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Abstract. In this paper, the finite horizon linear quadratic regulator (LQR) problem for switched linear differential
algebraic equations is studied. It is shown that for switched DAEs with a switching signal that induces locally
finitely many switches, the problem can be solved by recursively solving several LQR problems for non-switched
DAE. First, it is shown how to solve the non-switched problems for index-1 DAEs followed by an extension of the
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differential equation expressed in terms of the differential system matrices. The paper concludes with the extension
of the results to the LQR problem for general switched DAEs.
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1. INTRODUCTION

In this paper, we aim to find necessary and sufficient conditions for the existence of an in-
put that solves the finite horizon linear quadratic regulator problem for switched differential-
algebraic equations.

Problem 1.1. [LQR for switched DAEs] Find an input u (from a suitable signal space specified
later) that minimizes

J(x0,u, t0) =
∫ t f

t0
‖y(t)‖2 dt + x(t−f )Px(t−f ), (1.1)
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s.t. Eσ ẋ = Aσ x+Bσ u, (1.2a)

y =Cσ x+Dσ u, (1.2b)

x(t−0 ) = x0, (1.2c)

x(t−f ) ∈ V end, (1.2d)

where σ : [t0, t f )→N is a given piecewise constant switching signal, x is the state, the matrices
Ep,Ap ∈Rn×n form a regular matrix pair, (i.e., det(sE−A) is not indentically zero), Bp ∈Rn×m,
Cp ∈ Rq×n and Dp ∈ Rq×m, p ∈ N, P = P> ∈ Rn×n is some symmetric positive semi-definite
matrix and V end ⊆ Rn is some subspace.

Switched differential algebraic equations (swDAEs) of the form (1.2a) arise naturally when
modeling physical systems with certain algebraic constraints on the state variables. Examples
of applications of non-switched DAEs in electrical circuits (with distributional solutions) can
be found, e.g., in [37]. For non-switched DAEs, these constraints are often eliminated such that
the system is described by ordinary differential equations. However, in the case of switched
systems, the elimination process of the constraints is in general different for each individual
mode. Therefore, there typically does not exist a description as a switched ODE with a common
state variable. This problem can be overcome by studying switched DAEs directly.

In the context of linear systems the linear quadratic regulator (LQR) problem on both the
finite and infinite horizon has been studied extensively, see [15, 16, 17, 48, 50] for results on
ODEs and [2, 7, 10, 11, 12, 18, 25, 26, 27] for DAEs. Recent studies regarding the optimal
control problem for DAEs focus on finding solutions based on the Lur’e equation, which can be
interpreted as an extension of the Kalman-Yakubovich-Popov lemma [31, 32, 42]; further re-
sults have been obtained in the context of model predictive control [9, 13, 14, 30]. For switched
differential algebraic equations it seems that so far only qualitative properties such as control-
lability, stabilizability [20, 23, 24, 28, 29, 43, 44, 46], and observability have been studied
[19, 21, 22, 33, 34, 35, 36]. To the best of the authors knowledge quantitative properties such
as optimal control have not been studied for switched DAEs. This paper aims to close this gap
in the literature.

As trajectories of switched DAEs generally exhibit jumps (or even impulses), which may
exclude classical solutions from existence, the piece-wise smooth distributional solution frame-
work introduced in [38] is adopted. In particular, (x,u) ∈ Dn+m

pwC ∞ , where DpwC ∞ denotes the
space of piece-wise smooth distributions. Due to this assumption, Problem 1.1 is considered
in a piece-wise smooth distributional setup. Since within this setup, the integral over the norm
squared of a Dirac impulse is not well defined, it follows directly that the cost is finite, if and
only if, the output (1.2b) is impulse-free. Focusing on solutions that result in an impulse-free
output, we denote the output as a piece-wise continuous function, whereas it is actually a distri-
bution.

We consider Problem 1.1 under the assumption that the switching signal does not induce
chattering behavior, i.e., we assume that it induces locally finitely many switches. In principle,
the switching signal could still induce infinitely many switches. As this is troublesome for
solving the problem in finitely many steps, we consider the bounded interval [t0, t f ). In this
interval thus only finitely many switches are present.
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For many applications, it is of interest to extend an optimal solution in an impulse-free way on
the interval [t f ,∞). This is the case for example in choosing a suitable terminal cost if the LQR
problem is to be solved on a receding horizon. To allow for such extensions, we impose the
subspace endpoint constraint (1.2d) to the state at t−f . As we will show, this subspace endpoint
constraint fits naturally in the LQR problem for switched DAEs as there exists a solution to
Problem 1.1 if and only if the initial value x0 is contained in a certain subspace.

The remainder of the paper is structured as follows. First mathematical notation and prelim-
inaries are introduced in Section 2. Then the approach to solving Problem 1.1 is formulated in
Section 3 and the main result is presented. In Section 4 necessary and sufficient conditions for
solvability of Problem 1.1 for non-switched DAEs of index-1 presented and it is shown how
to generalize these results to arbitrary index-DAEs in Section 5. In Section 6 the results are
utilized to solve the optimal control problem for switched DAEs where each mode is given by
an arbitrary index DAE. The paper is concluded in Section 7 and an appendix containing some
technical proofs of the results.

2. MATHEMATICAL PRELIMINARIES

In this section we recall some notation and properties related to the non-switched DAE

Eẋ = Ax+Bu. (2.1)

In the following, we call a matrix pair (E,A) and the associated DAE (2.1) regular iff the
polynomial det(sE −A) is not the zero polynomial. Recall the following result on the quasi-
Weierstrass form [4].

Proposition 2.1. A matrix pair (E,A) ∈ Rn×n ×Rn×n is regular if, and only if, there exist
invertible matrices S,T ∈ Rn×n such that

(SET,SAT ) =
([

I 0
0 N

]
,

[
J 0
0 I

])
, (2.2)

where J ∈Rn1×n1 , 06 n16 n, is some matrix and N ∈Rn2×n2 , n2 := n−n1, is a nilpotent matrix
of order ν ∈ N. In particular, ν is referred to as the index of (2.1).

The matrices S and T can be calculated by using the so-called Wong sequences [4, 49]:

V0 := Rn, Vi+1 := A−1(EVi), i = 0,1, ...

W0 := {0}, Wi+1 := E−1(AWi), i = 0,1, ...

The Wong sequences are nested and get stationary after finitely many iterations. The limiting
subspaces are defined as follows:

V ∗ :=
⋂

i

Vi, W ∗ :=
⋃

Wi.

For any full rank matrices V,W with imV = V ∗ and imW = W ∗, the matrices T := [V,W ] and
S := [EV,AW ]−1 are invertible and (2.2) holds. Based on the Wong sequences we define the
following projector and selectors.
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Definition 2.2. Consider the regular matrix pair (E,A) with corresponding quasi-Weierstrass
form (2.2). The consistency projector of (E,A) is given by

Π(E,A) := T
[

I 0
0 0

]
T−1, (2.3)

the differential and impulse selector are given by

Π
diff
(E,A) := T

[
I 0
0 0

]
S, Π

imp
(E,A) := T

[
0 0
0 I

]
S. (2.4)

In all three cases, the block structure corresponds to the block structure of the quasi-Weierstrass
form. Furthermore, we define

Adiff := Π
diff
(E,A)A, E imp := Π

imp
(E,A)E, Bdiff := Π

diff
(E,A)B, Bimp := Π

imp
(E,A)B.

A classical (i.e. a differentiable or locally integrable) solution to (2.1) in terms of these matrices
yields x = xdiff + ximp, where xdiff and ximp satisfy

ẋdiff = Adiffxdiff +Bdiffu, xdiff(t−0 ) = Πx0, (2.5a)

ximp =−
ν−1

∑
i=0

(E imp)iBimpu(i). (2.5b)

Observe that for index-1 systems we find ximp = −Bimpu. Note that all the above-defined ma-
trices do not depend on the choice of transformation matrices S and T ; they are uniquely deter-
mined by the original matrix pair (E,A).

The switched DAE (1.2a) will not have classical solutions in general and x(t−i ) 6= x(t+i ) due to
the switching between modes. Consequently, the state is allowed to contain jumps or even Dirac
impulses. We therefore utilize the piecewise-smooth distributional framework as introduced in
[38], i.e., x and u are vectors of piecewise-smooth distributions given by

DpwC ∞ :=

{
D = fD+ ∑

t∈T
Dt

∣∣∣∣∣ f ∈ C ∞
pw,T ⊆ R is discrete,

∀t ∈ T : Dt ∈ span{δt ,δ
′
t ,δ
′′
t , ...}

}
,

where C ∞
pw denotes the space of piecewise-smooth functions, fD denotes the regular distribution

induced by f , δt denotes the Dirac impulse with support {t} and δ ′t denotes the distributional
derivative of δt . For D= fD+∑t∈T Dt ∈DpwC ∞ three types of “evaluation at time t” are defined:
left side evaluation D(t−) := f (t−), right side evaluation D(t+) := f (t+) and the impulsive part
D[t] := Dt if t ∈ T and D[t] = 0 otherwise.

