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Abstract. Under standard economic assumptions, the optimal paths in optimal growth models can be non-
monotonic and, at times, extremely complex. In contrast, real-world policies are typically based on the assumption
of a monotonic progression towards objectives. To address this discrepancy, this study investigates the charac-
teristics and value loss associated with an alternative monotonic path when the optimal path is non-monotonic in
discrete-time, one-state-variable optimal growth models. We assume that the planner selects the best path from
a class of monotonic paths (i.e., either monotonically increasing or decreasing paths). We show that if the opti-
mal path is increasing (or decreasing), the corresponding monotonic path will also be increasing (or decreasing).
Monotonic paths generically encounter time inconsistency when reaching their steady states. If the monotonic path
is revised at this point, the transition from increasing to decreasing, or vice versa, in the monotonic path occurs in
tandem with a similar transition in the associated optimal path. Distinct features of the monotonic paths compared
to the optimal paths include time inconsistency and the finite time to reach the steady state. Moreover, the mono-
tonic path with revision exhibits differences in the local stability of the common interior steady state compared
to the optimal policy. Regarding value loss, in three models demonstrating chaotic optimal paths, the study finds
that the upper bounds of the value loss ratios incurred by adopting monotonic paths without revision range from
107> to 10~ 13 relative to the optimal value function. We argue the potential generality of this marginal value loss.
Furthermore, we discuss several implications of these findings, including a possible rationale for why complex
solutions to optimization problems can describe human behavior that is not universally optimal.
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1. INTRODUCTION

Since the 1980s, it has been known that an optimal path in a standard optimal growth model
can exhibit complex dynamics [9]. The central implication is that various cyclical or non-
cyclical fluctuations may be endogenously generated as optimal paths in competitive economies.
For a policymaker, this suggests that achieving the optimal path may be highly complex and del-
icate. In practice, many plans made by governments, firms, and households aim to set a goal,
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steadily approach that goal, and try to achieve it within a finite period. If the optimal path is
non-monotonic, adopting such monotonic paths may be suboptimal. However, in everyday life,
it is not always easy to pursue complex plans that follow the optimal path. If the outcomes from
adopting monotonic paths are not significantly worse compared to optimal policies, people may
opt for adopting monotonic paths instead of strictly adhering to optimal ones.

Motivated by this gap between theoretical complexity and practical difficulty, this study ex-
amines the consequences of adopting monotonic paths when the optimal path is not monotonic.
We analyze a discrete-time optimal growth model with a single state variable, assuming that the
model has a unique interior steady state and its optimal policy function is unimodal, generat-
ing non-monotonic optimal paths. We assume that planners must choose a state path from the
monotonic class (monotonically increasing or decreasing paths) at the initial time point.

The study first examines the properties of monotonic paths when the optimal path is non-
monotonic. We show that when the optimal path is increasing (or decreasing), the monotonic
path will also be increasing (or decreasing). Due to the non-recursive nature of the optimization
problem for monotonic paths, the monotonic path is generically time-inconsistent. This time
inconsistency arises at the steady state of the monotonic path, where the optimal path transitions
from increasing to decreasing or vice versa. Consequently, if the planner revises the monotonic
path, it will change from increasing to decreasing or vice versa, depending on the optimal path.
Additionally, the period until the monotonic path encounters time inconsistency aligns with
the period during which the optimal path shifts from increasing to decreasing or vice versa.
Therefore, the monotonic path is similar to the optimal path and very similar when it is revised
when it faces time inconsistency.

One feature of the monotonic path that is different from the non-monotonic optimal path is
that the monotonic path generically faces time inconsistency. Another distinct feature is that
the monotonic path reaches a steady state in finite time. Furthermore, there is a difference in
the local stability of their common interior steady state: while the stability of the interior steady
state of the optimal path implies the stability of the steady state of the monotonic path, the
converse does not hold. Therefore, it is possible for the steady state of the optimal path to be
unstable while it remains stable for the monotonic path.

The monotonic path described above bears similarities to real-world planning in the following
manner. Real-world plans typically aim to steadily achieve objectives within a specific period.
Similarly, the monotonic path monotonically approaches the steady state and reaches it in finite
time. Real-world plans often create a new plan at the end of the current plan. Likewise, a
monotonic path switches to a new monotonic path when the current monotonic path reaches its
steady state.

Following the characterization of the monotonic path, the study evaluates the magnitude of
value loss resulting from adopting the monotonic path without revision. We measure value
loss using the ratio of the value functions for the optimal path and the monotonic path. Since
the value loss ratio varies with the level of initial capital stock, we seek the upper bound of
the value loss ratio. We then present examples of optimal growth models with chaotic optimal
paths, as discussed by Boldrin and Montrucchio [2], Deneckere and Pelikan [3], and Nishimura
and Yano [11]. The results indicate that the upper bounds of the value loss ratio are on the
order of magnitude of at most 10™>, showing that the suboptimality of the monotonic path is
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marginal. We discuss that this low-value loss is generally expected to hold, not just in the
examples presented.

