;
• ν(y) ∝ N (20,10), i.e. the pmf defined by sampling a scalar Gaussian pdf at x ∈ΩT .

Our goal now is to study the FPD-OT problem when φ is a realization of a Bernoulli random
matrix. As mentioned earlier, this design choice is of practical relevance, since it allows only
some OT pathways, (x,y) to be active, with the rest being quenched (i.e. zeroes for certain
pathways). A practical example is the optimization of an electricity grid designed to match
producers to consumers of electricity, and in a situation where only a subset of the producer-
consumer pathways can be used. The expected proportion of active pathways, denoted by θ ,
is dictated by the technical characteristics of the grid. In the simulations below, we fix θ = 0.85.

In order to select the active OT pathways, we study two different settings:
(1) In Section 6.2.1 below, we choose φ as a realization of a Bernoulli random matrix

with i.i.d. (i.e. independent, identically distributed) Bernoulli entries (i.e. transport path-
ways), each with parameter θ ; i.e. each pathway in the OT plan independently has prob-
ability θ of being active a priori3. We denote this by φ(x,y) iid∼ Bern(θ) below.

(2) In Section 6.2.2 below, we impose more structure on the problem. Once again, we
assume independent Bernoulli pathways in φ , but now with probabilities that are a de-
creasing function, θc(x,y), of the cost, c(x,y). We denote this by φ(x,y) id∼ Bern(θc)
below. We still require that the proportion of active pathways in the OT plan be equal
to θ , as explained below. By choosing θc(x,y) to be cost-sensitive, we are effectively
encoding spatial correlation in the Bernoulli random matrix.

6.2.1. φ(x,y) iid∼ Bern(θ). Given that all pathways, (x,y), are quenched will equal probability,
1− θ , we are imposing a notion of fairness, in the sense that no pathway is favoured (or pe-
nalized) more than any other. The i.i.d. Bernoulli r.v.s realizing the base distribution, φ , are
therefore {

φ(x,y) = 1 with probability θ ,
φ(x,y) = 0 with probability 1- θ .

(6.2)

The resulting OT plan—with quenched paths uniformly distributed across the domain, at an
expected rate of 0.15—is illustrated in Fig. 3. Note how both low-cost and high-cost pathways
have the same probability (0.85) of being active.

6.2.2. φ(x,y) id∼Bern(θc). In this case, we assume that the pathways of the OT plan are quenched
independently but not identically (id), by realizing the ideal base pmf entries, φ(x,y), as Bernoulli
r.v.s with parameters θc(x,y), chosen to be a decreasing function of the cost, c(x,y). This yields
an OT plan where high-cost pathways are penalized by being assigned lower probabilities of be-
ing active a priori. It is worth noting that this non-uniform choice of θc enables the modelling
of spatial correlations in the OT plan, where clusters of entries with similar transport cost (and,
therefore, spatial neighbours) have similar activation probabilities. There exist other techniques

3Since the iterative SK algorithm is initialized by the ideal, π I(x,y|K ) (4.2), the (exact) zeroes of
πo

FPD,π I (x,y|K ) (4.1) are equal to those of φ(x,y) for a finite number of SK iterations [9].
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FIGURE 3. OT plan for ideal base pmf, φ(x,y) iid∼ Bern(θ), θ = 0.85.

for modelling spatial interactions in Bernoulli random matrices, among them the Ising model
and the multivariate Bernoulli distribution [11, 29]. In our simulation, we adopt the following
strictly decreasing function of the cost, c(x,y), parameterized by α ≥ 0 and β > 0:

θc(x,y)≡ β exp(−αc(x,y)). (6.3)

β ∈ (0,1] is designed to satisfy the constraint that the proportion of active pathways in ΩS×ΩT
be θ = 0.85:

β ≡ m2
θ

∑
(x,y)∈{0,...,m−1}2

exp(−αc(x,y))
≤ 1. (6.4)

We visualize the OT plans for four cases of α ∈ {1.0, 0.5, 0.1, 0.05}, in Fig. 4. Lower values
of α induce more high-cost active pathways in the OT plan. When α → 0, we recover the i.i.d.
Bernoulli matrix realization of φ(x,y) in Section 6.2.1, with θc(x,y)→ β ≡ θ (6.3). Therefore,
α provides control over the proportion of quenched high-cost pathways.