The space DpwC ∞ can be equipped with a multiplication (cf. [39]). In particular, the multi-
plication of a piecewise-constant function with a piecewise-smooth distribution is well defined
and the switched DAE (1.2a) can be interpreted as an equation within the space of piecewise-
smooth distributions. Within the piece-wise smooth distributional framework, restrictions of x
and u to intervals, are well defined. Given the notation xI for the restriction of x to the interval
I ⊆ R, it is shown in [38] that the initial trajectory problem (ITP)

x(−∞,t0) = x0
(−∞,t0)

, (2.6a)

(Eẋ)[t0,∞) = (Ax)[t0,∞)+(Bu)[t0,∞), (2.6b)
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has a unique solution for any initial trajectory if, and only if, the matrix pair (E,A) is regular.
Note that it can be shown that the solution of (2.6) on [t0,∞) is uniquely determined by x(t−0 ),
hence it is justified to replace (2.6a) by x(t−0 ) = x0 for some x0 ∈ Rn.

The impulsive part of a solution (induced by an inconsistent initial value) of (2.6) is given by

x[t0] =−
ν−1

∑
i=0

(
E imp

)i+1 (
x(t−0 )− x(t+0 )

)
δ
(i)
t0 . (2.7)

Additional impulses in x can occur in response to discontinuities and Dirac impulses in the
input; these additional impulses are determined by (2.5) because the decomposition x = xdiff +
ximp with corresponding solution formulas (2.5) remain valid also in a distributional setup. We
will later discuss the situation that (distributional) solutions evolve within certain subspaces
and with a slight abuse of notation we write x[t] ∈M for some subspace M ⊆ Rn if x[t] =

∑
k
i=0 αiδ

(i)
t satisfies αi ∈M for all i = 0,1, . . . ,k.

For a single mode, the concept of the impulse-controllable space is defined as follows.

Definition 2.3. The impulse-controllable space for (2.1) is given by

C imp :=
{

x0

∣∣∣∣ ∃(x,u) ∈ (DpwC ∞)n+m solving (2.6)
s.t. x(t−0 ) = x0 and (x,u)[t0] = 0.

}
.

Furthermore, the DAE is called impulse-controllable if all initial values are impulse-controllable,
i.e., C imp = Rn.

It can be shown (see e.g. [46, Lem. 13]), that

C imp = imΠ(E,A)+ 〈E imp,Bimp〉+kerE, (2.8)

where

〈E imp,Bimp〉 := im[Bimp,E impBimp, . . . ,(E imp)n−1Bimp].

Lemma 2.4 ([8, Prop. 3]). The regular DAE (2.1) is impulse controllable if and only if

i) imE +AkerE + imB = Rn,
ii) There exists a matrix L such that the closed loop with feedback u = Lx results in an index-1

matrix pair (E,A+BL); the latter can be characterized by imE +(A+BL)kerE = Rn.

We conclude this section with an explicit definition of a solution to the switched DAE (1.2a).

Definition 2.5. A distribution (x,u)∈D(n+m)
pwC ∞ is called a solution to the switched DAE (1.2a) for

a given right continuous switching signal σ with switching times t0, t1, ...,, if (x,u) considered on
each interval [tk, tk+1) is a local (distributional) solution to ITP (2.6) on [tk, tk+1) with E =Eσ(tk),
A = Aσ(tk) and B = Bσ(tk), where the initial condition x(t−k ) is either given by (1.2c) or by the
final value of the solution from the previous interval.

Since by assumption each matrix pair (Ep,Ap) is regular, it follows that each local ITP is
uniquely solvable and hence the overall switched DAE is uniquely solvable for any given input
and any given initial value x0.
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3. PROBLEM FORMULATION AND APPROACH

As mentioned in the introduction, we consider Problem 1.1 in a distributional setup. As such,
the aim is to find a distribution u ∈ Dm

pwC ∞ that minimizes a quadratic cost functional subject to
a switched differential-algebraic equation. In order to utilize the distributional solution frame-
work and to avoid technical difficulties in general, we only consider systems with a switching
signal from the following class

S :=
{

σ : R→ N
∣∣∣∣ σ is right continuous with a

locally finite number of jumps

}
.

By doing so, we exclude an accumulation of switching times (see [38]). Since a bounded
interval [t0, t f ) is considered in Problem 1.1, it follows that the switching signal induces n ∈ N
switches on this interval. Each switch occurs at tk, where k ∈ {1,2, ...,n}. Furthermore, the
switching signal is assumed to be known a priory; in particular, solvability and the solution of
Problem 1.1 depends on the specific switching signal. By appropriately relabeling the matrices
we can therefore assume without loss of generality that

σ(t) = k, for tk 6 t < tk+1, (3.1)

where tn+1 := t f .
In order to prove the main result regarding the existence of an input that solves Problem 1.1,

some technical auxiliary results are utilized. To prevent the reader from having to go through
many technical details in order to arrive at the main result, we will state the main result at the
end of this section. Before presenting the main result, we will first introduce some general result
on the form of the optimal input, assuming it exists, and the cost associated with this input. In
particular we will show that this optimal input is a feedback and leads to a quadratic cost. Then
we will show how these results allow for a dynamic-programming approach. This approach
leads to the reduction of the optimal control for switched DAEs to a recursive optimal control
problem for non-switched DAEs. To limit the notation that needs to be introduced, we present
the main result for Problem 1.1 under the assumption that each mode is given by an index-1
DAE. Later in the paper we will present more general results where each mode is of arbitrary
index.

3.1. Optimal feedback and quadratic cost. To show that the optimal input is a feedback, we
start by pointing out that the switching signal is not regarded as a control input. Consequently,
a switched differential algebraic equation of the form (1.2a) with a switching signal σ ∈S can
be regarded as a (piecewise-constant) time-varying linear system. Such systems have a linear
solutions space where the sum of solutions is also a solution. Furthermore, the subspace end-
point constraint (1.2d) is also a linear constraint and hence the sum of solutions satisfying (1.2d)
will also satisfy (1.2d). Together with the fact that the cost functional (1.1) is quadratic in the
state and input all ingredients are present to prove several important properties of Problem 1.1.
Namely, if there exists an input that solves Problem 1.1 the optimal cost is quadratic in the
initial value and the optimal input is linear in the state, i.e., it is a feedback.

Lemma 3.1. If there exists an input u ∈Dm
pwC ∞ that solves Problem 1.1 then u(t+) = F(t)x(t−)

for some F : R→ Rm×n.
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The (technical) proof can be found in the Appendix. Note that we only consider piecewise-
smooth solutions, hence x(t−) 6= x(t+) for only finitely many t ∈ [t0, t f ) and hence we can
assume that the input is right-continuous and we can simply write u(t) = F(t)x(t) in the follow-
ing.

Corollary 3.2. If there exists an input u that solves Problem 1.1 then the optimal cost J(x0,u, t0)
is quadratic in x0, i.e.,

J(x0,u, t0) = x>0 K(t0)x0,

for some K : R→ Rn×n.

Proof. In the proof of Lemma 3.1 it was shown that the map x0 7→ V (x0, t0) for the optimal
cost satisfies the parallelogram equality (A.2). Hence it is a (semi-)norm induced by an in-
ner product. Therefore, there exists a (positive semi-definite) matrix K(t0) ∈ Rn×n such that
V (x0, t0) = x>0 K(t0)x0. �

The result of Lemma 3.1 also leads to the observation that the space of initial values for which
Problem 1.1 is solvable must be a subspace.

Definition 3.3. The set of initial values for which Problem 1.1 is solvable on [t0, t f ) is given by

V init
t0 :=

{
x0 ∈ Rn

∣∣∣∣ ∃ u that solves Problem 1.1 on
[t0, t f ) satisfying x(t−0 ) = x0

}
.

Corollary 3.4. The set V init
t0 is a subspace.

Proof. Suppose that x0,y0 ∈V init
t0 . Since the inputs ux0 and uy0that solve Problem 1.1 for x(t−0 )=

x0 and x(t−0 ) = y0 are feedbacks, it follows that αux0 + βuy0 is the optimal input that solves
Problem 1.1 for x(t−0 ) = z0 = αx0 +βy0. Consequently, z0 ∈ V init

t0 and thus V init
t0 is a subspace.