The similarity between the optimal path and the monotonic path, along with the minimal
value loss incurred by adopting the monotonic path instead of the optimal path, provides in-
triguing insights from both descriptive and normative perspectives. From a descriptive stand-
point, the similarity between the optimal path and the monotonic path helps explain why human
behavior, which is not universally optimal, can sometimes be well described by complex so-
lutions to optimization problems. From a normative standpoint, the minimal value difference
between the optimal and monotonic paths explains why humans (despite not being universally
optimal), can achieve results comparable to optimal plans. The final section of this paper will
further discuss the implications of these findings.

The remainder of this paper is structured as follows: Section 2 describes the model and
assumptions. Section 3 characterizes monotonic paths. Section 4 formulates the value loss
ratio, examines its properties, and calculates the upper bound of the value loss ratio for the
economic model examples. Finally, Section 5 discusses the implications of the results. All
proofs are provided in the Appendix.

2. MODEL

2.1. Optimal growth model and policy function. Let7 =0,1,2,... denote discrete time and
consider an economy described by (I",u,p), where I": R, — R is a correspondence that rep-
resents the production set for each period, i.e., output y can be produced at the end of the period
from the input x at the beginning of the period if y € I'(x), u : ]R%r — R 1s a one period util-
ity function, and p € (0,1) is a discount factor. An optimal growth model is defined by the
following problem:

Ve(x) = sup Zpt_lu(xt—l’xt)

{Xr}tzotzl
subjecttox; € '(x;—1), t=1,2,..., xp =x>0. (2.1)

We call {x;},> that satisfies the above condition a feasible path from x. We make the fol-
lowing assumption for I" and u:

e (A.I'l) I' is nonempty, compact, convex-valued, and continuous.

o (AT2)I(0) = {0}.

o (AT3)If0<x<x, thenI['(x)C T(x).

e (A.T'4) There exists x* > 0 such that if x < x*, then there exists y > x such that y € I'(x),
and if x > x*, then there exists 7 < 1 such that if y € ['(x), then y < yx.

e (A.U1) u(x,y) is continuous, concave, increasing in x, and strictly decreasing in y, and
jointly strictly increasing, i.e., u(x,x) < u(y,y) if x <y, for any (x,I'(x)) C RZ.

Due to (A.T'4), any feasible path enters [0,x"] in a finite time and stays there. Then, we may
restrict the state space to this interval. Furthermore, we normalize the maximum stock level as
x* = 1. We denote the production possibility set with D := {(x,y) € [0,1] x [0,1]|y € T'(x)}.
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Then, we rewrite the above problem as:

(P) Ve(x)= sup ZP u(x;—1,%)

{Xz}z>ot
subject to (x;—1,%) €D, t =1,2,..., xo =x € [0,1].

With these assumptions, V,(x) is continuous and satisfies the following Bellman equation, and
conversely, no function other than V,(x) satisfies this functional equation:
P) Vc<x> = Ssup u(x7y) +ch(y)
yel(x)

(See, for example, Stokey and Lucas [13]). Since a solution for (P”) exists for all x € [0, 1], the
optimal path for problem (P) exists for all x € [0, 1].

To distinguish (P) and (P’) from similar problems discussed below, we refer to them as the
complete optimization problem. Similarly, we call V. : [0, 1] — R the completely optimal value

function and a path {x; },>( achieving V,(x) the completely optimal path. The following results

are readily derived from the assumptions or are well-known':

e (F.1) V.(x) is continuous, concave, and strictly increasing.
e (F.2) The optimal policy correspondence defined by

He(x) := {y € T(x)[u(x,y) + pVe(y) = Ve(x)}

is non-empty, compact valued, and upper hemi-continuous.

If u is strictly concave, H, is a singleton at each point. Thus, H, becomes a function &, (x),
which is referred to as the optimal policy function. However, despite u being just concave,
there exists an economic model where the optimal policy correspondence becomes a function
(Nishimura and Yano [11]). This paper does not assume strict concavity of u but assumes the
existence of the optimal policy function A (x) for problem (P). Furthermore, it is assumed that
h¢(x) possesses the following property:

e (A.H) H.(x) = {h¢(x)} for all x € [0,1]. The optimal policy function 4 : [0,1] — [0, 1]
is continuous®. There are x” and x", such that 0 < x” < x* < 1 and h(x) is strictly
increasing in [0,x”) and strictly decreasing in (x”, 1] with A.(x) > x for x € (0,x°) and
he(x) <xforxe (x¥,1).

This assumption ensures that the completely optimal path from almost every initial stock is
not monotonic.

