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MATRICES WHOSE PERMANENT RANK EQUALS HALF THEIR RANK

BEN KISLEY, BRYAN SHADER

Department of Mathematics & Statistics, University of Wyoming, Laramie, WY 82071, USA

Abstract. The permanent rank of an m× n matrix A over a field F generalizes the notion of the rank of A and is
the largest k such that A has a k×k submatrix whose permanent is nonzero. In 1999, Yu proved that the permanent
rank of a matrix is always at least half the rank. This paper gives an explicit characterization the matrices for which
equality holds; and demonstrates that, for characteristic different than 2, fixed m, n and even r with r ≤min{m,n}
there is essentially a unique m×n matrix over F with rank r and permanent rank r/2.
Keywords. Matrices; Permanent rank.
2020 MSC. 15A15.

1. INTRODUCTION

Let A be an m×n matrix over a field F. It is a basic fact that the rank of A is the largest k such
that A has a k× k matrix with nonzero determinant. Analogously, the permanent rank of A is
defined to be the largest k such that A has a k×k submatrix with nonzero permanent. We denote
the rank (respectively, permanent rank) of A by rank A (respectively, perrank A). The permanent
rank was introduced in [2]. The paper resolves a question raised in that research article.

Let B be an n×n matrix. The permanental adjoint of B is denoted by p-adj(B) and is the n×n
matrix whose (i, j)-entry is perB( j, i). If y is an n×1 vector, then the Laplace expansion of the
permanent implies that the i-th entry of yT p-adj(B) is the permanent of the matrix obtained by
replacing the i-th row of B by yT , and the j-th entry of p-adj(B)y is the permanent of the matrix
obtained by replacing the j-th column of B by y. We begin with a result that utilizes these facts
about the permanental adjoint.

If α ⊆ {1, . . . ,m} and β ⊆ {1, . . . ,n}, then B[α,β ] denotes the submatrix of B whose row
indices lie in α and column indices lie in β . When m = n, this is simplified to B[α]. When
α = {1, . . . ,n}, respectively β = {1, . . . ,n} we write B[:,β ], respectively B[α, :]. If α = {i} we
simply write B[i,β ]. The submatrix of B whose row indices lie outside α and column indices
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lie outside β is denoted by A(α,β ). Thus B[α,β ] and B(α,β ) are complementary submatrices
of B.

Lemma 1.1. Let C be a matrix of the form[
B u

vT c

]
,

where B is an n×n matrix with nonzero permanent, u and v are n×1 vectors, and per C = 0.
Then

c =−vT p-adj(B)u
perB

.

Proof. By Laplace expansion of the permanent along the last row, followed by Laplace expan-
sion along the last column of each resulting matrices, we have

per C = cperB+
n

∑
i=1

n

∑
j=1

v jui per B(i, j)

= cperB+
n

∑
j=1

n

∑
i=1

v j perB(i, j)ui

= cperB+vT p-adj(B)u.

The result follows by solving for c. �

The following lemma relates the perrank of a matrix to the permanental adjoint of a largest
square submatrix with nonzero permanent.

Lemma 1.2. Let A be an m× n matrix over a field F such that B = A[{1, . . . ,k}] has nonzero
permanent, and k = perrank(A). Then A has the form[

B X
Y −Y PX

]
,

where P = p-adj(B)
perB .

Proof. By Lemma 1.1,

ak+i,k+ j =−
yi

T p-adj(B)xj

perB
,

where yi
T is the i-th row of Y and xj is the j-th column of X . Hence

A[{k+1, . . . ,m},{k+1, . . . ,n}] =−Y PB.

�

The next result gives an upper bound on perrankA in terms of rankA, and was proven in [2].

Theorem 1.3. Let A be an m×n matrix. Then perrank(A)≥ rank(A)/2.

