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Abstract. We study a CO2 emissions control problem with smooth seasonal fluctuations of the CO2 reduction
rate due to photosynthesis, where the dynamics of a state variable is generated by a non-autonomous ordinary
differential equation. The current value Hamiltonian of the problem is linear in the state variable, and so the
dynamics of its co-state variable is de-coupled from that of the state variable. We show that the co-state variable
exhibits periodic oscillations, that a unique nontrivial optimal solution does exists under some additional inequality
constraint, and that under this constraint the state variable converges to a non-autonomous limit cycle globally on
the unique optimal path that exhibits the turnpike property.
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2020 MSC. 49J15, 49K15, 91B76.

1. INTRODUCTION

An unbalance between carbon dioxide (CO2) emissions and the natural absorption of CO2
through photosynthesis deteriorates a natural environment. Therefore the balance between these
two factors must be established in order to keep the natural environment from deteriorations.
In economic terms CO2 emissions are necessary bads as oppose to necessary goods. Without
economic activities generating CO2, the economy cannot be sustained. From the economic
viewpoint, therefore, to keep the natural environment from deteriorations due to CO2 emissions
is to solve an optimal control problem within the framework in which the volume of necessary
bads (CO2 emissions) is continuously reduced by an outside mechanism (photosynthesis). The

∗Corresponding author.
E-mail address: asaoka@smtri.jp (S. Asaoka), nishimura@rieb.kobe-u.ac.jp (K. Nishimura), sigoka@kier.

kyoto-u.ac.jp (T. Shigoka), yano2004@gmail.com (M. Yano).
Received July 24, 2024; Accepted October 26, 2024.

c©2025 Communications in Optimization Theory

1



2 S. ASAOKA, K. NISHIMURA, T. SHIGOKA, M. YANO

photosynthesis process of natural absorption of CO2 is not only continuos but also inherently
cyclical or fluctuant. This is partly because the photosynthesis process is heavily influenced
by sunshine, the volume of which is subject to seasonal change. To understand how to avoid
the unbalance between CO2 emissions and the natural absorption of CO2, therefore, it is of the
primary importance to incorporate this continuously changing exogenous factor into an optimal
control problem. In the existing literature this has not been attempted yet.

This study intends to build the first of such an approach for a CO2 emissions control. We
present a simple CO2 emissions control problem in which CO2 is released by economic activi-
ties and in which CO2 is continuously absorbed by cyclical photosynthesis. Our main result is
that the over-time process of optimal CO2 emissions eventually synchronizes with the exoge-
nous process of cyclical CO2 absorption.

In the literature on dynamic optimization this result may be thought of as a contribution to
turnpike theory.1 A turnpike theorem implies that the optimal programs from different initial
states converge to one another. Dealing with an oscillating model with a parameter the value of
which follows a sinusoidal wave,2 it implies that the optimal programs converge to a program
that also follows a sinusoidal wave. Although this might appear obvious, it is not. While a
continuous time autonomous optimal growth model with only one state variable exhibits the
turnpike property when there exists a unique steady state, Benhabib and Nishimura [1] has
shown that the turnpike property does not necessarily hold in a continuous time autonomous
optimal growth model with many state variables, even if there exists a unique steady state. And
in a discrete time optimal growth model such that a reduced form utility function, a discount
factor, and the law of motion of a state variable are all time invariant, even if the number of
state variable is only one, it has been known that the dynamic pattern of an optimal process
and the exogenous dynamic structure of a model may not synchronize. More specifically it has
been shown that an optimal process can be chaotic.3 Our model is a continuous time model
that includes one state variable the law of motion of which is described by a non-autonomous
ordinary differential equation. As is case with a continuous time autonomous optimal growth
model, the turnpike property of our model might result from the fact that it is a continuous time
model with only one state variable.4 Hartle [8] shows that in one state variable autonomous
infinite horizon optimal control problems the optimal trajectory of the state variable must always
be monotonic if the optimal state trajectory is unique. Hartle [8] also shows that in such a
problem, if the optimal state trajectory is not unique, some of optimal state trajectories might
exhibit damped periodic oscillations. In contrast the present paper treats a one state variable
non-autonomous infinite horizon optimal control problems such that the optimal state trajectory
is unique and that this unique optimal state trajectory exhibits persistent undamped periodic
oscillations.