2.2. Monotonic path. This subsection defines the monotonic path problem that this paper in-
vestigates. Define first the following two correspondences I'; : [0,1] — [0,1],i = a,d by:

[,(x):={y€0,1]|ly eT'(x) and y > x},
Fy(x) :={y€0,1][y € T'(x) and y < x}.
Denote the associated production possibility sets by:
D;:={(x,y) € [0,1] x [0,1]|y € T3(x)},i = a,d.

IRefer to Stokey and Lucas [13] (Theorem 3.6) for (F.2).
>The continuity is a result rather than an assumption since H is upper hemi-continuous and it holds that

{limy ~, h(x),lim - h(x)} € H(z) = {h(z)} for any z € [0, 1].
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We refer to the following two problems as the ascending problem (AP) and the descending
problem (DP), respectively.

(AP) Vy(¥)= sup ¥ p' (1)

{xt}t>ol
subject to (x;—1,%) € Dg,t = 1,2,...,x0 =x € [0,1].

OP) V()= sup ¥ p'ulvi1.x)

{Xz}z>ot
subject to (x;_1,%) € Dg,t =1,2,...,x0 =x € [0, 1].

By a similar argument to the above, these problems have an optimal path referred to as an
ascending optimal path and a descending optimal path, respectively, and these optimal paths
satisfy the associated Bellman equations:
(AP’) Vy(x)= sup u(x,y)+pVa(y),
Y€ qa(x)
(DP’)  Vy(x) = sup u(x,y)+pVa(y).
yely(x)
We denote the solution set of the above problems, i.e., the ascending and descending optimal
correspondence, by H,(x) and Hy(x), respectively, and represent the element by /,(x) and /4(x).
That is,
hi(x) € Hi(x) := {arg max u(x,y)+pVi(y)} Ji=a,d.
yeli(x)
By a similar argument as above, these correspondences are nonempty, compact-valued, and
upper hemicontinuous. Now, we define the monotonic problem and the optimal paths.

Definition 2.1 (The monotonic path). The monotonic path, referred to as {x}"},>0, is a solution
to the following problem:

(MP) V,u(x) = Y p (") = max{ Vi (x), Va(x) ).
t=1

Although the function “max” is convex, we will see that V,, is a concave function like V;
(i=c,a,d) at Proposition 3.5. In addition, we will see that a monotonic path is time inconsistent
for almost every x in [0, 1], since the problem is not recursive, unlike the Bellman equations for
Vi(i=c,a,d).

We refer to V,,,(x) as the monotonic value function. We denote the associated policy corre-
spondence by H,,(x) and represent the elements by A,,(x), i.e.,

X" =hn(%11) € HxL).
3. CHARACTERIZATION OF THE MONOTONIC PATH

This section examines the properties of the ascending and descending policies and then char-
acterizes the monotonic path. The following sequence of capital stocks {x'};>¢ plays a crucial
role in their characterizations.

Definition 3.1. x (i = 0,1,2,...) satisfies ! < x” and h.(x""!) = !, where x° is the unique
interior steady state of 4.(x) defined in (A.H).
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0 ....: ¥ X x! x* X 1

FIGURE 1. Optimal policy function & /(x) and x's

Figure 1 illustrates a typical policy function we are considering with some x's. As seen
from this, if the initial stock is x' (i = 1,2,...), the completely optimal path is monotonically
increasing and reaches x° at r = i. In this case, a completely optimal path and an ascending
optimal path coincide. We note this as a proposition.

Proposition 3.2. V.(x) = V,(x) = V,u(x) ifx=0o0rx' (i=0,1,2,...).
The proposition below shows further results regarding an ascending optimal path.

Proposition 3.3. The ascending optimal correspondence H, satisfies the following properties.
(a): Hq(x) = {he(x)} for x € {0,2%x1, ...},
(b): Hy((x1,x")) C [x\,x1] for i > 1 and H, ((x',x°)) C [x°,1].
(©): Hy(x) = {x} forx € [x°,1].
(d): An ascending optimal path from x € (0,1] reaches a steady state in [xo, 1] in a finite
time.

Proposition 3.4 shows a descending optimal path.

Proposition 3.4. The descending optimal correspondence Hy satisfies the following properties.
(@): Hy(x) C [0,x°) forx € (x%)1].
(b): x € Hy(x) for x € [0,x°).
(¢): A descending path reaches its steady state in [O,xo] at least one period later.

Using these results, we can show some properties of the ascending, descending, and mono-
tonic value functions.

Proposition 3.5. The following hold for the ascending value function V,(x), the descending
value function V;(x), and the monotonic value function Vy,:
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(@): Ifx < he(x), i.e., x € (0,x0), Va(x) > Vg(x). If x > he(x),i.e., x € (xp, 1], Va(x) < Vy(x).
Therefore,

_Valx) < o
Vin(x) —{ Va(x) if x .
(b): V,,(x) is strictly increasing and concave.
As an immediate consequence of Propositions 3.3, 3.4, and 3.5 is:

Corollary 3.6. The monotonic path is time-inconsistent, except when the initial state x satisfies
xo=0orx'fori=0,1,2,....