�

3.2. A repeated optimal control problem. Next we will show how the results in the previous
subsection allow for a dynamic-programming approach for Problem 1.1. Let V init

ti be the sub-
space of initial values for which there exists a solution to Problem 1.1 on the interval [ti, t f ) with
terminal subspace V end and terminal cost matrix P. Furthermore, let the optimal cost matrix be
given by K(ti), that is, the solution to Problem 1.1 yields an optimal cost J(xi,u, ti) = x>i K(ti)xi.
Then the following lemma is a reformulation of the Bellman principle of optimality.

Lemma 3.5. Problem 1.1 with initial value x0, terminal cost matrix P and terminal subspace
V end has a solution on [t0, t f ) if and only if Problem 1.1 on the interval [t0, ti) with initial value
x0, terminal cost matrix K(ti) and terminal subspace V init

ti has a solution.

Proof. The statement follows directly from the Bellman principle of optimality [1]. �

As a consequence of Lemma 3.5, it follows that if we can characterize V init
ti and we are

able to compute the corresponding cost matrix K(t) and corresponding optimal control, we can
reduce the problem of solving Problem 1.1 on the interval [t0, t f ) to solving Problem 1.1 on the
interval [t0, ti). Moreover, by choosing ti = tn, Problem 1.1 on the interval [tn, t f ) reduces to an
optimal control problem subject to a non-switched DAE. By applying Lemma 3.5 recursively
and choosing each ti to be a switching time, it follows that we can solve Problem 1.1 by solving
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n optimal control problems for non-switched DAEs, each defined on the interval [ti−1, ti), i ∈
{n,n−1, ...,1}. This leads to the following control problem for non-switched DAEs.

Problem 3.6. Find an input u ∈ Dm
pwC ∞ that minimizes

J(x0,u, t0) =
∫ t f

t0
‖y(t)‖2 dt + x(t−f )Px(t−f ), (3.2)

s.t. Eẋ = Ax+Bu, (3.3a)

y =Cx+Du, (3.3b)

x(t−0 ) = x0 ∈ Rn, (3.3c)

x(t−f ) ∈ V end, (3.3d)

on the interval [t0, t f ), x ∈ Dn
pwC ∞ is the state, E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n and D ∈

Rq×m, P = P> ∈Rn×n is some symmetric positive semi-definite matrix and V end ⊆Rn is some
subspace.

Remark 3.7. So far, none of the results have implied that the optimal input is an impulse-free
distribution. As such, the optimal solution is potentially impulsive and Dirac impulses resulting
from the input might cancel out Dirac impulses in the state.

A phenomenon already well-known for ODE optimal control problems is that the cost for the
input (given by D) needs to be non-singular to avoid impulsive optimal controls. We will make
a similar assumption here as well, which reads as follows:

rank (D−CBimp) = m. (3.4)

The main result for the index-1 case of Problem 3.6 is then given by the forthcoming Theo-
rem 4.10, which shows that Problem 3.6 is solvable if, and only if, the initial value x0 is an
element of a subspace V init which is defined in terms of the given final subspace V end. Further-
more, an explicit solution for the optimal control is provided.

3.3. Main result Problem 1.1. Returning to Problem 1.1 we can, utilizing Lemma 3.5, de-
fine a sequence of subspaces V init

ti as the subspace of feasible initial values for Problem 3.6 for
mode i considered on the time interval [ti, ti+1) with final subspace V init

ti+1
(where V init

tn+1
:= V end).

Furthermore, extending the non-singular input-cost assumption to the switched case yields as-
suming

rank (Dp−CpBimp
p ) = m. (3.5)

for p ∈ {0,1, ...,n}. Given this assumption, we are ready to present the main result for solvabil-
ity of Problem 1.1 in the case each mode of the switched DAE is given by an index-1 DAE.

Theorem 3.8. Consider the regular, index-1, switched DAE (1.2) satisfying (3.5) for which
Problem 1.1 is solvable, i.e. x0 ∈ V init

t0 . Then the optimal input is given by

u(t) =−R−1
σ(t)((B

diff
σ(t))

>K(t)+S>
σ(t))Πσ(t)x(t),
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where Rσ = (Dσ −Cσ Bimp
σ )>(Dσ −Cσ Bimp

σ ), Sσ = (Dσ −Cσ Bimp
σ )>Cσ and Πi is a projector

resulting from the Wong sequence based on (Ei,Ai); K(t) is given by the (symmetric) solution
of

K̇ =−(Adiff
i )>K−KAdiff

i +(Si +KBdiff
i )R−1

i ((Bdiff
i )>K +S>i )−C>i Ci,

on [ti, ti+1) with boundary conditions K(t−i+1) = Ψ>i PiΨi, where

Pn := P, Pi := K(t+i+1), i = n−1,n−2, . . . ,0,

and Ψi := (I−Bimp
i Ni)Πi, for some Ni that satisfies

[
I 0 NiΠi

]
kerHi = 0, with

Hi :=


Bimp>

i PiB
imp
i Bimp>

i (I−ΠV end
i

)>

(I−ΠV end
i

)Bimp
i 0

−Π>i PiB
imp
i −Π>i (I−ΠV end

i
)>


>

. (3.6)

and ΠV end
i

is a projector onto the subspace V end
i := V init

ti+1
. Finally, the optimal cost is given by

min
u

J(x0,u, t0) = x>0 K(t0)x0.

We conclude this section by stressing that initially, we did not impose any assumptions on the
index of each mode of the switched DAE in Problem 1.1. However, allowing for modes with
arbitrary index only leads to some technicalities. As such, in the presentation of the technical
results in the next sections, we will first focus on solving Problem 3.6 under the assumption
that the DAE at hand is of index-1. Then we will show how this result can be generalized to
solvability of Problem 3.6 without this assumption. Finally, we will show how this general
result recursively leads to the solution to Problem 1.1 where each mode is of arbitrary index.
As can be expected, the general main result reduces to Theorem 3.8 in the case each mode is of
index-1 and to a result for Problem 3.6 in the case no switches occur.

4. OPTIMAL CONTROL FOR NON-SWITCHED INDEX-1 DAES

As mentioned previously, we will consider first the optimal control problem for non-switched
DAEs, i.e., Problem 3.61. Furthermore, we will first consider Problem 3.6 subject to an index-1
DAE. As such, the state can be decomposed as

x = xdiff + ximp = xdiff−Bimpu, (4.1)

where the differential state component satisfies

ẋdiff = Adiffxdiff +Bdiffu, xdiff(t−0 ) = Π(E,A)x0. (4.2)

respectively. As a consequence, we can state the following result which follows from Lemma 3.1.

Corollary 4.1. If there exists an input u ∈ Dm
pwC ∞ that solves Problem 3.6 where the DAE (3.3)

is of index-1, then u(t) = F(t)xdiff(t) for some F : R→ Rm×n.

Proof. After decomposing the state as (4.1) and considering the ODE dynamics (4.2) the proof
is analogous to the proof of Lemma 3.1. �

1The problem with V end = Rn was already studied in [45]; but the consideration of a general subspace V end

increases the difficulty significantly and is crucial for utilizing the result in the context of switched DAEs.
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4.1. Terminal cost. Decomposing the state as in (4.1) allows us to express the terminal cost
as a quadratic function of the differential state xdiff(t−f ) and the input. Consequently, an input
u with a value u(t−f ) that minimizes the terminal cost with respect to the resulting xdiff(t−f ) can
be chosen. However, as the terminal cost penalizes the value of u at t−f from the left and this
value needs to be well-defined, the input u needs to be continuous on at least [t f − ε, t f ) for
some ε > 0. Therefore altering a solution (xdiff,u) such that the output has a desired value at
t−f will in general influence the running cost. As a result, we can not optimize the running
cost and the terminal cost independently of each other. However, the following result shows
that the value of the optimal input u(t−f ) minimizes the terminal cost with respect to the value
xdiff(t−f ) ∈ imΠ(E,A).

Lemma 4.2. Let u be an input that solves Problem 3.6 and let xdiff be the corresponding optimal
trajectory. Denote u(t−f ) = ψ∗ ∈ Rm and xdiff(t−f ) = ζ ∗ ∈ imΠ(E,A). Then ψ∗ is a minimizer of
the following problem.

min
ψ∈Rm

(ζ ∗−Bimpψ)>P(ζ ∗−Bimpψ),

s.t. ζ ∗−Bimpψ ∈ V end.
(4.3)

The proof can be found in the Appendix.

