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Abstract. Optimal transport (OT) has an important role in transforming data distributions in a manner which
engenders fairness. Typically, the OT operators are learnt from the unfair attribute-labelled data, and then used for
their repair. Two significant limitations of this approach are as follows: (i) the OT operators for underrepresented
subgroups are poorly learnt (i.e. they are susceptible to representation bias); and (ii) these OT repairs cannot be
effected on identically distributed but out-of-sample (i.e. archival) data. In this paper, we address both of these
problems by adopting a Bayesian nonparametric stopping rule for learning each attribute-labelled component of
the data distribution. The induced OT-optimal quantization operators can then be used to repair the archival data.
We formulate a novel definition of the fair distributional target, along with quantifiers that allow us to trade fairness
against damage in the transformed data. These are used to reveal excellent performance of our representation-bias-
tolerant scheme in simulated and benchmark data sets.
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1. INTRODUCTION

Representation bias is a key issue in machine learning, with many classic datasets being
biased towards majority groups such as Americans, white people, or men depending on the
context [25, 35]. These biases — when left unaddressed — can limit trust in model outcomes, un-
dermine efforts towards fairness correction, and exacerbate existing socioeconomic inequalities
[33]. By designing a fair transformation which directly addresses the issue of representation
bias, we can ensure fairness across all population subgroups.

The problem of generalisation is of critical importance in machine learning [26]. A model’s
ability to perform well on new, unseen data after being trained on a specific dataset is crucial
to facilitate deployment. Over- and under-fitting are common, which lead to underlying causal
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relationships in data not being captured. This can be as a result of poor modelling choices [26],
or as a function of the size and composition of training data which can significantly effect the
performance of machine learning models [12, 28, 34].

One area where good generalisation is essential is in Al Fairness (AIF). Poor generalization
often leads to biased models that perform well on certain segments of the population (typically
those overrepresented in the training data) but poorly on others [1, 25]. This can result in unfair
treatment of underrepresented groups and exacerbate societal biases present in the underlying
data.

There are a number of well-established methods for fairness correction which aim to remove
or reduce the level of bias in models through changes to the model itself [5, 36] or the data
[7, 10, 31]. A contemporary review of works in AIF is presented in [1]. While these data repair
methods are popular since they don’t restrict downstream model choice, they often require
access to the entire (finite and static) dataset in order to conduct their repair - i.e. they are
not designed to generalise. The previous works [3, 23] overcome this by learning a repair on
a small training data set which can be applied to large archival or online data, analogous to
generalisation in machine learning.

However, these repairs are highly sensitive to representation biases in the training data where
the generalisation performance on under-represented classes is poorer due to incomplete learn-
ing of the distribution of the underlying data generating process. Representation bias is common
in fairness settings, since disadvantaged classes of individuals have historically been denied ac-
cess to opportunities. For example, in the Adult Income dataset [24], non-white people have
on average a lower level of education than the white people in the dataset, which corresponds
to lower predicted salaries. The presence of representation bias in data can inherently limit
the fairness metrics which are attainable, even after repair [19]. Additionally, the presence of
multiple behaviour modes of the data-generating process — due to intersectionality [13] — and
the response of further segmenting training data (i.e. considering the outcomes of non-white
women rather than just women in the Adult Income example above) exacerbates these issues
with statistical power, repair validity and learning [16].

In this work, we propose a data-driven method for overcoming representation bias in fair-
ness repair, extending the repair method initially proposed in [23] to improve robustness to
unbalanced data and improve the generalisation of the method.

Our notational conventions are as follows: random variables (rvs) and their realizations, e.g.
x, are not distinguished notationally; column vectors, e.g. X, are bold-faced; sets are denoted via
blackboard symbols, R, N, etc.; and functions via sans-serif letters, T(-), Q(-), etc. F is reserved
for an unspecified (i.e. wildcard) probability measure with respect to a particular algebra, and
may also be used to refer to its density, F(-), or probability mass function, Pr|-], with respect to
the appropriate reference measure (Lebesgue or counting, respectively), as will be evident from
the context. F, denotes the empirical estimate of F based on a random sample of size n > 1.
Finally, the Dirichlet nonparametric process prior is denoted by Z.