As the last topic characterizing the monotonic path, we consider the “stability” property of
the interior steady state x”. The question is whether a monotonic path from a neighborhood of
x¥ approaches or gets away from x if the planner revises the monotonic path when facing time
inconsistency. For this analysis, we impose an additional assumption:

(A.U2) u(x,y) is twice continuously differentiable and u;»(x,y) := d%u(x,y)/dxdy # 0 at

(x0,29).

Proposition 3.7. Assume (A.U2) additionally to the assumptions in Section 2. (a) The policy
function for the monotonic paths h,,(x) exists in a neighborhood of x°: Hy,(x) = {hy(x)} for x €
(x0 —e,x + €) for a small positive €. (b) x% is locally asymptotically stable steady state of the

monotonic path problem (MP) with revision, i.e., |x —x°| > |y (x) —x°| for x in a neighborhood
of X0, if and only if

pur (x°,x%) + (3p — Dupa (x°,x°) + upn (x°,x%) < 0. (3.1)

(c)(3.1) holds if p > 1/9 or x° is an asymptotically stable steady state of the completely optimal
problem (P).

Therefore, roughly speaking, the monotonic path with revision is more likely to converge to
a steady state than the optimal policy.

4. VALUE LoSS

4.1. Lower Bound of Value Ratio. In this section, we investigate the extent of loss in value
incurred by adopting a monotonic path instead of following the optimal policy. Here, “value”
can refer to various meanings, such as social welfare, household utility, or corporate profits. To
measure the loss in value, we introduce the value ratio (V,,(x)/V.(x)). To ensure that each term
in the ratio is non-negative, we define the value ratio as:

Val) - u(0.0)/(1-p)
RO =y —u0,0/1-p) *<OV
)

Note that the range of R(x) is (0, 1] since u(x,x) > u(x,0) for all x > 0, and thus
Ve(x) 2 Vin(x) = u(x,x)/(1—p) > u(0,0)/(1 - p).

Moreover, note that R(x) is invariant up to a positive affine transformation of u. Hence, we
assume that, without loss of generality,

(A.U3) u(0,0) =0,
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throughout this section. With this assumption, V,,(x) and V,(x) are positive for x € (0,1] and
the value ratio becomes

Vin(x)

Ve(x)

R(x) =

Proposition 4.1. There is x € (x', 1] that minimizes R(x) over (0, 1].

4.2. An Example of the Upper Bound of the Value Loss Ratio. Since the lower bound of the
value ratio (R(x)) or the upper bound of the value loss ratio (1 — R(x)) varies depending on the
model (I',u, p), we consider specific models and present the results of their upper bounds of the
value loss ratio. The models include those of Deneckere and Pelikan [3], Boldrin and Montruc-
chio [2], and Nishimura and Yano [11]. All of these models feature optimal policy functions that
generate ergodic chaos®. As shown below, these studies provide their utility functions u(x,y)
and policy functions /.(x). The optimal value functions V,(x) are either provided (Denecker
and Pelikan [3]) or derived as shown below. The values of the monotonic value function V,,(x)
for [x!, 1] is calculated as:

Vin(x) = maxu(x,y) + u(y,y)
y I-p
0 1 0
) y>Xx x <x<x
subject to { v <20 for Oex<l

Deneckere and Pelikan [3] provide their utility function
u(x,y) = xy—x?y — (1/3)y — (75/1000) y* + (100/3)x — 7x* + 4x> — 2x*,
discount factor 0.01, optimal policy function %.(x) = 4x(1 —x), and the associated value func-
tion
V. (x) = —=5x* 4+ (100/3)x.
Boldrin and Montrucchio [2] provide their utility function

u(x,y) = —0.0857845y* +0.171569y > — 0.3285y* — 1.61y + 4xy(1 — x) — 24x* + 150x,

discount factor 0.0107231, and optimal policy function that is the same logistic map as one of
Deneckere and Pelikan [3]. The value function is

Vo(x) = (1/2)(h(x))* — (47.9871/2)x* + 149.994x,

which is derived from the identity V. (x) — {u(x,h(x)) + pVe(h(x))} = 0, where the left-hand
side is a polynomial.
Nishimura and Yano [11] provide a pair of utility function and discount factor, with which

B ux . 0<x<1/u

= s aptan—n) U x el
is rationalized as the optimal policy function. It is assumed that 1 < u < 2a < 2 for the tent
map to be well-defined in the domain [0, 1] and expansive. Additionally, it is specified that the
support of the limit distribution of (h.)" (x) is [h:(1),1] by assuming that the parameters are

3In the notation used in this paper, ergodic chaos implies that the limit distribution of ((h.)"(x) (n — ) is a
uniform distribution, identical for almost every x € [0, 1], and the support has positive measures. As a result, almost
every optimal path visits each point on the support infinitely many times, exhibiting complicated state paths.
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chosen to satisfy (he)**?" (1) = 1 for nonnegative integer n. Once n is fixed, then the utility
function
x—(1/u)y 0<y<—(ou/(u—a))(ox—1)
u(x,y) = for
o ={ afltn) o Llamin e ety e
and the range of discount factor p are determined. Although Nishimura and Yano [11] do not
refer to the optimal value function, it is derived as follows: For 0 <x < 1/pu,

Ve(x) = u(x, px) + pVe(px) = pVe(pix).