Lemma 4.3. For a given ζ ∈
(
V end + imBimp)∩ imΠ(E,A) the vector ψ∗ ∈ Rm solves

min
ψ∈Rm

(ζ −Bimpψ)>P(ζ −Bimpψ),

s.t. ζ −Bimpψ ∈ V end,
(4.4)

if and only if ζ = [0 0 Π(E,A) ]h and ψ∗ = [ I 0 0 ]h for some h ∈ kerH , where

H :=

 Bimp>PBimp Bimp>(I−ΠV end)>

(I−ΠV end)Bimp 0
−Π>(E,A)PBimp −Π>(E,A)(I−ΠV end)>

> (4.5)

and ΠV end is any projector onto V end.

The proof can be found in the Appendix.
Given the result of Lemma 4.3, we can compute which states ζ ∈ imΠ(E,A) are possibly an

endpoint of an optimal trajectory. Moreover, for each potential endpoint ζ ∈ imΠ(E,A) we can
compute a value of ψ that solves (4.4). Consequently, for a given optimal solution (xdiff,u)
where xdiff(t−f ) = ζ , we are able to express the terminal cost of this solution in terms of xdiff(t−f )
only.

Corollary 4.4. If there exists an input u that solves Problem 3.6 then the optimal terminal cost
satisfies

x(t−f )
>Px(t−f ) = xdiff(t−f )

>
Ψ
>PΨxdiff(t−f ),

where Ψ = (I−BimpN)Π(E,A), for any N satisfying[
I 0 −NΠ(E,A)

]
kerH = 0, (4.6)

where H is given by (4.5).
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Proof. Since (x,u) is solving Problem 3.6 it follows from Lemma 4.2 that ψ = u(t−f ) minimizes
(4.3) for ζ = xdiff(t−f ). By Corollary 4.1 the optimal input is linear in xdiff, i.e., u = Nxdiff for
some linear map N. Hence by Lemma 4.3, N satisfies [ I 0 −NΠ(E,A) ]h = 0 for any h ∈ kerH ,
i.e. (4.6) actually has a solution. Furthermore, for any other N̄ which satisfies (4.6) it follows
that N̄ζ = [0 0 N̄Π(E,A) ]h = [ I 0 0 ]h = [0 0 NΠ(E,A) ]h = Nζ , hence the effective optimal feedback
does not depend on the specific choice of N satisfying (4.6). �

Although the minimum of the objective function in (4.4) is uniquely given for a particular
xdiff ∈Rn, a minimizer u ∈Rm is not necessarily unique. However, the following result can still
be concluded regarding an optimal input.

Corollary 4.5. If an input u solves Problem 3.6 then the final optimal feedback satisfies u(t−f ) =
Nxdiff(t−f ) for some N satisfying (4.6). Furthermore, the optimal solution satisfies x(t−f ) =
Ψxdiff(t−f ) ∈ V end.

4.2. Running cost. We will now turn our attention to the running cost and the optimal control
given on the interval [t0, t f ). To that extent, we will write

‖y(t)‖2 =

[
x
u

]>[C
D

][
C D

][x
u

]
=

[
xdiff

u

]>[C>

D̂>

][
C D̂

][xdiff

u

]
,

where D̂ = D−CBimp. Then, after defining Q =C>C, S = D̂>C and R = D̂>D̂, we can rewrite
the cost functional as

J(x0,u, t0) =
∫ t f

t0

[
xdiff

u

]>[Q S>

S R

][
xdiff

u

]
dt + x(t−f )

>Px(t−f ).

Lemma 4.6. Assume that the matrices C and D satisfy (3.4). Then D̂ := D−CBimp has full
column rank and D̂>D̂ is positive definite.

Proof. Since D−CBimp has full column rank it follows directly that D̂>D̂ is invertible. �

Remark 4.7. As already mentioned in the introduction, the assumption (3.4) can be regarded
as the differential-algebraic version of the assumption that D>D is positive definite, which is
commonly made in the LQR problem for ordinary differential equations. The assumption that
D>D is positive definite is usually made to penalize every input action in the cost. As the
solution x of a DAE has a component that is directly determined by the input, the cost functional
can penalize the input also indirectly via penalizing the corresponding state component. Hence
penalizing all input actions is equivalent to the condition (3.4).

Lemma 4.8. If an input u ∈ Dm
pwC ∞ solves Problem 3.6 then

u(t) =−R−1
(
(Bdiff)>K(t)+S>

)
xdiff(t), (4.7)

where K is the (symmetric) solution of

K̇ =−(Adiff)>K−KAdiff−Q+(S+KBdiff)R−1((Bdiff)>K +S>), (4.8)

with terminal condition K(t−f ) = Ψ>PΨ with Ψ as in Corollary 4.4.
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Proof. For any symmetric-matrix-valued continuously differentiable function K(t) defined on
[t0, t f ) we can write the cost-functional as

J(x0,u, t0)− x>0 K(t0)x0 =
∫ t f

t0

[
xdiff

u

]>[Q S>

S R

][
xdiff

u

]
+

d
dt
(xdiff(t)>K(t)xdiff(t)) dt

+ xdiff(t−f )
>
(

Ψ
>PΨ−K(t−f )

)
xdiff(t−f ).

Taking the two integrands together and computing the second integrand using the differential
equation and the completion of the squares formula, we obtain after defining

W := K̇ +(Adiff)>K +KAdiff− (S+KBdiff)R−1((Bdiff)>K +S>)+Q

and omitting the dependence on t:

(xdiff)>Qxdiff +2(xdiff)>S>u+u>Ru+ d
dt ((x

diff)>Kxdiff)

= (xdiff)>(Q+(Adiff)>K +KAdiff + K̇)xdiff +2u>(BdiffK +S)xdiff +u>Ru,

= (xdiff)>(S+KBdiff)R−1((Bdiff)>K +S>)xdiff +2u>(BdiffK +S)xdiff

+u>Ru+(xdiff)>Wxdiff,

= ‖R1/2u+R−1/2((Bdiff)>K +S>)xdiff‖2 +(xdiff)>Wxdiff,

Consequently, we can rewrite the cost in Problem 3.6 as

J(x0,u, t0) = x>0 K(t−0 )x0 +
∫ t f

t0
‖R1/2u(t)+R−1/2((Bdiff)>K(t)+S>)xdiff(t)‖2

+ xdiff(t)>W (t)xdiff(t) dt + xdiff(t−f )
>
(

Ψ
>PΨ−K(t−f )

)
xdiff(t−f ).

Under the assumption (3.4), it follows from the literature on solutions on the Riccati differ-
ential equation (cf. Theorem 10.7 in [40]) that a function K satisfying K(t−f ) = Ψ>PΨ such that
W = 0 can always be chosen. Hence by choosing K(t) such that W = 0 and K(t−f ) = Ψ>PΨ we
obtain that the cost J(xdiff,u) can be expressed as

J(x0,u, t0)− x>0 K(t−0 )x0 =
∫ t f

t0
‖R1/2u(t)+R−1/2((Bdiff)>K(t)+S>)xdiff(t)‖2 dt. (4.9)

Clearly without the constraint xdiff(t−f )−Bimpu(t−f ) ∈ V end it follows that J(x0,u, t0) is mini-
mized if the input is given by

u =−R−1((Bdiff)>K +S>)xdiff.

In any case, (4.9) shows that x>0 K(t−0 )x0 is a lower bound for the optimal cost.
Next, we will show that for the problem with the constraint xdiff(t−f )−Bimpu(t−f ) ∈ V end we

have infu J(x0,u, t0) = x>0 K(t−0 )x0. For that let xdiff be the solution of (4.2) with input u given
by (4.7).

Case 1: xdiff(t−f ) ∈ V end + imBimp
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Consider the input uδ = u+ vδ where vδ is defined as

vδ (t) =


0, if t ∈ [t0, t f −δ ),

φ(t), if t ∈ [t f −δ , t f − δ

2 ),

Nxdiff(t−f )−u(t−f ), if t ∈ [t f − δ

2 , t f ),

for some N satisfying [ I 0 −NΠ(E,A) ]kerH = 0 and φ(t) is chosen in such a way that the corre-
sponding solution xdiff

δ
satisfies xdiff

δ
(t−f ) = xdiff(t−f ) (which is always possible, cf. Lemma A.1

in the Appendix).
Note that, with Ψ as in Corollary 4.4,

xδ (t
−
f ) = xdiff

δ
(t−f )−Bimp(u(t−f )+ vδ (t

−
f )) = xdiff(t−f )−BimpNxdiff(t−f ) = Ψxdiff(t−f ) ∈ V end

and thus uδ is a feasible input. Furthermore, using Corollary 4.4, we have

xδ (t
−
f )
>Pxδ (t

−
f ) = xdiff(t−f )

>
Ψ
>PΨxdiff(t−f )6 x(t−f )

>Px(t−f ).