The paper is laid out as follows: in Section 2, we focus on modelling and introduce our
(un)fairness criterion. Sections 3 and 4 detail our proposal for a data-driven fairness correction
scheme, with experimental evidence supporting our method in Section 5. Section 6 contains a
discussion of these results, and we conclude in Section 7.
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2. AT UNFAIRNESS AND REPRESENTATION BIAS

Consider a sequential observational experiment, in which continuous-valued, d-dimensional
data (feature vectors), x; € R4, i € N, are made available, each labelled with Bernoulli (i.e.
binary, without loss of generality) attributes, u; € {1,0} (an unprotected attribute) and s; € {1,0}
(a protected, i.e. sensitive attribute). Examples of these kinds of attributes are provided in
Section 5.3.2. In this paper, we will gather a fully labelled research data set, z,,, of n data.
These fulfil the role of the training data in machine learning. They comprise n, s data for each
respective (u,s)-subgroup! of data, z,; i.e.:

zi = A{xu,siy, i€{l,...,n}

Zus = {zi:(wi,si) = (u,s)} #2, 5 =ny g (2.1)
z = {z,,:(u,s) €{1,0} x{1,0}}
n = Znujs. (2.2)

The n, s > 1 are called the stopping numbers and will be learned from the data (Section 3). For
notational ease, we may suppress the indexing variable, so that z = z;. When convenient, we
will also denote the labelled data, z, via x, .

The causal probability model [23] relating the attributes (i.e. labels) to the features (i.e. data)
is (Figure 1a)

Pu.s
——
F(x,u,s) = F(x|u,s)Pr[u|s] Pr[s] . (2.3)

We enforce the usual machine learning assumption of static labelled data, i.e. the feature vector
field, x, is conditionally independent and identically distributed (ciid) given the observed labels,
u and s:

F(x|u,s) = ﬁF(xi|ui,si). (2.4)
i=1

Here, the F, ; = F(x|u,s) are the u,s-class-conditional observation models (pdfs or pmfs) for
the features (continuous or discrete), which must be learnt (generally nonparametrically) via
the respective (u,s)-segmented research data (sub)sets, z, ;. As we accumulate the labelled
observations, z;, we will quench (i.e. stop) learning each of these models only when we satisfy
a nonparametric stopping criterion (Section 3) for each component, reaching the data-driven
stopping numbers, n,, s (2.1), respectively.

2.1. Societal and AI Unfairness. Two possible models for the static labelled observations,
F(zi) = F(z), are illustrated in Figure 1. Figure 1a demonstrates the presence of Al unfairness,
driven by the direct edge (i.e., learning pathway) between s and x, and societal unfairness, driven
by the edge between s and u. The details of these definitions are provided in [23]. In order to
alleviate Al unfairness, we must break the link between s and x, enforcing independence of the
two variables conditional on u. In Figure 1b, the conditional independence criterion (x L s)|u
is satisfied.

This conditional definition of fairness, introduced in [17] and extended in our previous work
[23], distinguishes between discrimination which is illegal (i.e. based on the sensitive attribute

'In this paper, the segmentation of z (2.2) by u will yield u-indexed groups, z,, each of which is further seg-
mented into (u,s)-indexed subgroups, z,_;.
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(B) Societal Unfairness Alone

FIGURE 1. Comparison of the causal graphs of different sources of unfairness
under our conditional independence model.

S), and that which is explainable (i.e. driven by some other influential variable which is crucially
not protected). This conditional definition is less stringent than unconditional independence,
which means that data needs to be repaired less than under an unconditional scheme, while still
satisfying legal definitions of fairness [20].

In common with [23], the principal aim of this paper is statically to transform the labelled
research data, z = x, ¢ (2.1), via (u,s)-indexed (surjective) transformations, T, s, in order to
switch off these unfairness signals in the data, i.e. these lingering dependences of x on s, given
each state of u (Fig. 1(a)). Under the ciid and labelled assumptions, these transformations can
then be applied to remove Al unfairness from out-of-sample data (e.g. archival data from the
same generative process, and, therefore, manifesting Al unfairness). In summary:

Tus
Xus — Xy g =%, s.th. ), ~ F (X |u,s) = F(x'|u). (2.5)

u,s —

Here—by construction of the (u,s)-indexed transformations, T, ,—the image, x,,, is condition-
ally independent of its sensitive attribute, s, given its unprotected attribute, u. In Section 4, we
will use methods of optimal transport (OT) to design the T, s, u € {1,0}.