Thus, the value function is homogeneous in degree —log(p)/log(u) over the state space. It is
identified with the information on the value at the interior steady state X0,

Ve(h™1(x%)) = pVe(x®) = (p/ (1= p))u(x’,2").

The table below shows the maximum value loss ratios for the three studies*. For the Nishimura
and Yano [11] model, we present nine cases of periodic solutions starting from x = 1 with pe-
riods ranging from 3 (= 3-29%) to 3-28, where the discount factor ranges from approximately
0.366 to approximately 0.996.

Table 1 shows the maximum value loss ratio incurred by adopting monotonic policies instead
of completely optimal policies is marginal, at most on the order of 107>, in these optimal
growth models. This means that, for instance, when annual rents of $1,000,000 are obtained
on the completely optimal path, the value loss incurred by adopting monotonic policies would
be at most a few tens of dollars per year, sometimes much less than $1.00. Furthermore, if
policy revisions are allowed, the value loss incurred by adopting monotonic policies will be
even smaller.

Table 1 Maximum value loss ratio

Maximum value loss ratio Maximum point Steady state Range of support  Discount factor

Deneckere and Pelikan (1986) 1.54869E-05 0892066861 0.75 o, 001
Boldrin & Montrucchio (1986) 1.48268E-05 089165252 0.75 .1 00107231
0 4.05524E-08 0633980327 0633974529 ( 0.133974 1) 0.366025

1 9.96713E-09 0796842907 0.796839848  ( 0.571078 ,1) 0614019

2 2.35344E-10 0889364656 0889364498  ( 0.771403 1) 0.785600

Nichi Jy 3 3.47722E-13 0.942458809 0942458771 ( 0.883217 1) 0.886569
“';9'5‘”'3 and rano 4 1.06929E-10 0.970582605 0970582597  ( 0.940712 1) 0.941611
5 3.21062E-10 0.985130106 0985130073  ( 0.970149 ,1) 0970371

§ 1.08786E-11 0992523154 0992523146  ( 0.985018 1) 0.985074

7 1.99907E-10 0996257839 0996251107  ({ 0992495 1) 0.992509

8 341123E-10 0998122913 0096247588  ( 0996244 1) 0.996248

5. DISCUSSION

At the end of this paper, we discuss the implications derived from the qualitative results of
monotonic policies and the numerical results of the value loss incurred by following a mono-
tonic path when an optimal path is non-monotonic.

4The calculations were performed using Mathematica. The codes used for the calculations are available upon
request from the author.
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Although we presented numerical examples of the value loss for only a few models, it is
reasonable to expect that a similar order of maximum value loss ratio would appear in many
models with complex non-monotonic optimal paths. This expectation is based on the follow-
ing two factors: First, studies on economic models that produce complex equilibrium paths
(Denecker and Pelikan [3]; Boldrin and Montrucchio [2]; and Sorger [12]) required heavy dis-
counting to generate such paths. Mitra [6] and Nishimura and Yano [10] prove that the discount

2
factor must be less than [<\/§ - 1> / 2} ~ 0.3819 for the model (I", u, p) to have a period-three

cycle optimal path, which implies that the optimal policy function is chaotic in the sense of Li
and Yorke [4]. Heavy discounting diminishes the impact of the outcomes of future choices.
Therefore, choosing a suboptimal monotonic path in the future is likely to have a small impact
on value. This is the reason why the maximum value loss ratios are very small, with the order
of 107 to 1078 in the heavy discounting case on the table (p = 0.01 to 0.37).

Heavy discounting implies that the model’s unit period is long. For instance, with a dis-
count factor of 0.3819 and assuming a standard annual discount rate of 0.03, one unit period
would amount to about 33 years. Therefore, economic models employing heavy discounting are
deemed useful for examining long-term business cycles, such as Kuznets cycles or Kondratiev
waves. However, models that generate non-monotonic optimal paths with lighter discounting
are required to explore shorter-term economic fluctuations. As a result, developments in this
field have shifted towards creating complex optimal paths using lighter discounting. Examples
from Nishimura and Yano [11] and Wan [14, 15, 16] and the data demonstrated in Table 1 show
that the smaller the discount rate adopted, the narrower the range of the support on which an
optimal path fluctuates becomes. This more general possibility is suggested by the neighbor-
hood turnpike theorem (see, e.g., McKenzie [5]) and is expected from the results of Mitra and
Sorger [7]. However, if the range of the support becomes narrower, the impact of choosing a
suboptimal monotonic path over an optimal non-monotonic path within that range would also
decrease. This is the second reason why the maximum value loss ratios are expected to be
very small. Despite light discounting, it occurs due to the narrow range of oscillation. Table 1
demonstrates that for the examples of Nishimura and Yano [11], they are of the order of about
10710,