1See Dorfman, Samuelson, and Solow [5], Khan and Zaslavski [10], McKenzie [12], and Yano [18].
2See the specification (2.1) given below.
3The existence of a chaotic optimal path is shown by Deneckere and Pelikan [3], Boldrin and Montrucchio [2],

and Mitra and Sorger [13]. Nishimura and Yano [14, 15, 16], and Khan and Mitra [9] build a structural model
that has a chaotic optimal path. See Deng, Khan, and Mitra [4], and Yano and Furukawa [19] for more recent
applications of chaotic dynamics to economics.

4Gromov, Bondarev, and Gromova [6], and Gromov, Shigoka, and Bondarev [7] also deal with environmental
issues like the present paper. And the model due to Gromov et al. [6] and Gromov et al. [7] has the structure quite
similar to that of our model and exhibits the turnpike property.
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The rest of the paper is composed of the following four sections. Section 2 formulates a CO2
emissions control problem and applies the maximum principle to this problem. Section 3 is
composed of a series of preliminary considerations. Section 4 states the main result. Section 5
briefly concludes.

2. THE MODEL AND ITS UNIQUE OPTIMAL SOLUTION

In Section 2.1 we formulate the model that is the CO2 emissions control problem (P1). In
Section 2.2 we show that the Hamiltonian dynamics prescribes a unique optimal solution to this
problem (P1). In Section 2.3 we prove Lemma 1 that is stipulated in Section 2.2.

2.1. The model. We shall specify a CO2 emissions control problem with smooth seasonal
fluctuations of the CO2 reduction rate due to photosynthesis. Let z(t)≥ 0 be a state variable in
our control problem, which represents the level of cumulative CO2 on a country that belongs to
the temperate zone on the earth. Let v(t)≥ 0 be a control input representing the macroeconomic
activity that produces ξ vt units of CO2, where ξ > 0 is a positive constant. The state variable
z(t) = zt ≥ 0 obeys żt = ξ vt −δ (t)zt , where δ (t) is the rate of CO2 reduction that is attributed
to photosynthesis. Let z(0) = z0 ≥ 0. We assume that this reduction rate, δ (t), seasonally
fluctuates so that we have δ (t +T ) = δ (t) for some T > 0 and for each t ≥ 0. More specifically
the functional form of δ (·) is assumed to be given by

δ (t) := δ̄ +acos(
2π

T
(t−θ)), (2.1)

where δ̄ , a, and T are positive constants with δ̄ > a > 0, and where θ is a constant with 0 ≤
θ < T . Let p be a positive constant that is the price index, let b > 0 be a positive constant, and
let pv(t)(b− 1

2v(t)) be the gross domestic product (GDP) of the country that macroeconomic
activity v(t) produces. The aggregate production function is given by the quadratic function
v(t)(b− 1

2v(t)). We assume that the domain of this quadratic function is the largest non-negative
interval of R on which the function is monotone non-decreasing. Thus the domain of this
function is given by the closed interval [0,b] such that 0 ≤ v(t) ≤ b. Moreover let qz(t) be the
value of external diseconomies created by CO2, where q > 0 is a positive constant. The net
GDP is the GDP minus the value of external diseconomies. The GDP is always non negative,
whereas the net GDP could be negative for some time. The objective function of the optimizing
agent is given by

∫
∞

0 e−rt [pvt
(
b− 1

2vt
)
−qzt

]
dt, where r > 0 is a positive constant that is the

discount rate.
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Then we have the following CO2 emissions control problem, where C(R+, [0,b]) denotes the
set of all continuous functions from R+ to [0,b].5

max
v(·)