2.2. Representation Bias. Since the class-conditional distributions, F, s, are unknown (being
nonparametric processes in the general case), they must first be inferred from the respective
training data sets (i.e. subgroups), z, s (2.1), typically via the empirical estimates,

Fon,. = L Y S (2.6)
Nys =5 '

where &, denotes the Dirac or Kronecker measure at x, as appropriate. In many Al fairness
(AIF) settings, u# and s are multivariate, i.e. many attributes are posited. This, of course, induces
an exponentially increasing number of (u,s)-indexed subgroups (a manifestation of the curse-
of-dimensionality, known as infersectionality in the AIF literature [13]). Over-segmentation of
the n research data may yield u, s-indexed batches which are too small to ensure that learning
of all the components, F,,, is complete, an issue we call dilution. Even if intersectionality
is avoided (as in the current paper, where u and s are assumed to be scalar Bernoulli r.v.s),
dilution remains an issue if any of the (predictive) subgroup probabilities, p, ; = Prlu,s] (2.3),
are inherently small (< }1). A central concern of this paper is to decouple the n,, ; from the p, ¢
by implementing a Bayesian sequential decision-making scheme (i.e. stopping rule, Section 3)
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which ensures that research data continue to be accumulated until learning of all F,, ; is complete
(in the sense defined in Section 3).

Definition 2.1 (Representation bias). The (u,s)-subgroup suffers representation bias in a set of
n ciid data if

Pusit < Hys,
. . . iid
where n, s is the stopping number for learning x; N Fus. O

Many current methods for quantifying representation bias rely on approximately equalizing
the representation of subgroups (i.e. enforcing % > 1, Vue{1,0}, where 7, € (0,1) is
some threshold (lower bound) of allowable bias in the representation of the s = 0 subgroup? in
the uth group [4]). Alternative definitions rely on the notion of coverage, where there must be a
minimum number of samples for each (u,s)-subgroup irrespective of the numbers for all other
subgroups [33]. A limitation of these approaches is that the thresholds must be set a priori.

Via Definition 2.1, the research data size, n = Z% sMus (2.2), ensures that

« the subgroup sizes, n, 4, are a (stochastic) function of both the class probabilities, p, s,
and the class models, F, ; (2.3);

» learning of each F, ; is completed, in the sense of the stopping rule to be explained in
Section 3; i.e. representation bias is avoided in every (u,s)-subgroup, including those
with intrinsically low p,, s.

The proposed stopping rule will achieve minimally sufficient representation of each subgroup
(as will be seen in Equation 3.5). This satisfies another objective: to minimize the computational
complexity of designing and applying the OT-based repairs, T, (2.5). Indeed, the availability
of labelled research data—particularly those labelled by protected attributes, s—often requires
expensive data-gathering procedures, legislative protection (such as that provided by the recent
Al Act of the European Union [9]), and the adoption of arduous privacy-protecting measures.
We now outline our scheme for sequential design of the stopping numbers, 7, .

3. BAYESIAN LEARNING OF THE SUB-GROUP MODELS, F, ¢

For the present, consider any one of the (four) interleaved u,s-indexed learning processes,

in each of which we sequentially observe x; i F(xx|u,s) = F s, being the (four) components
of the mixture model in (2.3). For notational convenience in this section, we suppress the
u, s subscripts, and have used k € {1,2,...} to index the sub-sequence of u, s-indexed features.
We also assume that x; € R, i.e. that d = 1 and that the feature is continuous. All of these
assumptions can be readily relaxed if required.

Since F is an unknown distribution (here, a pdf), we model it as a nonparametric process,
equipped with an appropriate Bayesian nonparametric (BNP) process prior, .# [15], yielding
the hierarchy,

x~F and F~ 7. (3.1

Specifically, we adopt the Dirichlet nonparametric process prior (DPP) [11], F = 9(%7 Vo),
where Fo = E4[F] is the prior expected distribution of x and vy € R™ is the prior degrees-of-
freedom (d.o.f.) parameter. Both of these parameters must be specified a priori. Since our

2We adopt the common convention of labelling the disadvantaged (sub)group with a zero (0).
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uncertainty about F is a monotonically decreasing function of vy [11], a minimally informative
choice is a diffuse IA:O (such as a quasi-uniform distribution on IR, and v, | 0 [30].