Proof. By Lemma 1.2, it suffices to prove the result in the case that A is an n× n invertible
matrix of the form [

B X
Y −Y PX

]
,
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where B is a k× k matrix and perrank(A) = k. Note that if v is in the nullspace NS(X) of X ,
then [

0k×1
v

]
is in the nullspace of A. As A is invertible, NS(X) = 0. Hence k ≥ n− k, which is equivalent to

k ≥ n/2 = rank(A)/2.

�

Equality can hold in Theorem 1.3. Let P2 denote the matrix[
1 1
1 −1

]
.

For any positive integer k and any field not of characteristic two,

perrank(⊕k
i=1P2) = k =

rank(⊕k
i=1P2)

2
. (1.1)

Additionally, any matrix B obtained from (1.1) by bordering with rows of zeros and columns of
zeros has perrankB = rankB

2 . The paper [2] asks whether or not these are the only such matrices
whose perrank is half the rank. This papers answers that question in the affirmative in the case
the underlying field is not of characteristic 2. When F has characteristic 2, then the rank and
perrank functions coincide, and equality holds in Theorem 1.3 if and only if A = O.

2. STRUCTURE OF MATRICES WITH PERRANK HALF THE RANK

The main result of this paper is that for characteristic not 2, these are essentially the only
matrices whose permanent rank is half its rank. The proof of the main result is a sequence of
observations that establish increasingly more restrictive constraints on such matrices. We begin
with a simple consequence of Theorem 1.3.

Corollary 2.1. Let A be a 2n× 2n matrix with rankA = 2n and perrank A = n. Then each
column of A has as least two nonzero entries.

Proof. As A is invertible, each column of A has at least one nonzero entry. Suppose to the
contrary that some column, say the first, has exactly one nonzero entry, say its first. Then
A[{2, . . . ,2n}] has rank 2n− 1. By Theorem 1.3, perrank A[{2, . . . ,2n] ≥ 2n−1

2 . As the perma-
nent rank is an integer,

perrank A[{2, . . . ,2n}]≥ n.

Hence, A[{2, . . . ,2n}] contains an n×n submatrix A[α,β ] with nonzero permanent. This leads
to the contradiction that perA[{1}∪α,{1}∪β ] 6= 0. �

The next result gives much stronger constraints, and holds only for characteristic different
than 2.

Corollary 2.2. Let A be an m×n matrix over a field F with char F 6= 2 of the form[
B X
Y Z

]
,
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where B is a p× p matrix, perB 6= 0, p = perrank(A) and ej ∈ CS(X). Here CS(X) denotes
the column space of the matrix X. Then the j-th column of Y p-adj(B) has at most one nonzero
entry.

Proof. For k 6= `, let yT
k , respectively y`T , denote the k-th, respectively `-th row of Y . Let B̂ be

the matrix obtained from B by deleting its j-th row. Lemma 1.1 implies that

per


B̂ B̂ei

yk
T −yk

T p-adj(B)Bei
perB

y`T −y`T p-adj(B)Bei
perB

= 0,

for each i ∈ {1, . . . ,n− p}. Hence, by multilinearity of the permanent,

per


B̂ ej

yk
T −yk

T p-adj(B)ej
perB

y`T −y`T p-adj(B)ej
perB

= 0.

By Laplace expansion along the last column, we obtain

0 = −
yk

T p-adj(B)ej

perB
per
[

B̂
y`T

]
−

y`T p-adj(B)ej

perB
per
[

B̂
yk

T

]
=
−2 ·yk

T p-adj(B)ej ·y`T p-adj(B)ej

perB
.

Since char F 6= 2, at least one of yk
T p-adj(B)ej and y`T p-adj(B)ej is zero. It follows that at

most one entry of the j-th column of Y p-adj(B) is nonzero. �

An analogous result holds for rows; namely, under the assumption of Corollary 2.2 each row
of p-adj(B)X has at most one nonzero entry. Additionally, under the assumption of Corollary
2.2, if Y has rank p, then in each column of Y p-adj(B) has exactly one nonzero entry.