∫
∞

0
e−rt

[
pvt

(
b− 1

2
vt

)
−qzt

]
dt subject to (P)

v(·) ∈C(R+, [0,b])∧

żt = ξ vt−δ (t)zt ∧ z(0) = z0 ≥ 0∧ zt ≥ 0∧

δ (t) = δ̄ +acos(
2π

T
(t−θ)),

where r, p,b,q,ξ , δ̄ ,a,T, and θ are given control parameters that satisfy

r, p,b,q,ξ , δ̄ ,a,T ∈ R++∧ δ̄ −a > 0∧0≤ θ < T.

For the sake of tractability we normalize the CO2 emissions control problem (P) in the fol-
lowing way. Let u(t),x(t), and β be defined as

u(t) :=
v(t)

b
∈ [0,1] ∧ x(t) :=

qz(t)
pb2 ∈ R+∧β :=

ξ q
pb

, (2.2)

respectively. Then the intertemporal optimization problem (P) is normalized into the follow-
ing intertemporal optimization problem, where C(R+, [0,1]) denotes the set of all continuous
functions from R+ to [0,1].6

max
u(·)

∫
∞

0
e−rt

[
ut

(
1− 1

2
ut

)
− xt

]
dt subject to (P1)

u(·) ∈C(R+, [0,1])∧

ẋt = βut−δ (t)xt ∧ x(0) = x0 ≥ 0∧ xt ≥ 0∧

δ (t) = δ̄ +acos(
2π

T
(t−θ)),

where r,β , δ̄ ,a,T, and θ are given control parameters that satisfy the following condition.

r,β , δ̄ ,a,T ∈ R++∧ δ̄ −a > 0∧0≤ θ < T. (2.3)

Note that both ut(1− 1
2ut)−xt and βut−δ (t)xt are linear in xt , which implies that the dynamics

of a co-state variable is de-coupled from that of the state variable xt . This in turn simplifies our
analysis of the CO2 emissions control problem (P1).

5This specification follows that of a pollution control problem due to Gromov et al. [6] and Gromov et al. [7]
closely, although the functional form of δ (·) due to Gromov et al. [6] and Gromov et al. [7] is quite different from
that of δ (·) in our model.

Let N be the set of all natural numbers that includes 0. Both Gromov et al. [6] and Gromov et al. [7] assume
that the functional form of δ (·) is given by

δ (t) :=
{

δ1 > 0, t ∈ [kT,kT +αT ),
δ2 > 0, t ∈ [kT +αT,(k+1)T ),

where δ1, δ2, T , and α are positive constants with δ1 6= δ2 and with 0 < α < 1, and where k ∈ N. Note that this
function satisfies δ (t +T ) = δ (t) for this given T > 0 and for each t ≥ 0.

6We have followed Gromov et al. [6] and Gromov et al. [7] in this process of normalization.
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2.2. The Hamiltonian dynamics and a unique optimal solution. In the present section we
show that the Hamiltonian dynamics prescribes a unique optimal solution to the CO2 emissions
control problem (P1). Let V : R+× [0,1]→ R be defined as

V (x,u) := u(1− 1
2

u)− x.

The objective function of the CO2 emissions control problem (P1) is given by∫
∞

0
V (xt ,ut)e−rtdt.

Let ψ : R→ [0,1] be defined as

ψ(λ ) :=


0,

1+βλ ,
1,

λ ∈ (−∞,− 1
β
),

λ ∈ [− 1
β
,0],

λ ∈ R++.

(2.4)

Let H(δ (t)) : R+× [0,1]×R→ R and H∗(δ (t)) : R+×R→ R be defined as

H(x,u,λ : δ (t)) :=V (x,u)+λ (βu−δ (t)x),

H∗(x,λ : δ (t)) :=V (x,ψ(λ ))+λ (βψ(λ )−δ (t)x),

where δ (·) is given by the specification (2.1), i.e.,

δ (t) := δ̄ +acos(
2π

T
(t−θ)),

and where r,β , δ̄ ,a,T , and θ are given control parameters that satisfy the condition (2.3). Then
by construction we have the following relation.