Let M := x(t−f )
>Px(t−f )− xδ (t

−
f )
>Pxδ (t

−
f )> 0, then

J(x0,uδ , t0)− J(x0,u, t0)6
∫ t f

t f−δ

‖yδ (t)‖2−‖y(t)‖2 dt−M

and for every ε > 0 we can choose δ > 0 such that

J(x0,uδ , t0)− J(x0,u, t0)6 ε−M.

Since ε > 0 can be chosen arbitrarily small and because J(x0,uδ , t0)> x>0 K(t−0 )x0 = J(x0,u, t0)
we can thus conclude that M = 0 and

inf
ū

J(x0, ū, t0) = x>0 K(t−0 )x0.

Case 2: xdiff(t−f ) 6∈ V end + imBimp

Suppose Problem 3.6 is solvable. Let (x∗,u∗) be the optimal solution satisfying x∗(t−0 ) = x0

and x∗(t−f ) = xdiff∗(t−f )−Bimpu∗(t−f ), where xdiff∗(t−f ) = x1 for some x1 ∈ imΠ.
We will first prove that the input u∗ solving Problem 3.6 for the initial value x0 also minimizes

Problem 3.6 with V end replaced by V end∗ := V end + imBimp.
Suppose there exists an input ū such that x̄(t−f ) ∈ V end∗ and J(x0, ū, t0)< J(x0,u∗, t0). Using

similar arguments as in Case 1, for any ε > 0 we can find an input ū∗ such that the corresponding
solution x̄∗ satisfies x̄∗ ∈ V end and J(x0, ū∗, t0) < J(x0, ū, t0)+ ε . Hence for sufficiently small
ε > 0 we arrive at the contradiction J(x0, ū∗, t0) < J(x0,u∗, t0). Hence we can conclude that u∗

also solves Problem 3.6 with V end replaced by V end∗.
Next, let x̃0 6= x0 be the initial value for which the solution (x̃, ũ), with ũ given by (4.7)

satisfies x̃(t−f ) ∈ V end∗. Note that this implies x̃diff(t−f ) = x1. Then clearly it follows from the
expression (4.9) that ũ solves Problem 3.6 with V end∗ for the initial value x̃0. It follows from
the linearity of the optimal solution that v := u∗− ũ must be the optimal solution for the initial
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value z0 := x0− x̃0 for Problem 3.6 with V end∗. Then the solution (zdiff,v) satisfies

zdiff(t−f ) = eAdiff(t f−t0)z0 +
∫ t

t0
eAdiff(t−τ)Bdiffv(τ) dτ

= eAdiff(t f−t0)x0 +
∫ t f

t0
eAdiff(t−τ)Bdiffu∗(τ) dτ− eAdiff(t f−t0)x̃0−

∫ t

t0
eAdiff(t−τ)Bdiffũ(τ) dτ

= xdiff∗(t−f )− x̃diff(t−f )

and consequently zdiff(t−f ) = 0. However, this implies that z0 = 0, because a linear state-
feedback, cannot control an initial condition to zero unless it is zero. Hence we arrive at the
contradiction x̃0 = x0. �

4.3. Combining the results. Until now we have only been concerned with necessary condi-
tions for solvability of Problem 3.6. The reason that the conditions in Corollary 4.8 are not
sufficient in general is that a feedback of the form (4.7) does not necessarily ensure that all the
constraints are satisfied. A solution (xdiff,u) with u given by (4.7) and xdiff(t−0 ) = x0 ∈ imΠ(E,A)
does not necessarily satisfy

x(t−f ) = xdiff(t−f )−Bimpu(t−f ) ∈ V end,

nor

x(t−f )
>Px(t−f ) = xdiff(t−f )Ψ

>PΨxdiff(t−f ),

for any N for which [ I 0−NΠ(E,A) ]kerH = 0. Both these conditions can be rewritten equivalently
as

(I−ΠV end)Θt f x
diff(t−f ) = 0 (4.10)

and (
Θ
>
t f

PΘt f −Ψ
>PΨ

)
xdiff(t−f ) = 0, (4.11)

where
Θt f := (I +BimpR−1

(
(Bdiff)>Ψ

>PΨ+S>
)
); (4.12)

here, we utilized the fact that under the feedback (4.7) we have x(t−f ) = Θt f x
diff(t−f )

However, it follows straightforwardly that if a solution (xdiff,u) with xdiff(t−0 ) = x0 and u
satisfying (4.7) is such that (4.10) and (4.11) are satisfied, then the input is optimal. To prove
this, we will first introduce the backward state-transition matrix, defined similarly as in [15] or
[41] and which also appears in [3].

Definition 4.9. The backward state transition matrix for the closed loop time-varying differen-
tial equation

ẋdiff =
(

Adiff−BdiffR−1((Bdiff)>K +S>)
)

xdiff,

where K is a solution to (4.8) with terminal condition K(t−f ) = Ψ>PΨ, is defined as the map
Ω(·, t f ) :R→Rn×n, i.e. all solutions xdiff of the above closed-loop satisfy xdiff(t)=Ω(t, t f )xdiff(t−f ).
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Theorem 4.10. Problem 3.6 is solvable if and only if

x0 ∈ V init := Ω(t0, t f )kerΞΠ(E,A), (4.13)

with

Ξ =

[
(I−ΠV end)Θt f

Θ>t f
PΘt f −Ψ>PΨ

]
,

where Ω(t0, t f ) is the backward state transition matrix as defined in Definition 4.9, Θt f is given
by (4.12) and Ψ is given in Corollary 4.4. The optimal control is then given by

u(t) =−R−1((Bdiff)>K(t)+S>)xdiff(t), (4.14)

where K is a solution to (4.8) with terminal condition K(t−f ) = Ψ>PΨ. Finally, the optimal cost
is given by

J∗(x0,u, t f ) = xdiff(t−0 )K(t0)xdiff(t−0 )

and is quadratic in xdiff(t−0 ).

5. LQR FOR HIGHER-INDEX DAES

In the previous section, Problem 3.6 has been considered where the DAE was assumed to be
of index-1. This assumption allowed us to decompose the state into a component that solves an
ODE and a feed-trough term depending directly on the input. Furthermore, the solution (x,u)
was impulse-free regardless of the initial value as long as the input was impulse-free. This
decomposition can not be made anymore if a higher index DAE is considered. As a result of
the higher index of the DAE, the state will also depend on the derivatives of the input u and the
state will not necessarily be impulse-free if the input is impulse-free.

In fact, there exists an input that results in an impulse-free solution (x,u) satisfying x(t−0 ) =

x0 if and only if the initial value is contained in the impulse-controllable space C imp. For
such initial values, we will show in the following a particular impulse-controllable DAE can be
considered equivalently instead of (3.3). Specifically, after applying a preliminary feedback, an
index-1 DAE can be considered.

For initial values x0 6∈C imp, i.e., initial values that are not contained in the impulse-controllable
space, the corresponding solution will inevitably contain a Dirac impulse, i.e., regardless of the
choice of input. However, an optimal control might still exist for these initial values, as long as
the corresponding Dirac impulses are not visible in the output. Combining these observations
leads to the following result.

Lemma 5.1. Consider the DAE (3.3) and assume it is of arbitrary index. There exists an
impulse-free input u ∈ Dm

pwC ∞ such that for the solution (x,u) satisfying x(t−0 ) = x0 of (3.3) the
output is impulse-free at t0, i.e., y[t0] = Cx[t0] +Du[t0] = 0, if and only if x0 ∈ C imp +O imp

where O imp is the impulse-unobservable space defined as

O imp := ker

 CE imp

C(E imp)2

...
C(E imp)ν−1

 (5.1)

and ν is the index of nilpotency of E imp.
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Proof. The proof can be found in the Appendix. �

As the condition x0 ∈C imp+O imp is necessary and sufficient for the existence of an impulse-
free output, it is a necessary condition for the existence of an impulse-free input that minimizes
(3.2), subject to (3.3). However, it suffices to only consider initial values contained in C imp.
To see this, we first observe that C imp ⊆ V ∗ and O imp ⊆ W ∗ where the Wong limits for the
regular matrix pair (E,A) satisfy V ∗⊕W ∗ =Rn. Therefore, we can choose a projector W such
that imW = C imp and im(I−W ) = kerW ⊆ W ∗, note that then WΠ = Π and Π(I−W ) = 0.
Now we can decompose the initial value as x0 = Wx0 +(I−W )x0 =: x̄0 + x̃0 with x̄0 ∈ C imp

and x̃0 ∈ O imp. Applying the same decomposition on the solution x for some input u we can
conclude that x̃ = 0 on (t0, t f ) (independently from the input u); this follows from the solution
formula given in (2.5) together with im(E imp)iBimp ⊆ C imp = imW = ker(I−W ) and Πx̃0 =
Π(I−W )x0 = 0. The impulsive response x̃[t0] due to the initial value x̃0 is in general non-zero,
but these Dirac impulses are not visible in the output because by construction x̃0 ∈O imp. Hence
for the optimal control problem, we only need to consider x0 ∈ C imp.