The leading 2n× 2n principal submatrix of the matrix in the next corollary is permutation
similar to the direct sum of n P2s. This corollary will enable one to complete the characterization
from the characterization of 2n×2n matrices of rank 2n and perrank n.

Corollary 2.3. Let A be r× s matrix of the form In In X
In −In Y
U V W

 ,
where rank(A) = 2n and perrank(A) = n. If char F 6= 2, then each of X, Y , U, V W is a zero
matrix.

Proof. Assume that char F 6= 2. Note A[{1, . . . ,n}] has nonzero permanent, and A[{1, . . . ,2n}]
has nonzero determinant. By Lemma 1.2, V =−U , Y =−X , and W =−UX . By Corollary 2.2,
U = O, and X = O. Hence each of the claimed matrices is a zero matrix. �
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3. MORE STRUCTURE

The next theorem relates the determinant of n×n submatrix to the permanent of the comple-
mentary matrix for 2n×2n matrices that achieve equality in Theorem 1.3.

Theorem 3.1. Let A be a 2n× 2n matrix over a field whose characteristic is not 2 such that
rank A = 2n and perrank A = n, and let A[α,β ] be an n×n submatrix of A with nonzero perma-
nent. Then the complementary submatrix A(α,β ) is invertible.

Proof. Among all n×n submatrices A[α,β ] of A having nonzero permanent, choose one such
that the rank of A(α,β ) is the smallest, say r. Without loss of generality we may assume that
α = β = {1, . . . ,n}, and A has the form [

B X
Y Z

]
,

where B is an n× n matrix, perB 6= 0, and rankZ = r. By Corollary 2.2, we know that Z =
−Y PX , where

P =
p-adjB
perB

,

X and Y are invertible, each column of −Y P has exactly one nonzero entry, and each row
of −PX has exactly one nonzero entry. Since Z has rank r, both −Y P and −PX have rank r.
Morever, exactly r rows of−Y P are nonzero and exactly r columns of−PX are nonzero. Hence
Z has an r× r submatrix of rank r that contains all the nonzero entries of Z. By permuting the
rows of Y and the columns of X we may assume that this submatrix is the leading r×r submatrix
of Z; that is, Z has the form [

W O
O O

]
,

where W is an invertible r× r matrix. By Corollary 2.1, each of columns r+1, . . . ,n of X have
at least two nonzero entries.

Let i and j be indices such that i ∈ {1, . . . ,r} and the (i, j)-entry of −Y P is nonzero. We
claim the row vector X [{ j},{r+ 1, . . . ,n}] has at most one nonzero entry, and that for at least
one such j the row vector has no nonzero entries.

Let Â be the matrix obtained from A by interchanging rows j and n+ i. The (i, j)-entry of
−Y P being nonzero implies that

per Â[{1, . . . ,n},{1, . . . ,n}] 6= 0.

Hence, by Corollary 2.2, and the choice of B, the matrix

Â({1, . . . ,n},{1, . . . ,n})

has rank s≥ r, s nonzero columns, and s nonzero rows. The only possible nonzero rows of this
matrix are rows 1, . . . ,r. Thus s = r.

As W is invertible, W [{i}, :] has a most one zero column. We consider two cases.

Case 1. Each column of the matrix W [{i}, :] obtained from W by deleting row i is nonzero.
Then the nonzero columns of Â({1, . . . ,n},{1, . . . ,n}) are columns 1,2, . . . ,r. In particular, for
each j such that the (i, j)-entry of −Y P is nonzero, we have that X [{ j},{r+1, . . . ,n}] is a row
of zeros.
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Case 2. W [{i}, :] has exactly one zero column, say column k.
Since W is invertible, wi,k 6= 0. Additionally, there is an ` such that the nonzero columns of
Â({1, . . . ,n},{1, . . . ,n}) are {1, . . . ,r}\{k}∪{`}. Note ` may depend upon j, but k is indepen-
dent of j. If k = j, then X [{ j},{r+1, . . . ,n}] is a row of zeros. If k 6= j, then X j,k = 0 and the
only nonzero entry of X [{ j},{r+1, . . . ,n} is X j,`.