H∗(x,λ : δ (t)) = max
u

H(x,u,λ : δ (t)) subject to 0≤ u≤ 1.

H(δ (t)) = H(x,u,λ : δ (t)) and H∗(δ (t)) = H∗(x,λ : δ (t)) are the current value Hamilton-
ian and the current value maximized Hamiltonian of the intertemporal optimization problem
(P1), respectively, where x is a state variable, u is a control variable, and λ is a co-state
variable, respectively. H(δ (t)) = H(x,u,λ : δ (t)) is concave in (x,u) ∈ R+× [0,1] so that
it satisfies Mangasarian’s condition. It is strictly concave in u ∈ [0,1] and linear in x ∈ R+.
H∗(δ (t)) = H∗(x,λ : δ (t)) is linear and thus concave in x ∈R+ so that it satisfies Arrow’s con-
dition. Therefore we should be able to prescribe a unique optimal solution to the CO2 emissions
control problem (P1) by appealing to the maximum principle.

Before being able to do so we need preliminary considerations on the dynamics of the co-
state variable λ = λ (t) and that of the state variable x = x(t). The dynamics of the co-state
variable is de-coupled from that of the state variable because H∗(δ (t)) = H∗(x,λ : δ (t)) is
linear in x ∈ R+. Since

λ̇ (t) = rλ (t)− ∂H∗

∂x
(x(t),λ (t) : δ (t)) = λ (t)(r+δ (t))+1,

the dynamics of the co-state variable λ = λ (t) is given by

λ̇ (t) = λ (t)(r+δ (t))+1. (2.5)
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Lemma 1. Non-autonomous ordinary differential equation (2.5) has a unique solution that
satisfies ∃K > 0 : ∀t ≥ 0 : |λ (t)|< K. This solution is given by

λ (t) =−
∫

∞

t
exp(−[r+ δ̄ ](τ− t)+

aT
2π

[sin(
2π

T
(t−θ))− sin(

2π

T
(τ−θ))])dτ. (2.6)

K is given by exp( aT
π
)

r+δ̄
+1.

Proof of Lemma 1. See Section 2.3. �

Consider the following dynamics.

Ẋ = β − (δ̄ −a)X .

Note that β > 0∧ δ̄ −a > 0 by the condition (2.3). Let X̄ be defined as

X̄ :=
β

δ̄ −a
.

Let x̄(x0) be defined as x̄(x0) := max{X̄ ,x0}. For any u(·) ∈C(R+, [0,1]) let x(t) = xt be a so-
lution of the differential equation ẋ(t) = βu(t)− δ (t)x(t) with the initial condition x(0) = x0.
From the specification (2.1) of δ (·) we have, for each t ∈ R+, x(t) ∈ [0, x̄(x0)]. Let x∗(t) = x∗t
be a solution of the differential equation ẋ∗(t) = βψ(λ (t))− δ (t)x∗(t) with the initial con-
dition x∗(0) = x0. Then by construction we have, for each t ∈ R+, x∗(t) ∈ [0, x̄(x0)]. Note
that |V (xt ,ut)| ≤ 1 · (1− 1

2)+ |x̄(x0)| < +∞ so that
∫

∞

0 |V (xt ,ut)|e−rtdt < +∞. Note also that
|V (x∗t ,ψ(λt))| ≤ 1 · (1− 1

2)+ |x̄(x0)| < +∞ so that
∫

∞

0 |V (x∗t ,ψ(λt))|e−rtdt < +∞. Therefore
both V (xt ,ut)e−rt and V (x∗t ,ψ(λt))e−rt are Lebesgue integrable in t over R+. We have suffi-
cient preparations for stipulating the main result of the present section.