The appropriate BNP stopping rule for learning the mixture components, F, is provided in
[30]. It emerges via two key properties of the DPP, & [11]:

(i) . is the conjugate distribution [2] for learning F via ciid sampling:

F’{X,‘,...,xk} ~ @(ﬁk,vk) = .@k, (3.2)
k
ﬁk = (VO —I—k)_l <VOF0+ Z 6()6])) ,
j=1
Vi = Vo+k,

confirming the concentration of & around its mean distribution, Fk, as k T oo. Note that
Fj. is the Bayesian generalization of the classical empirical estimate of F,

k
Fs,k = %25(3@)7
j=1
o = L
V()—i-k’
B = (1—a)by+ oyFsy, (3.3)

i.e. the oy € (0, 1)-weighted mixture of the prior estimate, Fp, of the unknown distribu-
tion and the empirical estimate, 155,,(, based on the sequential realizations, Xy.

(i1) F induces an unknown multinomial distribution, p € A, on any finite, measurable par-
tition of the codomain, R, of x; = x. In the case where F ~ &, then the distribution
induced on the simplex, A, is the Dirichlet distribution, p € D.

The finite measurable partition in (ii) can be thought of as a quantization, Qy, of x X F:

o = Qv (x),

where V is the pre-defined set of vertices of the quantizer. Here—as in [30]—V is sequentially
defined as the ordered observations, X(j)» themselves:

VO = {—oo, —|—oo}
Vk = {_007617'~'7Gk7+°°} = Vk—l U{xk}, k= 1,2,...,
Gi = X (3.4
Note that the x; clid F are a.s. distinct in the assumed case where F is a continuous measure.

In the discrete case, V. assembles all distinct observed states of x (i.e. no repetitions), and so
#V; —2 < k in general.

This sequential, data-driven (re)quantization process, Vi, k = 1,2, ..., constitutes a partition
refinement schedule, in the sense that the number, #V —2, of ordered vertices, 0}, i an increas-
ing function of the number, , of ciid observations, x; = {x|,...,x;}. As k1 o0, knowledge of the

underlying (typically continuous) unknown distribution, F ~ & (3.2), concentrates around its
sequential expected value, Fr (i.e. the prior-empirical weighted mixture (3.3)). Learning can be
quenched under a suitable stopping rule (criterion). In [30], this is constructed via the sequence
of Kullback-Leibler divergences (KLDs) [22], KLD[D||Dx_1], kK > 2, i.e. via the sequence of
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Dirichlet distributions, D (such that p; ~ Dy ), induced via the proposed data-driven partition
refinement schedule (3.4)°. The stopping rule is therefore defined via a threshold, & > 0:

i = min {k : KLD[D||D;_] < &}. 3.5
7= min { [Di|[De—1] < €} (3.5)

In practice, a smoothed version of the KLD sequence (3.5) is adopted. The details are provided
in [30], along with the implied algorithm.

Recall that this BNP learning and stopping procedure is applied, in parallel, to all four com-
ponents, F, ,, of the attribute-structured mixture model (2.3), yielding attribute-dependent stop-
ping numbers, 7,5, (u,5) € {1,0} x {1,0}. The stopping thresholds can be chosen attribute-
wise, i.e. & 5. These provide a set of operating conditions which trade off sample complexity
against accuracy of the BNP learning process for the F,, s (3.1).

4. DATA-DRIVEN FAIRNESS CORRECTION

In this section, we propose an adaptation of the distributional approach for data repair in
[23] to overcome representation bias using the nonparametrically learnt subgroup models, F, ¢
(Section 3). This is a fundamentally different paradigm from other approaches to data repair
[7, 8, 10], which do not comment on the selection of training data and hence representation bias
may be amplified through the repair process.

4.1. Learning the Repair Operation. More formally, our labelled and ciid research (i.e. train-
ing) data set, z, is defined according to the quenching (i.e. stopping) of learning (3.5) in each
(u,s)-subgroup (2.2). We consider the set of centroids of each interior cell, i.e. the arithmetic
means of the interior vertices 0 € V, :
Oj+0j+1 .
qms?jz(Jz—jJr),lg]gn“—l, 4.1)

I

where g, 5,; € Qy is the centroid of the jth cell.
Under the proposed partition refinement schedule (3.4), the quantized conditionals, p, s, are

uniform on the ordered set Q, s, such that
1

Aus— 1

Hus = Y 6. 4.2)
J

Note that this approach is distinct from the kernel density approximation method in [23],
since we consider a uniform L, ; over a support defined by the observations x,,  (4.1). Following
[23], we employ techniques from optimal transport (OT) to design our repair. For a detailed
treatment of OT theory, and further background related to OT for fairness, see [29] and [5, 7, 10]
respectively.