As row i of Z = (−Y P)X is a linear combination of the rows of X indexed by the j such that
(−Y P)i, j 6= 0, and Zi,k 6= 0, there is at least one such j with X [{ j},{r+ 1, . . . ,n}] is a row of
zeros, and the claim is established.

The claim and Corollary 2.1 imply that X [:,{r+1, . . . ,n}] has at least r rows of zeros, each
of the n− r columns has at least two nonzero entries and the supports of these n− r columns
are mutually disjoint. Hence n≥ r+2(n− r), which implies that r ≥ n. Therefore, r = n. �

Theorem 3.1 implies in any 2n× 2n matrix A with rankA = 2n and perrankA = n the com-
plementary submatrix to any n× n submatrix with nonzero permanent is invertible. We will
repeatedly use the contrapositive of this; namely, for such a matrix A, if detA(α,β ) = 0, then
perA[α,β ] = 0.

4. FULL RANK CASE

In this section we use Theorem 3.1 to characterize the 2n×2n matrices A for which rank A =
2n and perrank A = n. We begin with a definition of, and two simple results on, generalized
permutation matrices.

An n×n matrix G is a generalized permutation matrix over the field F provided G has exactly
one nonzero entry from F in each row and column. In other words, a generalized permutation
matrix is a permutation matrix without the constraint that each nonzero entry must be 1. We
can extend this notion to generalized cycles. A generalized cycle matrix is a specific type
of generalized permutation matrix which has zeros on the diagonal, nonzero entries on the
superdiagonal, and a single nonzero entry in the first position of the nth row. It is known that
every generalized permutation matrix is equivalent to a direct sum of generalized cycles.

Lemma 4.1. Let C be an n×n generalized cycle matrix. Then C− In has nullity at most 1.

Proof. Let Cn×n be

C =


0 c1

0 c2
. . . . . .

0 cn−1
cn 0

 .
Then if we remove the first column and last row of C− In, we have

c1
−1 c2

. . . . . .
−1 cn−1

 .
We note that A(n,1) is a lower-triangular matrix with nonzero entries on the diagonal, so A(n,1)
has rank n−1. Thus, C− In has rank at least n−1, implying its nullity is at most 1. �
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Lemma 4.2. Let G be an n×n generalized permutation matrix over a field F such that 1 is an
eigenvalue of geometric multiplicity at least n−1 (that is, null(G− I)≥ n−1). Then one of the
following holds:

(a) G = In;
(b) G is a diagonal matrix with n−1 diagonal entries equal to 1 and the remaining diagonal

entry not in {0,1}; and
(c) Up to permutation similarity, G has the form

In−2⊕
[

0 λ

λ−1 0

]
for some nonzero λ ∈ F.

Proof. Assume G is as described in the statement of the result. Without loss of generality, G is
a direct sum of d generalized cycles C1, . . . ,Cd . By Lemma 4.1, each of Ci− In has nullity at
most 1. But, by the assumption, G− In must have nullity at least n−1. Thus, we need at least
n−1 cycles. Additionally, since the eigenvalue of interest is 1, we require G = In−2⊕C up to
permutation similarity, where C is a direct sum of generalized cycles and has 1 as an eigenvalue.
Thus, C has to have one of the following forms:

Case 1. C is a direct sum of two 1-cycles.
Then at least one of the 1-cycles must be a single 1. Thus, G is either the identity, or G is a
diagonal matrix with n−1 diagonal entries equal to 1, and the remaining diagonal entry not in
{0,1}.

Case 2. C is a 2-cycle. Then

C =

[
0 λ

µ 0

]
.

Since 1 must be an eigenvalue of C, we require λ µ = 1, or µ = λ−1. Thus, up to permutation
similarity, G has form

In−2⊕
[

0 λ

λ−1 0

]
.