Proposition 1. Consider the CO2 emissions control problem (P1), where r,β , δ̄ ,a,T , and θ are
given control parameters that satisfy the condition (2.3). Then the followings hold respectively.

(1) The following Hamiltonian dynamics prescribes an optimal solution of this problem.7

λ (t) =−
∫

∞

t
exp(−[r+ δ̄ ](τ− t)+

aT
2π

[sin(
2π

T
(t−θ))− sin(

2π

T
(τ−θ))])dτ, (2.7)

u(·) = (ψ ◦λ )(·) ∈C(R+, [0,1]), (2.8)

ẋ∗(t) =
∂H∗

∂λ
(x∗(t),λ (t) : δ (t)), (2.9)

x∗(0) = x0 ≥ 0. (2.10)

(2) An optimal solution of this problem is unique.

Proof of Proposition 1. (1) The boundedness of λ (t), x(t), and x∗(t) guarantees the transver-
sality condition limt→∞ e−rtλ (t)(x(t)− x∗(t)) = 0 for any admissible solution x(t). The cur-
rent value Hamiltonian H(δ (t)) = H(x,u,λ : δ (t)) satisfies the Mangasarian’s condition and

7The condition (2.7) satisfies [λ̇ (t) = rλ (t)− ∂H∗
∂x (x∗(t),λ (t) : δ (t))]∧ [∃K > 0 : ∀t ≥ 0 : |λ (t)|< K] by Lemma

1.
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thus the transversality condition together with the Lebesgue integrability of V (xt ,ut)e−rt and
V (x∗t ,ψ(λt))e−rt in t over R+ guarantees∫

∞

0
V (x∗t ,ψ(λt))e−rtdt ≥

∫
∞

0
V (xt ,ut)e−rtdt.

See Theorem 3.13 in Seierstad and Sydsæter [17] and Theorem 9.3.1 in Léonard and Long [11].
(2) Note that by Proposition 1.(1) there exists at least one optimal solution. Note also that

for any given two feasible paths a convex combination of these paths is also a feasible path.
The current value Hamiltonian H(δ (t)) = H(x,u,λ : δ (t)) is strictly concave in u ∈ [0,1] and
concave in x ∈R+. And u(·) ∈C(R+, [0,1]). Therefore an optimal solution of the problem (P1)
is unique. See the paragraph preceding Theorem 4.6.1 in Léonard and Long [11]. �

The above proof is essentially the same as the proof given by Appendix 1 of Gromov et al. [7],
although Lemma 1 and the condition (2.7) are due to the present study.

2.3. The proof of Lemma 1. The present section proves Lemma 1 stipulated in the previous
section. The co-state variable would be given by

λ (t) =−
∫

∞

t
exp(

∫
τ

t
−[r+δ (s)]ds)dτ +C exp(

∫ t

0
[r+δ (τ)]dτ) (2.11)

for some constant C ∈ R, if the limit

lim
S→+∞

∫ S

t
exp(

∫
τ

t
−[r+δ (s)]ds)dτ

would exist. This is because the relation (2.11) is a general solution of the following non-
autonomous ordinary differential equation if the limit does exist.

d
dt

λ (t) = 1+[r+δ (t)]λ (t).

Here ∫
τ

t
[r+δ (s)]ds =

∫
τ

t
[r+ δ̄ +acos(

2π

T
(s−θ))]ds

= [r+ δ̄ ](τ− t)+
a
2π

T

[sin(
2π

T
(s−θ))|τt ]

= [r+ δ̄ ](τ− t)+
aT
2π

[sin(
2π

T
(τ−θ))− sin(

2π

T
(t−θ))].