The fact that adopting a suboptimal monotonic path results in a small value loss actually
suggests that monotonic paths may become optimal with slight modifications to the model. If
economic frictions, such as resizing of firms, scrapping and rebuilding of capital during eco-
nomic downturns, layoffs of employees, and increases in unemployment rates, are not reflected
in the model as costs incurred by economic fluctuations, and if these costs are incorporated to
make the model more realistic, a monotonic path may emerge as an optimal policy, rather than
a complicated one.

Contrary to this argument, when complex policies are indeed optimal, the results obtained
in this paper can lead to the following interpretation: Real people may not necessarily be able
to effectively follow a complex optimal path with an infinite planning horizon. Hence, they
may adopt a monotonic path. Alternatively, regardless of human capability, policymakers and
managers may choose monotonic policies because they are tasked with achieving specific goals,
such as economic recovery, eliminating fiscal deficits, expanding market share, and streamlin-
ing unprofitable sectors within a finite period. In either case, these economic agents appear
different from the economically rational agents assumed by economic models. However, the
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results of this paper suggest that their paths and outcomes may not differ significantly. The
same holds for the monotonic path if the state variable increases or decreases along the optimal
path. In other words, the paths followed by both types of agents who can and cannot follow
the complex policies coincide in terms of whether the state variable increases or decreases in
each period. Furthermore, the differences in outcomes may be marginal, as indicated by Table
1 and discussed above. This may explain why, even if real humans are not necessarily econom-
ically rational, optimal growth models assuming such behavior can still effectively represent
real behavior and outcomes.
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6. APPENDIX

6.1. Proposition 3.3. (a) It follows from the definition of x' and Assumption (A.I'2). (b) Take
i>0,z¢€ (x1x%), and h,(z) € Hy(z). We prove this by contradiction. Assume first that
ha(z) < x'. Then, since h,(z) # he(z) € (x',x~1), by (A.H),
Va(z) <Ve(2) = u(z,he(2)) + pVe(he(2))- (A1)

Since D, C D, one has

Va(2) = u(z,ha(2)) + pVa(ha(2)) < u(z,ha(2)) + pVe(ha(2))- (A.2)
Since h,(z) < x' < he(z), there exists A € (0,1) such that Ah,(z) + (1 — A)he(z) = x'. By the
concavities of u, V., and V,, (A.1) and (A.2) yield

Va(2) < AVa(2) + (1= A)Ve(2)

< A{u(z,ha(2)) + pVe(ha(2)) } + (1= A) {u(z,he(2)) + pVe(he(2)) }

<u(z,x') +pVe(x)

— u(z, )+ (),
where the last equality follows from Proposition 3.2. Since (z,x') € D,, we have a contradiction.
Next, assume that /,(z) > x'~! for i > 1. Since hy(z) > x'~! > h(z), there is A € (0,1) such
that A4, (z) + (1 — A)he(z) = x'~!. By a similar argument to the above, we have

Va(2) < AVa(z) + (1 = 2)Ve(2) S ulz,x™ ) +pVed ™) = ulzx™ ") + pValx™),

a contradiction.

(c) Hy(x°) = {x"} is obvious. Take z € (x°, 1] and h,(z) € H,(z). Since he(z) < x° <z < hy(z),
by a similar argument to the above, we have, for some A € (0,1) such that Ah.(z) + (1 —
Mha(z) = 2°,

Va(z) < AVa(z) + (1 = 2)Ve(2) < u(z,x°) 4+ pVa(x0). (A3)
If 7 < hy(z), there exists u € (0, 1) such that ph,(z) + (1 — u)x® = z, and (A.2) and (A.3) imply
that
Va(z) < {u(z, ha(2)) + pValha(2))} + (1 = ) {u(z,2%) + pVa(x") }
<u(z,2) +pVa(2),
which is a contradiction.
(d) From (a) - (c) in this proposition, any x > 0 reaches [xo, 1] in a finite time and stay there.

6.2. Proposition 3.4. (a) We prove by contradiction. Assume that there are hy(x) € Hy(x)
and z € (x,1] such that hy(z) > x°. Since h.(z) < x < hy(z), it holds that V,;(z) < V.(z) and
x0 = Ahy(z) + (1 — A)h.(x) with some A € (0,1). Then we have a contradiction

Va(z) <AVq(2) + (1 - 2A)Ve(2)
< Au(z,ha(2)) +pVe(ha(2)) } + (1 = 2) {u(z,he(z)) + pVe(he(2))
< u(z,Ahg(2) + (1 = A) he(2)) + pVe(Aha(2) + (1 = A) he(2))
u(z,x°) + pV.(x°)
u(z,x) + pVy(x).
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Note that x° € T'4(z).
(b) The proof follows a series of lemmas below:

Lemma 6.1. A concave function f : R — R satisfies d f(x) > df(y) for x <y, where d f(x) is
a subgradient of f at x.