For the converse, since the rank of
[
−1 λ

λ−1 −1

]
is 1, it is easy to see that each of these cases is

a matrix with 1 as an eigenvalue with geometric multiplicity at least n−1 as desired. �

We next note that Theorem 3.1 allows us to restrict our attention to matrices of a very special
form. Let A be an 2n× 2n matrix, with rankA = 2n, perrankA = n, perA[{1, . . . ,n}] 6= 0, and
assume the characteristic is different than two. By Lemma 1.2, we may assume that A has the
form [

B X
Y −Y PX

]
,

where P = p-adjB
perB . By Theorem 3.1, P has rank n, and by Corollary 2.3, −Y P = G and −XP =

H for some generalized permutation matrices G and H. Without loss of generality, we may
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assume that G = I, and H = I (this can be obtained by pre-multiplying A by In⊕G−1 and post-
multiplying A by In⊕H−1). In particular, this implies that X = Y and hence we may without
loss of generality assume that A has the form[

B X
X X

]
(4.1)

and XP =−I = PX .

Theorem 4.3. Let A be a 2n× 2n matrix of the form in (4.1), where detA 6= 0, B is an n× n
matrix with nonzero permanent, perrank A = n, and the characteristic is different than 2. Then
either

(a) A is partly decomposable,
(b) n = 1, or
(c) for each i ∈ {1, . . . ,n} there exists nonzero λi and indices ji and ki, such that X(eki −

λieji) is a nonzero multiple of ei.

Proof. Assume that A is fully indecomposable and n ≥ 2. It suffices to show that (c) holds for
i = 1.

Let Â be the matrix obtained from A by interchanging rows 1 and n+1. Note Â has the form[
B̂ X

X̂ X

]
,

where B̂ is obtained from B by replacing its first row by the first row of X , and X̂ is obtained
from X by replacing its first row by the first row of B. As XP =−I, per B̂ 6= 0, and Corollary 2.2
can be applied to B̂. Let P̂ = p-adj B̂

per B̂
. This gives that−X̂ P̂ = G for some generalized permutation

matrix G, −P̂X = H for some generalized permutation matrix H, and −X̂ P̂X = X . The latter
implies that G = I. The former yields X̂H = X . This implies that the rows other than the first
row of X̂ are left eigenvectors of H corresponding to eigenvalue 1. So 1 is an eigenvalue of H
of geometric multiplicity at least n−1.

By Lemma 4.2, either H is a diagonal matrix having at least n− 1 diagonal entries equal to
1, or there exist j < k and a nonzero λ such that

H = λE j,k +λ
−1Ek, j + ∑

`/∈{ j,k}
E`,`. (4.2)

We know that XP =−I. So per B̂ =−perB. As the characteristic is not 2, we conclude that the
first row of X and the first row of B are different, or equivalently that X 6= X̂ . Hence H 6= I.

Now consider the case that H is a diagonal matrix with all but exactly one diagonal entry, say
the k-th, equal to 1. As X̂H = X and X̂ and X agree everywhere except the first row, and the k-th
diagonal is not 1, the only nonzero entry in the k-th column of X (and similarly the k-th column
of B) occurs in row 1. But then A is partly decomposable or n = 1 contrary to assumption.
Hence this case does not occur.

We conclude that there exist j < k and nonzero λ such that (4.2) holds. The equation X̂H = X
and the fact the i-th rows of X̂ and X are equal for i = 2, . . . ,n, then λXej and Xek agree on all
but their first entries. Hence X(λej−ek) is a scalar multiple of e1. As X is invertible and j 6= k,
X(λej− ek) is nonzero. �
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For the next result, we require some additional background and a basic result on trees and
unicyclic graphs. A tree is defined to be a connected graph on n vertices with n− 1 edges.
A unicyclic graph is a connected graph containing exactly one cycle. Another way to view a
unicyclic graph is as a tree with one additional edge. An important characterization of unicyclic
graphs is the following result.