Hence ∫ S

t
exp(

∫
τ

t
−[r+δ (s)]ds)dτ

=
∫ S

t
exp(−[r+ δ̄ ](τ− t)− aT

2π
[sin(

2π

T
(τ−θ))− sin(

2π

T
(t−θ))])dτ

≤
∫ S

t
exp(−[r+ δ̄ ](τ− t)+

aT
π

)dτ

≤ lim
S→+∞

∫ S

t
exp(−[r+ δ̄ ](τ− t)+

aT
π

)dτ

= lim
S→+∞

exp(
aT
π

)
∫ S

t
exp(−[r+ δ̄ ](τ− t))dτ =

exp(aT
π
)

r+ δ̄
.
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Hence ∫ S

t
exp(

∫
τ

t
−[r+δ (s)]ds)dτ ≤

exp(aT
π
)

r+ δ̄
.

The left hand side of the above inequality is monotone increasing in S ∈ (t,+∞) and bounded
above. Therefore the limit

lim
S→+∞

∫ S

t
exp(

∫
τ

t
−[r+δ (s)]ds)dτ

does exist. And if we set

λ
∗(t) =−

∫
∞

t
exp(−[r+ δ̄ ](τ− t)+

aT
2π

[sin(
2π

T
(t−θ))− sin(

2π

T
(τ−θ))])dτ,

then we have from the relation (2.11) for each t ≥ 0

λ (t) = λ
∗(t)+C exp(

∫ t

0
[r+δ (τ)]dτ).

By construction

|λ ∗(t)|<
exp(aT

π
)

r+ δ̄
+1

for each t ≥ 0, and by the condition (2.3) r + δ (τ) ≥ r + δ̄ − a > 0 for each τ ≥ 0. Thus if
|λ (t)|< K for some K > 0 and for each t ≥ 0, then we should have C = 0 so that λ (t) = λ ∗(t).
In other words if λ = λ (t) satisfies the condition ∃K > 0 : ∀t ≥ 0 : |λ (t)|< K, we should have

λ (t) =−
∫

∞

t
exp(−[r+ δ̄ ](τ− t)+

aT
2π

[sin(
2π

T
(t−θ))− sin(

2π

T
(τ−θ))])dτ. (2.12)

K is given by exp( aT
π
)

r+δ̄
+1. Thus Lemma 1 has been proved. �

3. THE DYNAMICS OF THE CO-STATE VARIABLE AND A UNIQUE NONTRIVIAL OPTIMAL

SOLUTION

In Section 2.3 that is the proof of Lemma 1 stipulated in Section 2.2 we have initiated to
characterize the dynamics of the co-state variable of the CO2 emissions control problem (P1).
In Section 3.1 we further characterize the dynamics of the co-state variable of the problem (P1).
In Section 3.2 based on the result obtained in Section 3.1 we show that we need some additional
inequality constraint in order to obtain a nontrivial optimal solution. In Section 3.2 we also
introduce some auxiliary variables by means of which we construct some inequality constraints
either to obtain a nontrivial optimal solution or to avoid a corner solution. In Section 3.3 we
show that there exists a unique nontrivial optimal solution to the problem (P1) under either of
these inequality constraints.

3.1. The dynamics of the co-state variable. In the present section we further characterize the
dynamics of the co-state variable of the problem (P1). Let ϕ : R×R→ R be defined as

ϕ(t,τ) :=
aT
2π

[sin(
2π

T
(t−θ))− sin(

2π

T
(τ−θ))].

Then from the relation (2.12) we have for each t ≥ 0

λ (t) =−
∫

∞

t
exp(−[r+ δ̄ ](τ− t)+ϕ(t,τ))dτ.
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Let Z be the set of all integers. By construction for any m,n in Z

ϕ(t,τ) = ϕ(t +mT,τ +nT ).

Thus we have for t ≥ 0

λ (t) =−
∫

∞

t
exp(−[r+ δ̄ ](τ− t)+ϕ(t,τ))dτ

=−
∫

∞

τ−T=t
exp(−[r+ δ̄ ](τ−T − t)+ϕ(t,τ−T ))d[τ−T ]

=−
∫

∞

τ=T+t
exp(−[r+ δ̄ ](τ−T − t)+ϕ(t,τ−T ))dτ

=−
∫

∞

t+T
exp(−[r+ δ̄ ](τ−T − t)+ϕ(t,τ−T ))dτ

=−
∫

∞

t+T
exp(−[r+ δ̄ ](τ− t−T )+ϕ(t +T,τ))dτ = λ (t +T ).