The Wasserstein distance from o to i, 1 with respect to the cost function C(g i dj) = L‘Z,
the latter being the p™ power of the L” norm (with p = 2 in this work):

WP (Hu0, ) = min Y 3" C(qjo,95,) T ()0, 51) -
nen(uu,()v“u,l) qjl qjo

3The (a.s. in the continuous case) sequential splitting of mass in the multinomial process, py., is a type of stick-
breaking process [32] for representation of the underlying DPP (3.2). Importantly, the splitting probabilities are
data-driven here, being controlled by the relationship between x; and x;_;.
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Here, I1(-) is the set of joint pmfs with marginals u, o and p, 1, defined on the product space,

Qu,O X Qu,l-

The 7-indexed Wasserstein barycentres of u, o and L, | are
Ve = min { (1= 1)W3 (0, v) +1W3 (1, v) } 1 € [0,1], (4.3)

defining the geodesic between the two empirical marginals.

We consider the centre of the geodesic, v, = Vy 5, as our fair u-conditional target design,
since it is s-invariant by definition, and equally incurs damage—in a sense to be defined in
Section 4.3—to both s-subgroups simultaneously. We compute v,, via the (7, 0 — 1) x (72,1 — 1)
OT plan between the (u,s)-conditional quantized distributions, s

T, = argmin ZZC (4jo-971) 7 (40> 41 - (4.4)
T (y0,84u,1 ) iy Lig
Now, consider a labelled draw x,, A Fus. Our task is to repair this datum by driving it to
the corresponding point X’ ~ v, on the barycentre (2.5). To achieve this, we define a stochastic
operator T, ¢ with two sources of randomness as follows:

(i) Denoting the round-down (i.e. truncation) state of x in Q, s by ¢;, = | x|, we design a
X—({j,
row (where s = 0) or column (where s = 1) of the transport plan 7;;.

(i) Let 7., . be the jo™ row (or . ;, the j1™ column) of 7. Depending on the value
of s € {1,0}, this row (or column) defines the probability vector of a multinomial trial.
For s =0, Pr(ji|u,s = 0,x] < 7 ; ., yielding the (randomly) repaired state, g;,. Cor-
respondingly, for s = 1, j; provides the column index into 7, yielding the multinomial

for realizing the (randomly) repaired state, g ,.

Bernoulli trial b ~ %(p) where p = . Then, j; <— js+ b defines the appropriate

Finally, the OT repair (2.5), mapping to the geodesic centre (f = 0.5) (4.3), is

Xus = Xy = Ty s(xus) = 0.5q,+0.5g;, (4.5)

4.2. Evaluating (Un)Fairness. Clearly, there are different degrees of fairness (Section 2.1)
associated with the pre- (x) and post-repair (x') data. We would like to quantify this fairness.
To this end, we adapt the KLLD-based fairness metric proposed by [23]. Unlike other widely-
adopted fairness metrics [14, 27, 36], this measure does not depend on classification outcome
(and therefore is model-invariant), rather it is a function of the complete distribution (Equa-
tion 2.3).

As proposed in [23], we evaluate the s-dependence of the u-conditional distributions using
the u-expectation of the symmetrized Kullback—Leibler Divergence (KLD), E(x):

Eu<X) = %D|:Fu,0 H Fu.,l] +%D|:Fu,l H Fu70:|;
E(x) = ZPr[u] E,(x). (4.6)

The smaller this quantity, the fairer the distribution in the sense of breaking the conditional
dependence between x and s, given u (Figure 1). We calibrate the unfairness after repair, E(x’),
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A

against the unfairness of the original data, yielding the summary metric, E:

E=

4.7)

For a competent repair, £ should be less than 1, with £ = 1 corresponding to no improvement
over the original data, and £ = 0 indicating total s-invariance (fairness).

4.3. Data Damage. Unfair data are being transformed in order to satisfy notions of fairness.
A trivial way to ensure fairness according to (4.6) would be to enforce xfm = const. V(u,s) €
{1,0} x {1,0}, However, this destroys all predictive information in the features. We introduce
a novel metric to evaluate this notion of data damage.