Lemma 4.4. A simple graph on n vertices with n edges is connected if and only if it is a unicyclic
graph.

Proof. Assume G is a connected graph on n vertices with n edges. We prove this direction of the
result by induction on the number of vertices n. For the base case, we can consider n = 3. Then
the only connected simple graph on 3 vertices with 3 edges is a 3-cycle, which is unicyclic.
Thus, we can assume that our result is true for n vertices, and can consider the graph on n+ 1
vertices with n+1 edges. Choose any edge e such that G\ e is a single connected set of edges,
and remove it. Then we have two cases.

Case 1. G\ e is connected.
Then G \ e is a simple graph on n+ 1 vertices with n edges, making G \ e a tree. Then G is a
tree with one additional edge, making it unicyclic.

Case 2. G\ e is not connected.
Then G \ e has a connected component with n vertices and n edges. Thus, by the induction
hypothesis, G\ e is unicyclic. Then by reintegrating the edge e, we are simply adding a leaf to
a previously disconnected vertex, meaning G is also a unicyclic graph.

For the converse, we assume G is a unicyclic graph on n vertices with n edges. Assume G
has k connected components G1, . . . ,Gk. Since G is unicyclic, exactly one of these connected
components has a cycle, and the rest are trees. Assume, without loss of generality that G1
has our cycle. Assume each Gi has vi number of vertices. Note that ∑vi = n, since G has
n vertices. Additionally, we can compute the edges in each component. Since G1 contains
our cycle, it has exactly v1 edges while every other component has vi− 1 edges. Thus, G has
∑vi− (k−1) = n− k+1 total edges. However, we assume that G has n edges, so k = 1, and G
has a singular connected component. �

Corollary 4.5. Let A be a 2n× 2n matrix of the form in (4.1) where detA 6= 0, B is an n×
n matrix with nonzero permanent, perrankA = n and the characteristic is not 2. Then A is
partly decomposable, n = 1, or there exists d /∈ {0,1} such that X is generalized permutation
equivalent to a matrix of the form

(1−d)−1


1 d d · · · d
1 1 d d
...

... . . . . . . ...
1 1 1 d
1 1 · · · 1 1

 .
Proof. Assume that A is fully indecomposable and n ≥ 2. Then (c) of Theorem 4.3 holds. Let
N be the n× n matrix whose i-th column has a 1 in position ji and −λi in position ki and 0s
elsewhere for i = 1, . . . ,n. Then the conditions in (c) imply that XN is a diagonal matrix. As
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X is invertible, and each column of N is nonzero. XN is invertible. Thus N is invertible. Ad-
ditionally, since XN = D is an invertible diagonal matrix, we must have that X is a generalized
permutation matrix as well.

The matrix N determines a multi-graph G with vertex set {1,2, . . . ,n} and edges {{ ji,ki} :
i = 1, . . . ,n}. We claim that G is a cycle of length n. As N is invertible, any collection of s edges
of G must span at least s vertices. If G is disconnected, then

N =

[
O

O

]
.

Note that since X and D are invertible, X−1 = ND−1. Thus, X must have form

X =

[
O

]
.

So X is partly decomposable. Similarly, if there exists some proper collection of s edges that
spans exactly s vertices, then

N =

[
A

O

]
for some s× s matrix A. So N, and hence X , must be partly decomposable. In both of these
cases, we see that X is partly decomposable, which in turn implies that A is partly decomposable
contrary to assumption.

Thus, G is a connected simple graph with n edges, and n vertices such that any subset of s < n
edges spans more than s vertices. From our first conclusion, by Lemma 4.4, we have that G is a
unicyclic graph. Now assume the single cycle is of length s < n. By our second conclusion, the
set of edges in the cycle must span more than s vertices. This is a contradiction, and thus, the
graph G is necessarily a cycle of length n.