Corollary 5.2. Consider the DAE (3.3). For any x0 ∈C imp+O imp a solution (x,u) with x(t−0 ) =

x0 satisfies y(t) = ȳ(t) where ȳ(t) is the output corresponding to the solution (x̄,u) with x̄(t−0 ) =

Wx0 where W is a projector onto C imp with kerW ⊆W ∗.

Hence in the remainder of the paper, we will consider initial values contained in the impulse-
controllable space of (3.3). However, instead of considering (3.3), which is not impulse-
controllable and of higher index, we can consider an auxiliary impulse-controllable DAE. The
latter has the same input-output behavior as (3.3) for initial values x0 ∈ C imp.

Lemma 5.3. Let C imp be the impulse-controllable space of (3.3). A distribution (x,u) satisfying
x(t−0 ) ∈ C imp, solves (3.3) if and only if it solves

EWẋ = Ax+Bu, (5.2)

y =Cx+Du, (5.3)

where W is a projector onto C imp with kerW ⊆W ∗. Moreover the pair (EW,A) is regular and
(5.2) is an impulse-controllable DAE.

Proof. The proof can be found in the Appendix. �

The auxiliary DAE (5.2) is much easier to analyze with respect to the optimal control prob-
lem as for impulse-controllable DAEs there exists a feedback that reduces the index to 1, cf.
Lemma 2.4. Let u = Lx+ v be such a feedback. After applying this feedback we obtain

Σ
aux :

{
EWẋ = (A+BL)x+Bv,

y = (C+DL)x+Dv,
(5.4)

which is of index-1. For index-1 DAEs the results have already been established and the fol-
lowing result shows that these results can be carried over to (5.4). As such, to solve Problem 3.6
subject to a higher index DAE, it suffices to find an optimal input v that solves the following
auxiliary Problem.
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Problem 5.4. Consider the DAE (3.3) and let W be a projector onto C imp with kerW ⊆ W ∗.
Find an input v ∈ Dm

pwC ∞ that minimizes

J(x0,v, t0) =
∫ t f

t0
‖ȳ(t)‖2 dt + x(t−f )Px(t−f ), (5.5)

s.t. EWẋ = (A+BL)x+Bv, (5.6a)

ȳ = (C+DL)x+Dv, (5.6b)

x(t−0 ) = x0 ∈ Rn, (5.6c)

x(t−f ) ∈ V end, (5.6d)

on the interval [t0, t f ), where L is a matrix, such that (EW,A+BL) is of index-1.

Lemma 5.5. Let C imp be the impulse-controllable space corresponding to (3.3). There exists
an input u ∈ Dm

pwC ∞ that solves Problem 3.6 subject to x0 ∈ C imp if and only if there exists an
input v ∈ Dm

pwC ∞ that solves Problem 5.4 subject to x0 ∈ C imp. Furthermore, the optimal input
that solves Problem 3.6 subject to (3.3) satisfies u = Lx+ v, where v is the optimal input that
solves Problem 5.4.

Proof. As x0 ∈ C imp it follows form Lemma 5.3 that the solution (x,u) solves (3.3) if and only
if it solves (5.2). Hence we will consider solutions of (5.2). Applying a feedback to (5.2) can
be regarded as a change of coordinates[

x
u

]
=

[
I 0
L I

][
x̄
v

]
. (5.7)

Writing (5.2) as [
EW 0

][ẋ
u̇

]
=
[
A B

][x
u

]
,

enables us to write[
EW 0

][ ˙̄x
v̇

]
=
[
EW 0

][ẋ
u̇

]
=
[
A B

][I 0
L I

][
x̄
v

]
=
[
(A+BL) B

][x̄
v

]
.

Hence (x,u) solves (5.2) if and only if, (x̄,v) satisfying (5.7) solves (5.4).
Furthermore, it follows that in Problem 5.4 the cost resulting from applying an input v to

(5.6a) equals the cost in Problem 3.6 resulting from applying an input u = Lx− v to (3.3).
Therefore we can conclude that v solves Problem 5.4 then u = v− Lx̄ = v− Lx solves Prob-
lem 3.6 and vice-versa. �

Given a method to compute the optimal input to Problem 3.6, it remains to characterize the
space for which the problem can be solved. This space can easily be computed based on the
computation of the optimal input for Problem 5.4.

Lemma 5.6. Let V
init

be the space of initial values for which Problem 5.4 can be solved. Then
the space of initial values for which Problem 3.6 can be solved is given by

V init = V
init∩ (C imp +O imp), (5.8)

where C imp and O imp are the impulse-controllable space and impulse-observable space corre-
sponding to (3.3).
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6. LQR FOR GENERAL SWITCHED DAES

Given the results regarding Problem 3.6 where the DAE is assumed to be of arbitrary index,
the results for Problem 1.1 where each mode of (1.2a) is of arbitrary index follow straightfor-
wardly. A summarizing algorithm is presented in Algorithm 1.

We illustrate the overall procedure with the following (academic) example.

Example 6.1. Consider the switched DAE given by

ẋ =
[

1 1 0
1 0 1
1 1 2

]
+
[

1
0
0

]
u, 06 t < 1,[

1 0 0
0 0 1
0 0 0

]
ẋ =−x+

[
1
0
1

]
u, 16 t < 2,

ẋ =
[−1 0 0

0 0 0
0 0 0

]
x+
[

1
0
0

]
u, 26 t < 3,

together with the output

y = x+
[

1
0
0

]
u.

The cost functional to be minimized is thus given by

J(x0,u,0) =
∫ 3

0
‖y(t)‖ dt,

subject to x(3−) ∈ span
{[

1
0
0

]}
:= V end. In this particular problem, the terminal cost matrix is

given by P = 0.
Note that the mode active on 16 t < 2 is impulse-controllable, but not index-1. To that extent

a preliminary index-reducing feedback given by

u(t) =

{[
0 1 1

]
x(t)+ v(t), 16 t < 2,

v(t), otherwise,

is applied, resulting in

(Ē0, Ā0, B̄0,C̄0, D̄0) =
(

I,
[

1 1 0
1 0 1
1 1 2

]
,
[

1
0
0

]
, I,
[

1
0
0

])
,

(Ē1, Ā1, B̄1,C̄1, D̄1) =

([
1 0 0
0 0 1
0 0 0

]
,
[−1 1 1

0 0 0
0 1 1

]
,
[

1
0
1

]
,
[

1 1 1
0 1 0
0 0 1

]
,
[

1
0
0

])
,

(Ē2, Ā2, B̄2,C2,D2) =
(

I,
[−1 0 0

0 0 0
0 0 0

]
,
[

1
0
0

]
, I,
[

1
0
0

])
,

The optimal feedback matrix on each interval [ti, ti+1), i ∈ {0,1,2} is computed after solving

K̇i =−(Ādiff
i )>Ki−KiĀdiff

i +(S̄i +KiB̄diff
i )R̄−1

i ((B̄diff
i )>K + S̄>i )− Q̄i,

Ki(t−i+1) = Ψ
>
i Ki+1(t+i+1)Ψi,

where Ψi = (I−Bimp
i Ni)Π̄i for some Ni which satisfies [ I 0 −NiΠ̄ ]kerHi = 0 and K2(3−) = 0.