Following principles of information projection [6] and fully probabilistic design (FPD) [18],
we evaluate the KLD from the repaired (fair) data distribution to the original (unfair) data dis-
tribution, in order to measure the degree to which data have been damaged by the OT repair
operation (4.5).

Definition 4.1.
D,s=D {FM | F’“} , (4.8)

where F|, ( = F(x'|u,s).
A summary quantifier of the damage incurred in the repaired data distribution, F(x’), the
(u,s)-expected value of D, s is evaluated:

D = "Pr[u] ) Prsu] Dy. (4.9)

Once again, smaller is better: D | O represents data which have been damaged less.

5. EXPERIMENTS

In this section, we detail a number of experiments designed to validate the key proposals of
this work. In Section 5.1, we explore the behaviour of the stopping rule proposed in Section
3 with quantized and mixture data in order to assess it in realistic fairness problems. Then,
in Section 5.2, we evaluate the performance of our repair method with respect to (4.7) and
(4.9) under varying mixture probabilities, Pr|u, s|, to simulate the impact of representation bias
on our repair. Section 5.3 contains the results of benchmarking against two SOTA data repair
approaches: geometric repair [10, 7] and distributional repair [23].

Throughout the experiments, unless otherwise specified, we set the prior confidence vy =
0.001, the stopping criterion € = 0.01, we take the uniform prior Fo=% (Xmins¥max )» and we
assume scalar data (features), i.e. d = 1.

5.1. Learning non-Gaussian Models.
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5.1.1. Multinomial Models. For quantized data, the probability of coincident observations is
non-zero. To evaluate the performance of the stopping rule in this setting, we construct categor-
ical distributions with g categories, where the categorical probability is based on some reference
measure X. We set X = .4#7(0,1?), and define p; = Fx(x;;1) — Fx (x;)Vi < g where Fy is the cu-

mulative distribution function for X and the support is defined x € Q,Q={-50,---,-5.0+

We evaluate the evolution of the log-KLD (LKLD) until stopping at n = 7 (3.5) for five
categorical models with ¢ € {5,10,50,500,5000}. As is evident from Figure 2, learning is
quenched sooner for coarsely quantized data with low g. This suggests the stopping rule is able
to exploit the information encoded in the coincident nature of samples to stop sooner.

— k=5
- k=10
—— k=750
k=500
- - k= 5000

0 200 400 600 800 1000 1200 1400

FIGURE 2. LKLD until stopping for observations from categorical variables
with ¢ states.

5.1.2. Gaussian Mixture Models. We further validate the stopping rule’s convergence on Gauss-
ian mixture model (GMM) data with a minority component, where F = 21'2:1 o N (my, 61-2) and
o =1[0.8,0.2], m = [—1,-5], 0 = [1,0.5]. This model simulates the presence of intersection-
ality [13], such that within (u,s)-conditional subgroups a mixture of components remains. In
this section, we conduct three experiments: (i) we evaluate the effect of the prior confidence
Vo on stopping, (ii) the effect of a non-uniform prior, and (iii) we validate the behaviour of the
stopping rule over 500 Monte-Carlo simulations.

Figure 3A demonstrates that as vo — 1, stopping occurs sooner since the prior has more
influence over stopping. Where we are uncertain about the prior, a low vy ~ 0.001 ensures that
stopping is data-driven.

The theoretical results in Section 3 are validated by our empirical findings in Figure 3B. The
uniform prior is conservative (in the sense that it is minimally informative), with the Gaussian
prior £y = .4 (m,1?) yielding higher stopping numbers, A, when x ¢ F, i.e. when there is
mismatch between the prior and the data generating process F (2.3).

Figure 4 shows that the stopping numbers, 7, are independent of the individual random data
realisations, with the stopping rule converging to the underlying mean and variance when learn-
ing 1s quenched. This is consistent with the results reported in [30] for Student’s t-distribution
and supports the application of the stopping rule to the mixture-type data typical in machine
learning applications.
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FIGURE 4. Stopping numbers, /i, sample mean, E(X), and sample variance,
S2(X), for GMM data over 500 Monte-Carlo simulations.