Without loss of generality we may assume that G is the cycle 1–2–· · ·–n–1, and thus

N =


1 0 · · · 0 −λn

−λ1 1 0 . . . 0

0 −λ2 1 . . . ...
... . . . . . . . . . 0
0 · · · 0 −λn−1 1

 .

There exist invertible diagonal matrices D, E and F such that X̂ = E−1F−1XD−1 and N̂ = DNE
satisfy X̂N̂ = I, and

N =


1 0 · · · 0 −d

−1 1 0 . . . 0

0 −1 1 . . . ...
... . . . . . . . . . 0

0 · · · 0 −1 1


for some nonzero d. Thus, we may assume without loss of generality, λ1 = · · · = λn−1 = 1,
λn = d, N is the matrix in (4) and XN = I.
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The determinant of N is 1−d. Since N is invertible, d 6= 1. It can be verified that

N−1 = (1−d)−1


1 d d · · · d
1 1 d d
...

... . . . . . . ...
1 1 1 d
1 1 · · · 1 1

 . (4.3)

As XN = I, the result follows. �

Corollary 4.6. Let A be 2n×2n matrix with rankA = 2n, perrank A = n, and the characteristic
is not 2. Then n = 1 or A is partly decomposable.

Proof. By Corollary 4.5, we may assume that X is the matrix in (4.3), λ1 = · · ·= λn−1 = 1 and
λn = d. This implies that

B = (1−d)−1


d 1 d · · · d
1 d 1 d
...

... . . . . . . ...
1 1 d 1

1/d 1 · · · 1 d

 .

Here, we have put in boldface the entries of B that differ from the corresponding entries of X .
Observe that by Theorem 3.1, any n×n submatrix of

[
B
X

]

avoiding the (n−1)-st row of B and the (n−1)-st row of X has permanent equal to 0. Let xi
T ,

respectively, bi
T , denote the i-th row of X , respectively, B. Then by the above observation, and

the multilinearity of the permanent as a function of its rows

0 = per


x1

T −b1
T

x2
T −b2

T

...
xn−2

T −bT
n−2

xT
n

= per


e1

T − e2
T

e2
T − e3

T

...
en−2

T − en−1
T

(d−1)−1 · · · (d−1)−1

 .
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This latter permanent equals (d−1)−1
∑

n
i=1(−1)n, which is nonzero if n is odd. Thus n is even,

which implies

0 = per



x1
T −b1

T

x2
T −b2

T

...
xn−3

T −bn−3
T

bn−2
T

xn−2
T

xn
T



= per



e1
T − e2

T

e2
T − e3

T

...
en−3

T − en−3
T

(d−1)−1 (d−1)−1 · · · d(d−1)−1 (d−1)−1 d(d−1)−1 d(d−1)−1

(d−1)−1 (d−1)−1 · · · (d−1)−1 d(d−1)−1 (d−1)−1 d(d−1)−1

(d−1)−1 (d−1)−1 · · · · · · (d−1)−1 (d−1)−1 (d−1)−1


= (d−1)−1 per

 0 d d
d−1 1 d

0 1 1


= 2d

6= 0.

This is a contradiction since the characteristic is not 2, and d is nonzero.
Therefore, (c) of Theorem 4.3 does not hold. Hence A is partly decomposable, or n = 1. �

Lemma 4.7. Let A be a partly decomposable, n×n matrix with rank A = 2n and perrank A = n.
Assume that for matrices Â of order m < 2n that perrank Â = m/2 implies that up to gener-
alized permutation equivalence Â is a direct sum of P2s. Then up to generalized permutation
equivalence A is a direct sum of P2s.

Proof. A partly decomposable 2× 2 matrix with nonzero determinant has perrank equal to 2.
So n≥ 2.