Conversely, α = 1 yields OT plans with quenched pathways mostly located remotely from
the main diagonal of the plan, being the regions of high cost (Fig. 4(A)). In Fig. 4(B)–(D), we
can clearly see that decreasing α causes the quenched pathways to concentrate less in the high-
cost region of the plan and more of them to concentrate in the low-cost region (near the main
diagonal). Since the proportion of quenched pathways is being held constant at 1−θ = 0.15,
it follows that lowering α sweeps the quenched pathways away from the high-cost regions
towards the low-cost region. For convenience, we define the high-cost threshold to be

c(x,y)≥ c̄+1.9c0, (6.5)

where c̄ and c0 are the average and standard deviation, respectively, of the pathway costs, c(x,y).
With this definition, the number of high-cost entries is equal to κ = 182. Fig. 1(B) shows the
binary map of high- and low-cost entries in the transport map, induced by the quadratic cost
function, c(x,y).

In Fig. 5, we plot the proportion of high-cost pathways that are quenched as a function of
α ∈ [0,1]. Here, we randomize φ(x,y) over 100 Monte Carlo trials, and graph the average
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(A) α = 1 (B) α = 0.5

(C) α = 0.1 (D) α = 0.05

FIGURE 4. OT plans for ideal base pmf, φ(x,y) id∼ Bern(θc), with cost-sensitive
θc (6.3), and for α ∈ {1.0,0.5,0.1,0.05}.

proportion of high-cost pathways that are quenched, with the corresponding standard deviation.
This confirms our design aim: that increasing α increases the proportion of quenched pathways
among those of high cost. In contrast, small values of α yield OT plans in which the quenched
pathways are distributed uniformly, so that the proportion of quenched high-cost pathways drops
to 1−θ = 0.15.

In these examples, we have shown how FPD-OT facilitates the design of an ideal (i.e. zero-
loss, but unattainable) distribution (4.2) with a cost-dependent base distribution, φ , chosen as
a realization of a non-stationary, cost-sensitive Bernoulli field (6.2, 6.3). This has enabled
sophisticated, multi-objective design constraints to be satisfied, in this case the concentration of
quenched (i.e. zero-transport) (x,y) paths into high-cost regions of the plan, while maintaining a
constant average rate, θ = 0.85, of active paths. As we increase α in (6.3), we can push more of
the quenched paths into these high-cost regions (Fig. 5). Conversely, as we dial α down to zero
in (6.3), then θc→ β ≡ 0.85 (in this simulation), and the design reverts to the cost-independent
case (Fig. 3(A)). It is the direct interaction between the regularizing base distribution, φ(x,y),
and the cost metric, c(x,y), in the ideal distribution (4.2) that facilitates this kind of design. The
classical regularized Kantorovich setting of the OT problem (2.4) renders such multi-objective,
cost-dependent designs harder to achieve, perhaps explaining why φ(x,y) in (2.4) has not been
actively exploited in structured OT. Instead, the choice, φ ≡ U , of entropic OT is the usual
default.
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FIGURE 5. Proportion of high-cost entries that are quenched, as a function of α .
The blue bars represent the average proportion obtained from 100 Monte Carlo
simulations, with the corresponding standard deviations in red.