Proof. Since f(x) is a concave function, we have, for x <y, df(x)(y —x) > f(y) — f(x) >

Af(y)(y—x). 0

Lemma 6.2. If there exists p > 0 such that u(xg,xo) — pxo+ ppxo > u(Xr—1,%) — px;—1 + ppx;
holds for any descending path {x; };>¢ starting from x, then xq is a steady state for the descend-
ing problem (DP).

Proof.

(o]

Y o' {ulxo,x0) —u(xi—1,x)} = Y p" = {pxo— ppxo— pxi—1 +ppx.} = 0.
t=1

t=1

O

Lemma 6.3. At the unique steady state of the completely optimization problem x°, there exists
a subgradient of u(x°,x%), (Pu(x?,x°),09u(x2,x2)), such that pdu(x°,x°) + dJu(x°,x%) = 0.

Proof. Consider u(x",y) + pu(y,x°) as a function of y. If this is not the case, all subgradients
Hu(x®,x%) + pdyu(x®,x°) at y = x¥ are either positive or negative. Assume that they are posi-
tive. Then, by the upper hemi-continuity of subgradients of a concave function, there exists a
subgradient such that dyu(x?, x4 &) + pd u(x’ +€,x%) > 0 for some small positive €. However,
this leads to a contradiction:
0 > {u(xo,xo +&)+pu(x’+ S,xo)} - {u(xo,xo) + pu(xo,xo)}
> {82u(x0,x0 + &)+ pdu(x’ +£,x°) e
> 0.

A parallel argument can be applied in the case that all subgradients are negative. U

Proof of Proposition 3.4 (b)
For x = 0 and x°, H;(x) = {x} is obvious. Let xo € (0,x°) and p = dju(xo,xp). Take any
descending path from xg, {x; };>0. Then

[u(x0,x0) — pxo + ppxo] — [u(xi—1, %) — pxi—1 4 p pxi]
> [pdiu(xo,x0) + hu(xo,xo)] (x0 — x;)
>0,
where the last inequality follows from
[pd1u(xo,x0) + hu(xo,x0)] > pau(x’,x%) + Ru(x*,x°) =0

by Lemmas 6.1 and 6.3. Then, x is a steady state of the descending optimal problem by Lemma
6.2.

(c) For xq € [0,x°], it is a steady state by (b) of this proposition. For xy € (x°,1], H¢(x°)
[0,x%) and it reaches a steady state after one period by (a) of this proposition.
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6.3. Proposition 3.5. (a) They follow from Propositions 3.3 and 3.4. That is, for x € (0,x°),
Tu(x) D {x} = Hy(x), but {x} & H,(x), and thus V,(x) > V;(x). Similarly, for x € (x°, 1], [;(x) D
{x} = Hy(x), but {x} & H,(x), and thus V,(x) < V;(x).

(b) We first show the concavity. The completely optimal problem, the ascending problem,
and the descending problem are all concave problems. Hence, the associated value functions
are concave, and we need to check the concavity of V;,(x) around x° where the maximized value
switches from V,(x) to Vy(x).

Consider the case of z € (0,x%]. Take x, € (0,z) and x5 € (x°,1]. Let A € (0,1) satisfy
Axy+ (1 — A)xy = z. Define function

_ Va(x) i+ € [0,)
ral) '_{ Ve(x)(r=20) +Ve(x?) ifxe (60,1]

where 9V, (x") is a common subgradient of V;, i = c,a,d, at x°. Since v,(x) is a concave function
by construction and v,(x;) > V,(x4), we have

Vin(2) = Va(z) = va(z) > Ava(xg) + (1 = A)va(xg)
> AVy(xa) + (1 = A)Va(xg) = AV (xa) + (1 — 2)Viu(xg).
A parallel argument is applied to the case of z € (x°, 1): Take x, € (0,x°) and x4 € (z,1]. Let
A € (0,1) satisfy Ax,+ (1 — A)x; = z. Using a concave function,
V() (x —x0) +V.(x%) if x € [0,x0)
va(x) = { Vi(x) if xe (x°1] °
we have
Vin(z2) = Va(z) = va(z) > Ava(xa) + (1 = A)va(xg)
> AVa(xg) + (1 = A)Vy(xg) = AVin(x0) + (1 = A1) Vi (xg)-

Next, we prove that V,,(x) is a strictly increasing function. Define f(x) := u(x,x)/(1—p).
Take z € (x°,1]. Since V;,(x) is concave and V,,(z) > V,(z), we have

Vin(x%) = Vi (2) > Viu (6°) = Viu(2) > 0V (x°) (2% = 2).