And we also have for t ≥ 0

λ (t) =−
∫

∞

t
exp(−[r+ δ̄ ](τ− t)+ϕ(t,τ))dτ

= −
∫ t+T

t
exp(−[r+ δ̄ ](τ− t)+ϕ(t,τ))dτ

−
∫

∞

t+T
exp(−[r+ δ̄ ](τ− t)+ϕ(t,τ))dτ

= −
∫ t+T

t
exp(−[r+ δ̄ ](τ− t)+ϕ(t,τ))dτ

+exp(−[r+ δ̄ ]T )[−
∫

∞

t+T
exp(−[r+ δ̄ ](τ− t−T )+ϕ(t,τ))dτ]

= −
∫ t+T

t
exp(−[r+ δ̄ ](τ− t)+ϕ(t,τ))dτ

+exp(−[r+ δ̄ ]T )[−
∫

∞

t+T
exp(−[r+ δ̄ ](τ− t−T )+ϕ(t +T,τ))dτ]

=−
∫ t+T

t
exp(−[r+ δ̄ ](τ− t)+ϕ(t,τ))dτ + exp(−[r+ δ̄ ]T )λ (t +T ).

Since λ (t) = λ (t +T ) for each t ≥ 0, we have for t ≥ 0

λ (t) =−
∫ t+T

t
exp(−[r+ δ̄ ](τ− t)+ϕ(t,τ))dτ + exp(−[r+ δ̄ ]T )λ (t).

In other words, we have for t ≥ 0

λ (t) =
−1

1− exp(−[r+ δ̄ ]T )

∫ t+T

t
exp(−[r+ δ̄ ](τ− t)+ϕ(t,τ))dτ.

Thus we have obtained λ (t) =

−1×
∫ t+T

t exp(−[r+ δ̄ ](τ− t)+ aT
2π
[sin(2π

T (t−θ))− sin(2π

T (τ−θ))])dτ

1− exp(−[r+ δ̄ ]T )
(3.1)
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for t ≥ 0, where r, δ̄ ,a,T, and θ are control parameters that satisfy the condition (2.3). Figure
1 depicts λ = λ (t) for t ≥ 0 and for (r, δ̄ ,a,T,θ) = (1,2.5,2,2,1), where the horizontal axis is
the t−axis and the vertical axis is the λ−axis, respectively.

FIGURE 1. Figure 1

3.2. Inequality constraints. Since by the relation (2.8) for t ≥ 0

u(t) =


0, 1+βλ (t)< 0,

1+βλ (t), 0≤ 1+βλ (t)≤ 1,
1, 1 < 1+βλ (t),

and since as shown by Figure 1 λ = λ (t) is uniformly bounded away from and below the
t−axis, the optimal level of the normalized macroeconomic activity u(t) is always equal to 0, if
λ (t)≤− 1

β
for each t ≥ 0. In order to avoid such a case as well as a corner solution we introduce

auxiliary variables and inequality constraints.
Let R−− be defined as R−− := {x ∈R : x < 0} and let l(r, δ̄ ,a,T,θ) : R+→R−− be defined

as l(t : r, δ̄ ,a,T,θ) :=

−1×
∫ t+T

t exp(−[r+ δ̄ ](τ− t)+ aT
2π
[sin(2π

T (t−θ))− sin(2π

T (τ−θ))])dτ

1− exp(−[r+ δ̄ ]T )
,

where r, δ̄ ,a,T, and θ are control parameters that satisfy the condition (2.3). Note that by
construction for each t ∈ R+ l(t : r, δ̄ ,a,T,θ) = λ (t)∧ l(t : r, δ̄ ,a,T,θ) = l(t +T : r, δ̄ ,a,T,θ).