7. DISCUSSION

The purpose of this paper has been to recast the regularized Kantorovich optimal transport
(OT) problem (2.4) as one of fully probabilistic design (FPD) (3.2). A number of important
conceptual and practical benefits flow from this FPD-OT framework, as summarized next:

7.1. The benefits of an FPD setting of regularized Kantorovich OT. FPD (3.2) is the min-
imum-KLD projection of the ideal distribution, π I , into the set, πK (2.2), constrained by the
fixed marginals, µ and ν . In this sense, it specifies an optimal update of π I when processing
these knowledge constraints:

π
I(x,y|K )

µ,ν−−→ π
o
OT,ε,φ (x,y|K ) (7.1)

In this way, the Gibbs-type OT ideal transport plan (4.2) acts as the pre-prior, yielding the
joint distribution, πo

OT,ε,φ (x,y|K ) (4.1), as the optimally and sequentially K -conditioned joint
model. The alignment of regularized OT to the rich context and literature of FPD [3, 16, 23]
is not well known currently. It provides a more mature justification—beyond the usual regular-
ization notions of smoothness and computational convenience—for designing minimum-KLD
plans in OT, in place of (unregularized) plans which attain a Wasserstein distance between µ

and ν .

7.2. Cost-dependent ideal design. The FPD-OT example in Section 6 has made clear the
potential for this resetting of the regularized Kantorovich OT problem to reveal new, structured
OT plans. In particular, the facility to trade off the ideal base distribution, φ(x,y), against the
pre-specified cost of transportation, c(x,y), in specifying the ideal transport plan, π I(x,y|K )
(4.2), points to interesting new criteria for finding lower Bayes-risk (i.e. lower KLD) OT designs
(4.1) (see the fourth bullet point after Theorem 4.1).
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7.3. Future opportunities in hierarchical FPD-OT. OT—and its FPD-OT setting in this
paper—involves the choice of an uncertain, K -constrained augmented model, πo

OT,ε,φ (x,y|K ),
via deterministic optimization (4.3). However, in a fully Bayesian setting, the Kantorovich plan,
π(x,y) is a random process [23], and must be equipped with a hyper-prior, π(x,y)∼Π, whose
design should process suitable relaxations of the marginal constraints of conventional OT (2.2).
In this way, optimization is replaced by randomization. Several opportunities to explore new
directions for OT then emerge. These include (i) the processing of—fully modelled—noisy
and uncertain marginals (conferring robustness on the design); (ii) the formal quantification of
uncertainty in π(x,y); (iii) the opportunity to process nonlinear functionals of π(x,y); and (iv)
the deployment of the mature armoury of stochastic simulation tools. These propensities for
hierarchical FPD-OT will be reported in future publications on this topic.

8. CONCLUSION

In this paper, we have recast the entropy-regularized Kantorovitch OT problem as one of
fully probabilistic design (FPD). Probability models—confined to a knowledge-constrained set
of alternatives—are ranked against a zero-loss ideal case, using Kullback-Leibler divergence
(KLD) as the induced expected loss (i.e. risk) [3]. In effect, the optimization is reformulated
as a problem of generalized Bayesian conditioning [17, 23], providing important inferential
insights into the resulting designs. For instance, in Section 5, the regularization constants in
objective (5.6) are recast as deterministic functions of KLD-ball radii. In Section 6, we showed
how the regularizing distribution, φ(x,y), of conventional OT is recast in FPD-OT as the base
distribution of a Gibbs-type ideal OT plan, π I(x,y|K ), and so can be chosen to quench path-
ways between source-target pairs, (x,y), with high transport costs. More sophisticated spatial
correlation structures might be satisfied by choosing the base distribution, φ(x,y) (4.2), as the
realization of a Markov random field with cost-dependent clique potentials. In future work, we
plan to investigate hierarchical relaxations of FPD [23] for OT (i.e. HFPD-OT). Important prob-
lems of robust OT and nonlinear moment processing will be accommodated by this framework.

Authors’ Note
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London Mathematical Society, s1-14 (1882) 139–143.
[6] Y. Chen, T. Georgiou, M. Pavon, Optimal transport in systems and control, Annual Review of Control,

Robotics, and Autonomous Systems, 4 (2021) 89-113.
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