Then we have
Vi) =Va(2) _ f(0) = f(2)
x0—z I

The last inequality follows from Assumption (A.U1). Using Lemma 6.1 in the proof of Propo-
sition 3.4, AV, (x) > 9V, (x°) > 0 for x € (0,x°]. Therefore, Vj,(x) is strictly increasing on
(0,x9].

Regarding the interval (x°,1], note that Vi,(z) = u(z,hy(2)) + (p/(1 — p))u(ha(z),ha(z))
where hy(z) € Hy(z). Since hy(z) < z, the subgradient of the first argument of u(z,hy(z)) satis-

fies

u(z,2) —u(z,ha(2))
2= ha(2)
where the last strict inequality follows from Assumption (A.U1). dyu(z,hy(z)) > 0 implies
u(z,hy(z)) < u(z+ €,hy(z)) for any small positive €. Then, we have,

2 lhale) (@) < Valz+e).

IVpu(x%) > > 0.

du(z,hq(z)) > >0,

Vin(2) <u(z+¢€,hq(z)) +
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6.4. Proposition 3.7. (a) u12(x%,x°) # 0 implies uay (x°,x°) < 0 since uyjuz > (u12)? by the
concavity of u. Hence, this implies strict concavity of the right-hand side of

Vin(x) = maxu(x,y) +(p/ (1= p))u(y.y)

in y for x € (x? — £,x° + &) with a small positive € by Berge’s theorem of the maximum.
(Note that the right-hand side follows from Propositions 3.3, 3.4, and 3.5.) Therefore, we have
H,,(x) = {h(x)} in a neighborhood of x°

(b) u12(x¥,x%) # 0 also implies 15 (x° 0) < 0 since the policy function A.(x) is strictly de-
creasing at X0 by Assumption (A.H) (see Mitra, Nishimura, and Sorger [8, Theorem 6.3.2] and
also Benhabib and Nishimura [1]).

Note that /,,(x) = argmax, u(x,y) + (p /(1 — p)u(y,y), and it holds that

ua (%, b (%)) + fp {ui(h,,(x),h,, (x)) +ua(h,, (x),h, (x)) } =0,

where uj(x,y) := du/dx and uy(x,y) := du/dy. From this first order condition, we have

dhn(x) _ — (1= p) ura(x, hiu(x))
dx  (1=p)un(x,hn(x)) +p{uri(h,(x),h,(x)) +2ur2(h, (x),h, (x)) + uz2(h,, (x), b, (x)) }

At x = X0, hm(xo) = x°, and thus

dhn(x") —(1=p)un(x%x°)
dx  puy(x0,x0) +2puin (x0,x0) + uzp (x0, x0)

(<0).

The condition for the local stability of the steady state is given by dh,,(x0)/dx > —1. Tt is
equivalent to

purt (x°,2%) + (3p — 1) u1n(x%,2%) + uzn (x°,2°) <0. (A.5)
(c) Since
pull(x x) 2\/_u12( )—i—uzz(xo xo)

<pu11(x %0 +2\/pu11 x0 xo)uzz(xo xo)+u22( 0 O)

= - (\/!Pun(xo,xo)l - \/!uzz(xoaxo)f) <0,

Inequality (A.5) holds if

(Bp+2yp — Dupn(x°,x%) = (Vo +1) Bv/p — Dupn(x*,x%) <o,
ie,p>1/9.1f

1 (x%,2%) + (—p = D) un (x%,x%) + uzn (x°,x°) < 0, (A.6)

the optimal policy %.(x) is asymptotically stable at x* (Mitra et al., 2006, Theorem 6.3.3 and
Equation (6.2)). It is readily confirmed that (A.6) implies (A.S5).
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6.5. Proposition 4.1. Since V,,(x) = V,(x) for x € [0,x°], the statement is true if we show that
the minimizer of V,/V, locates in the interval (x',x%). Note that, for x > 0,
Va(x) S u(x, he(x)) + pVa(he(x)) S Va(he(x)) (A.6)
Ve(x) ™ u(x,he(x)) + pVe(he(x)) — Ve(he(x))’ .
where the second inequality follows from the facts that u(x, . (x)) > 0 and V,(h¢(x)) — Vg (he(x) >
0. Define r(i) (i=0,1,...) by

Va(x
Ve(x)
Then, for x(i + 1) which attains r(i + 1),
Valeli 1) | Valheloi+ 1)) | o
Ve(x(i+1)) = Ve(he(x(i+1)))

where the first inequality follows from (A.6), and the last inequality follows from A (x(i+ 1)) €
[x*1 xi] and the definition of r(i).

subject to x € [x' 1 x].

r(i) := min

r(i+1)=

Differentiate function R(u) = (a+u)/(b+u) : R'(u) = (bb;f)Z >0ifb>a.