The computation yields

K1(2−) =
[

0 0 0
0 1 0
0 0 1

]
, K0(1−) =

[0.39 0 0.38
0 0 0

0.38 0 2.40

]
,

K0(0+) =
[ 0.21 −0.03 0.07
−0.03 0.03 −0.19
0.07 −0.19 1.59

]
.
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Algorithm 1 LQR with subspace constraint
Input : Ei,Ai,Bi,Ci,Di, i = 0,1, . . . ,n, P, V end,

switching signal σ : [t0, t f )→{1, . . . ,n} in standard form (3.1)
Output: Subspace V init

t0 of feasible initial states, optimal state feedback u(t) = Fσ (t)x(t)

1: Set V end
tn+1

:= V end

2: for i = n,n−1, ...,0 do
Step 1: Preconditioning

3: Compute C imp
i via (2.8) and O imp

i via (5.1)
4: Choose a projector Wi onto C imp

i according to Corollary 5.2
5: Utilizing Lemmas 2.4 and 5.3, choose Li such that (EWi,Ai +BiLi) is of index 1
6: Define

(Ēi, Āi, B̄i,C̄i, D̄i) := (EiWi,Ai +BiLi,Bi,Ci +DiLi,Di)

7: Compute Π̄i, Ādiff
i , B̄diff

i ,B̄imp
i via the Wong sequences of (Ēi, Āi)

Step 2: Solve Riccati equations
8: If i < n then V end

ti+1
= V init

ti+1

9: Solve (backwards in time)

K̇ =−(Ādiff
i )>K−KĀdiff

i +(S̄i +KiB̄diff
i )R̄−1

i ((B̄diff
i )>K + S̄>i )− Q̄i,

on [ti, ti+1), with R̄i := (D̄i− C̄iB̄
imp
i )>(D̄i− C̄iB̄

imp
i ), S̄i := (D̄i− C̄iB̄

imp
i )>C̄>, Q̄i := C̄>i C̄i

and final condition Pi = P or

Pi = Ψ
>
i K(t+i+1)Ψi, for i < n,

where Ψi = (I− B̄imp
i Ni)Π̄i, for some Ni that satisfies

[
I 0 NiΠ̄i

]
kerHi = 0, with

Hi =


B̄imp>

i PiB̄
imp
i B̄imp>

i (I−ΠV end
ti+1

)>

(I−ΠV end
ti+1

)B̄imp
i 0

−Π̄>
(Ēi,Āi)

PiB̄
imp
i −Π̄>i (I−ΠV end

ti+1
)>


>

and ΠV end
ti+1

is a projector onto the subspace V end
ti+1

Step 3: Compute subspace V init
ti

10: Compute Ωi(ti, ti+1) (see Def. 4.9) for the system

ẋdiff =
(

Ādiff
i − B̄diff

i R̄−1
i ((B̄diff

i )>K + S̄>i )
)

xdiff

11: Compute V̄ init
ti = Ωi(ti, ti+1)kerΞiΠ̄i, with

Ξi =

[
(I−ΠV end

ti+1
)Θi

Θ>i KΘi−Pi

]
where Θi := I + B̄imp(R̄−1

i

(
(B̄diff

i )>Pi + S̄>i
)

.

12: Compute V init
ti = V

init
ti ∩ (C

imp
i +O imp

i )
13: end for

Step 4: Compute optimal control
14: Compute

u(t) =−R̄−1
σ(t)

(
(B̄diff

σ(t))
>K(t)+ S̄>

σ(t)

)
Π̄σ(t)x(t)
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After computing the backward state transition matrices Ξi it follows that

V init
2 = span

{[
1
0
0

]}
, V init

1 = span
{[

1
0

0.54

]
,
[

0
1
0

]}
,

V init
0 = span

{[
1
0

0.49

]
,
[

0
1

0.06

]}
.

Given the solution Ki we can compute the optimal input and optimal state trajectory, which are
shown in Figure 1(a) and 1(b), respectively. As can be seen, both the optimal input and the
optimal trajectory are piecewise continuous and contain jumps. �

0 0.5 1 1.5 2 2.5 3

0

20

40

Optimal input

optimal u(t)

(a) The optimal input u(t) that solves Prob-
lem 1.1

0 0.5 1 1.5 2 2.5 3

0

20

40

60
Optimal trajectory

x1(t)
x2(t)
x3(t)

(b) The corresponding optimal trajectory x(t)
that solves Problem 1.1 with initial value x0 =
[ 32.98 52.30 19.46 ]>.

FIGURE 1. Simulation results for Example 6.1

7. CONCLUSION

In this paper, the finite horizon LQR problem for switched linear differential-algebraic equa-
tions has been studied. It was shown that for switched DAEs with a switching signal that
induces locally finitely many switches the problem can be solved by solving LQR problems for
non-switched DAE repeatedly. First, it was shown how to solve the non-switched problems for
index-1 DAEs followed by an extension of the results to higher index DAEs. The resulting op-
timal control can be computed based on the solution of a Riccati differential equation expressed
in terms of the differential system matrices. Although these differential systems matrices do
not depend on a particular coordinate transformation, it remains a future direction of research
to express the results in terms of the original system matrices.

Another natural direction of future research is to explore the admission of impulsive inputs.
The authors suspect however that the results in this direction would not be much different than
the ones already obtained in this paper and the results on singular optimal control obtained by
Willems et all [47].
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APPENDIX A. PROOFS

Proof of Lemma 3.1. First we will show that the map x0 7→ u is linear, where x(t−0 ) = x0 and
u solves Problem 1.1; in particular, we will show that λu is the optimal control for any initial
value λx0 and that for any initial values x0,z0 ∈ Rn for which optimal inputs ux,uz exists, the
input ux +uz is optimal for the initial value x0 + z0.

To that extent, let V (x0, t0) be the value function as

V (x0, t0) = inf
u

J(x0,u, t0). (A.1)

Applying the input λu to an initial condition λx0 results in a trajectory λx, due to the linearity
of solutions of the switched DAE. This means that J(λx0,λu) = λ 2J(x0,u) for any λ ∈ R and
we can conclude that

λ
2V (x0, t0) = λ

2J(x0,u) = J(λx0,λu) =V (λx0, t0).

Hence we can conclude that if u is the optimal input for x0 that λu is the optimal input for λx0.
In the following, we will prove if ux and uz are the optimal inputs for x0 and z0 respectively, that
ux +uz is the optimal input for x0 + z0. To do so, it will be first shown that

V (x0 + z0, t0)+V (x0− z0, t0) = 2V (x0, t0)+2V (z0, t0). (A.2)

Observe that

‖Cσ (x+ z)+Dσ (ux +uz)‖2 +‖Cσ (x− z)+Dσ (ux−uz)‖2

= 2‖Cσ x+Dσ ux‖2 +2‖Cσ z+Dσ uz‖2,

and

(x(t−f )+ z(t−f ))
>P(x(t−f )+ z(t−f ))+(x(t−f )− z(t−f ))

>P(x(t−f )− z(t−f ))

= 2x(t−f )
>Px(t−f )+2z(t−f )

>Pz(t−f ),

from which we can conclude that

J(x0 + z0,ux +uz, t0)+ J(x0− z0,ux−uz, t0) = 2J(x0,ux, t0)+2J(z0,uz, t0).

Hence for all input ux and uz (and thus not necessarily the optimal ones) we obtain

V (x0 + z0, t0)+V (x0− z0, t0)

6 J(x0 + z0,ux +uz)+ J(x0− z0,ux−uz)

= 2J(x0,ux)+2J(z0,uz),

which means that V (x0 + z0, t0)+V (x0− z0, t0)6 2V (x0, t0)+2V (z0, t0). Conversely,

2V (x0, t0)+2V (z0, t0)

6 2J(x0,ux, t0)+2J(z0,uz, t0)

= J(x0 + z0,ux +uz, t0)+ J(x0− z0,ux−uz, t0),
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from which we can conclude that 2V (x0, t0) + 2V (z0, t0) 6 V (x0 + z0, t0) +V (x0− z0, t0) and
therefore the equality V (x0 + z0, t0)+V (x0− z0, t0) = 2V (x0, t0)+ 2V (z0, t0) follows. Further-
more, if ux is the optimal input for x0 and uz is the optimal input for z0 then

V (x0− z0, t0)+V (x0 + z0, t0)

= 2V (x0, t0)+2V (z0, t0)

= 2J(x0,ux, t0)+2J(z0,uz, t0)

= J(x0 + z0,ux +uz, t0)+ J(x0− z0,ux−uz, t0).

Since V (x0 + z0, t0) 6 J(x0 + z0,ux + uz) and similarly V (x0− z0, t0) 6 J(x0− z0,ux− uz), it
follows that

06 J(x0 + z0,ux +uz)−V (x0 + z0, t0) =V (x0− z0, t0)− J(x0− z0,ux−uz)6 0,

and thus

V (x0 + z0, t0) = J(x0 + z0,ux +uz),

which shows that ux +uz is optimal for x0 + z0.
Hence there exists a linear map between the optimal trajectory and the optimal input. In

particular, the map x(t−0 ) 7→ u(t+0 ) is linear, i.e., there exists a matrix F(t0) ∈ Rm×n such that
u(t+0 ) = F(t0)x(t−0 ).

From the dynamic programming principle [1, 6] it follows that u[τ,t f ) is the optimal control
for the cost function in Problem 1.1 considered on the interval [τ, t f ) for any τ ∈ [t0, t f ), hence
by replacing the initial time t0 in the above argumentation by τ ∈ [t0, t f ) we can conclude that
for every τ ∈ [t0, t f ) a matrix F(τ)∈Rm×n exists such that the optimal control satisfies u(τ+) =
F(τ)x(τ−).