Consider the case n = 2. By Corollary 2.2, A has at least two nonzeros in each row and
column. Since A is partly decomposable, we may assume that A is of the form B O

a b
c d

C

 ,
where B and C have no zeros. The assumption on the rank and perrank of A imply that B and
C each have rank 2 and perrank 1. Hence, using generalized permutation equivalence, we may
assume each is P2. The conditions that perA[{i,3,4},{1,2, j}] = 0 for i ∈ {1,2} and j ∈ {3,4}
are now equivalent to 

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




a
b
c
d

=


0
0
0
0

 .
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The coefficient matrix has determinant 16, which is nonzero since the characteristic is not 2.
Hence a = b = c = d = 0, and the result holds for n = 2.

Now assume n > 2, and that

A =

[
A1 O
B A2

]
,

where A1 and A2 are square, non-vacuous matrices. If A1 is k×k, then Theorem 1.3 implies that

n = perrankA≥ perrankA1 +perrankA2 ≥ dk/2e+ d(2n− k)/2e ≥ n.

Thus equality holds throughout, and k is even. By the hypotheses, we may assume that both A1
and A2 are direct sums of P2s. The argument for n = 2 can be used to show B = O. Hence A is
a direct sum of P2s. �

We are now ready to prove the main results of the paper. The first characterizes the invertible
matrices whose perrank is half its rank.

Theorem 4.8. Let A be an m×m matrix with rank A = m and perrank A = m/2 over a field of
characteristic not 2. Then m is even, and A is generalized permutation equivalent to a direct
sum of P2s.

Proof. The proof is by induction on m. As perrankA is an integer, m is even, say m = 2n.
The base case is n= 1. As perrank= 1 and rank= 2 in this case, A is not partly decomposable.

Thus each entry of A is nonzero, and A is permutation equivalent to a matrix of the from[
1 1
1 a

]
for some a. As perA = 0, a =−1 and A is permutation equivalent to P2.

Now assume that m > 2 and the result holds for m−2. By Corollary 4.6, A is partly decom-
posable, and by Lemma 4.7, A is permutation equivalent to a direct sum of P2s.

Therefore the result follows by induction. �

Finally, we characterize all matrices having permanent rank equal to half the rank.

Theorem 4.9. Let A be an m×n matrix over a field whose characteristic is not 2 with rank A= r
and perrank A = r/2. Then A is generalized permutation equivalent to a matrix of the form[

⊕r/2
i=1P2 O
O O

]
.

Proof. This follows from Theorem 4.8 and Corollary 2.3. �

5. ODD RANK CASE

It is also natural to consider m× n matrices A with odd rank r ≤ min{m,n} and permanent
rank (r+ 1)/2. From the result of this paper, we have an immediate example. Suppose A is a
2n×2n matrix, with full rank and permanent rank n. Then A has form

A =
[
⊕r/2

i=1P2

]
.
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Then, from A we construct an (2n+1)× (2n+1) matrix B by letting B = I1⊕A. Then B is the
matrix

B =

[
1 O
O ⊕r/2

i=1P2

]
.

By our result, since A has rank 2n and permanent rank n, B has rank 2n+1 and permanent rank
n+ 1. This can be extended to any bordering of an example of even rank that increases the
rank simply by our bounds. However, unlike the even case, these are not essentially the only
(2n+1)×(2n+1) matrix that satisfy these conditions. For example, consider the matrix below
in F3×3

5 ,

A =

 1 1 1
1 2 1
1 1 0

 .
We can calculate that the matrix A has rank 3 and permanent rank 2 in F5, meeting our bounds
tightly. Additionally, A is not similar to any matrix that is a bordering of some P2, so this is a
new example. This single example proves that the odd case cannot be expressed as simply as
the even case, and it remains to classify all matrices that meet our bound in the odd case, beyond
those already listed.

Author’s Note. We dedicate this paper to Avi Berman on the occasion of his 80th birthday.
Avi, thanks for your insightful, forward-looking contributions to mathematics. Even more so,
thank you for being an incredible role model through your excellence in teaching, research,
mentorship of mathematicians, and for your friendship.
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