5.2. Fairness Repair Under Representation Bias. To evaluate the method’s performance
with varying levels of representation bias, we consider a setting with Gaussian components
F(x,u,s) as given in Table 1. The mixture weights, p, s, are chosen subject to the constraint
that Prs|u] = 0.5, u € {1,0}. The u-weight, Pr[U = 0], is then varied in (0,0.5] to simulate
balanced and unbalanced u classes.

s ‘ F(x|u,s)

0|4 (~1.0,1%)
1|.4(1.0,1.2%)
0|.4(-0.5,1.22)
1|.4(1.5,0.8%)

— O O | T

TABLE 1. Model components (2.3) in the representation bias simulation. p, s is
varied throughout the experiment.



12 A. LANGBRIDGE, A. QUINN, R. SHORTEN

Figure 5 demonstrates a key strength of our approach: even with significant representation
bias in the data-generating process, where Pr[U = 0] = 0.025, our data-driven approach is able
to repair data reliably. Further, repair damage is also shown to be representation bias-invariant,
with no more damage to under-represented components than when representational parity is
achieved at Pr[U = 0] = 0.5. A modified approach without the stopping rule, where n, s = p, s,
is unable to achieve comparable levels of repair even for Pr[U = 0] ~ 0.5 (being the case in
which representation bias is minimal) due to incomplete learning of subgroup models for some

(u,s).

0.624 , —— Stopping Rule
-4-- No Stopping Rule

—— Stopping Rule

- No Stopping Rul
it 0.601 |

! = 0541
) =
2 x
_104 0.52
0.501
0.46
01 02 03 04 05 01 02 0.3 0.4 05
Pr(U =0 Pr(U=0]
(A) S-invariance. (B) Data damage.

FIGURE 5. logE and damage (Definition 4.1) for data with simulated represen-
tation bias Pr{U = 0] € (0,0.5]. Results are reported + standard deviation over
20 Monte-Carlo simulations.

5.3. Benchmarking on Simulated and Real Data. In this section, we compare our method
to two state-of-the-art approaches: the distributional repair proposed in [23], and the geometric
repair proposed by [10] and extended by [7]. Neither of these approaches deals explicitly with
representation bias, and hence we evaluate these approaches on an alternative dataset, Z, s,
defined as (2.2) with n, s = p, s7i (i.e. retaining the representation bias in u and s of the overall
model F in a sample of equal size to the total stopping numbers).

5.3.1. Simulated GMM Data with Intersectionality. In order to simulate the impact of inter-
sectionality and representation bias on different repair methods, we design a simulated mixture
model dataset with p, ; imbalance parameterised as in Table 2. Note the bias in both the mixing
probabilities p, s and the mixture weights in F(x|s,u).

As Table 3 shows, our approach is able to outperform both geometric [10, 7] and distribu-
tional [23] approaches with respect to the s-invariance metric £ (4.7) for both on- and off-sample
repair. This is due to the complete learning of all F, ; components, ensuring that underrepre-
sented u, s subgroups are not neglected in the repair operation.

While distributional repair leads to the less damage than our approach, this is likely due to
the higher remaining s-conditional dependence after distributional repair. The trade-off between
the amount of repair and the predictive utility of data is explored in detail in [7].
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s ‘pms F(x|s,u)

0/0.18 0.8.4(—1.0,12) +0.2.4(-5.0,0.5?)
1012 0.6.47(1.0,1.22)4+0.4.4(—1.75,0.5)
0042 0.5.4(—1.0,12)+0.5.4(3.5,1.2%)

11028 0.1.4(—2.0,0.8%)+0.9.4(5.0,1.5%)

—_—_=0 O | ¥

TABLE 2. Model Components for simulated intersectionality study.

On-Sample Off-Sample
Method logE Damage logE Damage

Geometric [10, 7] | —8.365+0.172 0.394+0.020 - -
Distributional [23] | —4.491£0.120 0.307+£0.016 | —4.229+0.232 0.325+0.016
Our Approach —13.550£0.782 0.399+£0.018 | —5.385+0.375 0.431+0.020

TABLE 3. Repair metrics E and D for Geometric, Distributional and Stick-
Breaking Repairs on a simulated GMM dataset over 500 Monte-Carlo trials.
Note that £ is reported on the log scale for clarity. Geometric repair cannot
repair off-sample data.