Proof of Lemma 4.2. Before proving Lemma 4.2 we need the following technical lemma:

Lemma A.1. Consider the ODE (2.5a) on the interval [0,δ ] and with zero initial condition.
Then for any α ∈ Rm, there exists φ : [0,δ/2]→ Rm such that the input

u(t) =

{
φ(t), t ∈ [0,δ/2)
α, t ∈ [δ/2,δ )

has a corresponding solution xdiff with xdiff(δ−) = 0.

Proof. Let xdiff
1 := −e−Adiffδ/2 ∫ δ/2

0 eAdiff(δ/2−τ)Bdiffαdτ , then applying u(t) = α on [δ/2,δ )
with initial value xdiff

1 will result in a solution which reaches zero at t = δ . Furthermore, by
definition eAdiffδ/2x1 is reachable, and since the reachable space is Adiff-invariant, it follows that
also xdiff

1 is reachable from zero, which guarantees the existence of φ as claimed. �

In order to prove Lemma 4.2, assume now that u solves Problem 3.6 for some fixed x0. Let
xdiff be the corresponding optimal trajectory on [t0, t f ). Denote u(t−f ) = ψ ∈Rm and xdiff(t−f ) =
ζ ∈ imΠ. Seeking a contradiction, assume there exists a value w for which ζ −Bimpw ∈ V end

and

(ζ −Bimpw)>P(ζ −Bimpw) = (ζ −Bimp
ψ)>P(ζ −Bimp

ψ)−M,



IMPULSE-FREE LINEAR QUADRATIC OPTIMAL CONTROL 23

for some M > 0. Consider the solution (xδ ,uδ ) of (3.3) where uδ = u+ vδ and vδ is defined as

vδ (t) =


0, if t ∈ [t0, t f −δ ),

φ(t), if t ∈ [t f −δ , t f − δ

2 ),

w−ψ if t ∈ [t f − δ

2 , t f ),

where φ(t) is chosen in such a way that xdiff
δ

(t−f ) = xdiff(t−f ), which is always possible according
to Lemma A.1.

Furthermore, for any ε > 0 there exists a sufficiently small δ > 0 such that the output yδ

resulting from the solution (xdiff
δ

,uδ ) satisfies∫ t f

t0
‖yδ (t)‖2 dt =

∫ t f−δ

t0
‖yδ (t)‖2 dt +

∫ t f

t f−s
‖yδ (t)‖2 dt =

∫ t f−δ

t0
‖y(t)‖2 dt +

∫ t f

t f−δ

‖yδ (t)‖2 dt

6
∫ t f

t0
‖y(t)‖2 dt + ε,

As uδ (t
−
f ) = u(t−f )+ vδ (t

−
f ) = w we find that xdiff

δ
(t−f )−Bimpuδ (t

−
f ) ∈ V end and

J(x0,uδ ) = J(x0,u)+ ε−M.

Hence for ε < M there exists an δ such that the solution (xdiff
δ

,uδ ) satisfies J(x0,uδ , t0) <
J(x0,u, t0), which contradicts the optimality of (xdiff,u). Therefore the result follows.

Proof of Lemma 4.3. Note that the terminal cost function

(ζ −Bimp
ψ)>P(ζ −Bimp

ψ), (A.3)

for a given ζ ∈ imΠ (A.3) is a convex function of ψ ∈ Rm. Furthermore ψ ∈ Rm minimizes
(A.3) if and only if ψ minimizes

1
2ψ
>Bimp>PBimp

ψ−ζ
>

Π
>PBimp

ψ,

where here and in the following we replace ζ by Πζ to enforce that ζ = Πζ ∈ imΠ. The
constraint Πζ −Bimpψ ∈ V end is satisfied if and only if (I−ΠV end)(Πζ −Bimpψ) = 0, where
ΠV end is a projector onto V end. This condition can be written equivalently as

(I−ΠV end)Bimp
ψ = (I−ΠV end)Πζ .

As this constraint is linear and P is positive semi-definite, it follows that this optimization
problem is a convex problem. Hence any local minimizer is a global minimizer. The first-
order necessary conditions are thus also sufficient. Hence ψ is a minimizer that satisfies the
constraints if and only if there exists a Lagrange multiplier λ such that[

Bimp>PBimp Bimp>(I−ΠV end)>

(I−ΠV end)Bimp 0

][
ψ

λ

]
=

[
Bimp>P

(I−ΠV end)

]
Πζ .

This can equivalently be written as H ξ = 0 where

H :=

 Bimp>PBimp Bimp>(I−ΠV end)>

(I−ΠV end)Bimp 0
−Π>PBimp −Π>(I−ΠV end)>

> (A.4)

and ξ> = [ψ> λ> ζ> ]>. Since ζ ∈ imΠ and hence ζ = Πζ the result follows.
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Proof of Lemma 5.1. (⇒) Suppose that there exists an impulse-free input such that y[t] = 0.
Then since the input u is impulse-free, i.e., u[t] = 0, it follows that y[t] =Cx[t]+Du[t] =Cx[t].
Consequently, the output is impulse-free for a given impulse-free input if and only if x[t] ∈
kerC. In the case u[t] = 0 then it follows from the solution formula (2.7) and observing that
E imp = E imp(I−Π) that

Cx[t] =−C
ν−1

∑
i=0

(E imp)i+1(I−Π)(x0− x(t+0 ))δ (i) = 0.

Consequently (I−Π)(x0− x(t+0 )) ∈ kerC(E imp)i, for i ∈ {1,2, ...,ν − 1}. Hence we can con-
clude that (I−Π)(x0− x(t+0 )) ∈ O imp. Since (I−Π)x(t+0 ) ∈ C imp it follows that (I−Π)x0 ∈
O imp +C imp. Finally, from imΠ⊆ C imp we can conclude that

x0 = Πx0 +(I−Π)x0 ∈ C imp +O imp,

which proves the desired result.
(⇐). Let x0 = p0 +q0 for some p0 ∈ C imp and q0 ∈ O imp. Then by definition of C imp there

exists an impulse-free input u such that (p,u) satisfying p(t−0 ) = p0 is impulse-free, i.e., p[t] = 0
for all t > t0. As E imp(I−Π) = E imp the solution (q,0) with q(t−0 ) = q0 will satisfy

Cq[t0] =−C
ν−1

∑
i=0

(
E imp

)i+1
(I−Π)q0δ

(i) =−C
ν−1

∑
i=0

(
E imp

)i+1
q0δ

(i) = 0.

Hence the solution (q,0) with q(t−0 ) = q0 will only generate a Dirac impulse at t0, which will
not appear in the output y. By linearity of solutions, (x,u) with x(t−0 ) = x0 will satisfy x(t) =
p(t)+q(t) and hence

y[t] =Cx[t]+Du[t] =C(p[t]+q[t]) =Cq[t] = 0.

Hence u is an impulse-free input such that (x,u) with x(t−0 ) = x0 ensures y[t] = 0.

Proof of Lemma 5.3. We first show that the pair (EW,A) is regular. To do so, let S,T , be
matrices such that the quasi-Weiserstrass form of (E,A) is given by

(SET,SAT ) =

I 0 0
0 N11 N12
0 N21 N22

 ,
J 0 0

0 I 0
0 0 I

 .

and where the block columns of T = [T1,T2,T3] are such that C imp = im[T1,T2] and imT3 =
kerW . Such a choice is always possible because Rn = V ∗⊕W ∗ = C imp⊕ kerW = V ∗⊕
(C imp ∩W ∗)⊕ kerW . Furthermore, SB = [B>1 ,B

>
2 ,0] and invariance of C imp implies that the

coordinate transformation can be chosen such that N21 = 0, cf. [5].
Consequently, WT = [T1,T2,0] and hence

(SEWT,SAT ) =

I 0 0
0 N11 0
0 0 0

 ,
J 0 0

0 I 0
0 0 I

 ,

from which regularity of (EW,A) follows.
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From the block structure of the QWF forms of (E,A,B) and (EW,A,B) it is clear that solu-
tions restricted to the subspace C imp = im[T1,T2] are identically determined by the same DAEs
given in QWF-coordinates by ([

I 0
0 N11

]
,

[
J 0
0 I

]
,

[
B1
B2

])
.

Finally, the DAE (EW,A,B) is impulse controllable on C imp and from the QWF it is clear
that the remaining coordinates are governed by the trivially impulse controllable index-1 DAE
0 = x3. This concludes the proof.
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