5.3.2. Adult Income Data. We further validate our repair method on the Adult Income dataset
[24]. The dataset consists of information about ny = 48,882 individuals, including their age,
sex, race, education level, and annual income. We consider sex as the protected attribute, with
S =1 corresponding to the males and S = O to the non-males. Our unprotected, explanatory
attribute is education level, with U = 0 corresponding to an education level of high-school
graduate or below. In this data, both representation bias (due to differing access to higher edu-
cation between men and women) and intersectionality (due to the impact of race on education)
are present. Each subgroup’s prior probability is given in Table 4.

s | Prlu,s]

0.146
0.310
0.187
0.357

u
0
0
1
1

—_— o = O

TABLE 4. Mixture weights for the Adult income data, stratified by sex and edu-
cation level.

Table 5 summarises the s-conditional dependence remaining in the data after repair with (i)
geometric repair and (ii) our method, and demonstrates that for on-sample repairs our method
is able to match or outperform geometric repair, and is able to reduce the s-dependence present
in unseen data by at least three times.
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Geometric Repair Our Approach
Feature On-Sample £ Off-Sample £ | On-Sample £ Off-Sample E
Age 0.0031 - 0.0041 0.1374
Capital Gain 0.2222 - 0.1366 0.2103
Capital Loss 3.1058 - 0.5638 0.3018

TABLE 5. E for Geometric and Stick-Breaking Repairs on the Adult dataset.
Note that Geometric repair cannot repair off-sample data, and that £ > 1 corre-
sponds to making data less fair with respect to S.

6. DISCUSSION

The results presented in Section 5 demonstrate the performance of our approach on a number
of diverse models, F. The experiments in Section 5.1 support the Bayesian nonparametric theory
of Section 3 and results presented in [30], demonstrating that the stopping rule is appropriate
for a number of data-generating processes, including discretised and mixture models. In this
Section, we further validate that — while the stopping rule is not prior-invariant — the cost of
an inaccurate prior is not incomplete learning but rather a higher stopping number 7 (3.5). The
uniform prior, £y = %, is shown to be a powerful choice when there is large uncertainty about
F, such as the fairness setting when we have no knowledge about the data-generating process a
priori. Empirical guidance for the selection of the operating conditions of our method are given
in Section 5.1, and applied through Sections 5.2 and 5.3.

The key advantage of our approach under representation bias is demonstrated in Section 5.2,
where our data-driven stick-breaking approach is able to achieve representation-invariant re-
pairs. Similarly, the results in Section 5.3 demonstrate that our approach performs better than
the SOTA on a simulated GMM dataset designed to mimic the relationship between represen-
tation bias and intersectionality in real data.

It remains to calibrate our damage metric (Definition 4.1) on the unrepaired data as in our
repair metric £ (4.7), perhaps via the cross-entropy of the repaired data relative to unrepaired
data.

One interesting avenue for future work is regarding exploiting the early stopping on some
u,s subgroups to begin conducting repairs (4.5) sooner for samples x, ¢ from these quenched
processes. Especially under data-streaming paradigms with large volumes of data, this approach
has the potential to smooth the computational overhead of the mode-change from learning to
repair. Additionally, it remains to adapt this method to non-stationary distributions, i.e. those
with some drift in the underlying data-generating process, since the stationarity assumption in
this work is particularly restrictive. Existing notions of forgetting [21], specifically the work by
[30] on Bayesian nonparametrics for non-stationary processes, could be adapted to match our
data repair paradigm and generalise our approach to a much broader class of F,, .

7. CONCLUSION

In this work, we have presented a novel method for fairness correction which exploits a
data-driven stopping rule to alleviate representation bias in data by ensuring all u, s conditional
distributions are learned completely through a nonparametric stopping rule.
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We present a comprehensive study of the performance of our Bayesian approach to learn-
ing the underlying distribution of sequential data under different operating conditions and when
applied to diverse data modalities to simulate real world fairness correction. Further, we demon-
strate that our repair approach is able to repair data even with severe representation bias, where
the minority class is observed fewer than one time in 20, yielding repair quality and damage
which are invariant to this bias. We also compare our method to the SOTA geometric and
distributional repair operations on simulated GMM data and the Adult Income dataset.

Our method consistently outperforms the SOTA where representation bias is present, demon-
strating the versatility of this data-driven approach. With the recent deployment of the Al Act
[9], this is a key step towards the generalisability of fairness tools for machine learning appli-
cations.
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