Let λmax(r, δ̄ ,a,T,θ) and λmin(r, δ̄ ,a,T,θ) be defined as

λmax(r, δ̄ ,a,T,θ) := max
t∈[0,T ]

l(t : r, δ̄ ,a,T,θ), (A)

λmin(r, δ̄ ,a,T,θ) := min
t∈[0,T ]

l(t : r, δ̄ ,a,T,θ). (B)

Then by construction we have for each t ∈ R+

λmax(r, δ̄ ,a,T,θ)≥ λ (t)≥ λmin(r, δ̄ ,a,T,θ).

If− 1
β
≥ λmax(r, δ̄ ,a,T,θ), u(t)= 0 for all t ≥ 0. If λmax(r, δ̄ ,a,T,θ)>− 1

β
≥ λmin(r, δ̄ ,a,T,θ),

u(t) > 0 for some t ≥ 0, and u(t) = 0 for other t ≥ 0. If λmin(r, δ̄ ,a,T,θ) > − 1
β

, u(t) > 0 for

all t ≥ 0. Figure 2 depicts λ = λ (t) and λ =− 1
β

, where (r, δ̄ ,a,T,θ) = (1,2.5,2,2,1) so that
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λmax(r, δ̄ ,a,T,θ) = −0.196558215152 · · · and λmin(r, δ̄ ,a,T,θ) = −0.464503169994 · · · , and
where β = 10 for Figure 2.a, β = 3 for Figure 2.b, and β = 1.85 for Figure 2.c, respectively.
In each of Figures 2.a, 2.b, and 2.c the horizontal axis is the t−axis and the vertical axis is the
λ−axis, respectively.

FIGURE 2. Figure 2

Note that if we assume λmax(r, δ̄ ,a,T,θ) > − 1
β

, u(t) > 0 for some t, and that if we assume

λmin(r, δ̄ ,a,T,θ)>− 1
β

, u(t)> 0 for all t. Thus we introduce the following assumptions.

Assumption 3.1. Let r,β , δ̄ ,a,T, and θ be given control parameters that satisfy the condi-
tion (2.3). Let λmax(r, δ̄ ,a,T,θ) be the constant given by the definition (A). It holds that
λmax(r, δ̄ ,a,T,θ)>− 1

β
.
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Assumption 3.2. Let r,β , δ̄ ,a,T, and θ be given control parameters that satisfy the condi-
tion (2.3). Let λmin(r, δ̄ ,a,T,θ) be the constant given by the definition (B). It holds that
λmin(r, δ̄ ,a,T,θ)>− 1

β
.

See Table 1 for parametric examples of λmax(r, δ̄ ,a,T,θ) and λmin(r, δ̄ ,a,T,θ) for some given
(r, δ̄ ,a,T,θ). In the rest of the paper we always assume the inequality constraint of Assumption
3.1 so that the CO2 emissions control problem (P1) has a unique nontrivial optimal solution. We
shall hypothetically strengthen Assumption 3.1 with Assumption 3.2 at the ends of Section 3.3
and Section 4. For the latter case the optimal level of the normalized macroeconomic activity is
given by u(t) = 1+βλ (t) that is always positive. The latter assumption is more natural as an
assumption made for such a macroeconomic model as the CO2 emissions control problem (P1)
than the former assumption.

(r, δ̄ ,a,T,θ) λmax(r, δ̄ ,a,T,θ) λmin(r, δ̄ ,a,T,θ)
(1,2.5,2,2,1) −0.196558215152 · · · −0.464503169994 · · ·
(1,2.5,2,2.5,1) −0.191375355265 · · · −0.492562121558 · · ·
(1,3.5,3,2,1) −0.140287851077 · · · −0.430861424554 · · ·
(1.5,2.5,2,2,1) −0.176551065630 · · · −0.391208652324 · · ·
(1.5,3.5,3,2,1) −0.130015449367 · · · −0.368861047174 · · ·
(1.5,3.5,3,2.5,1) −0.128005225452 · · · −0.389669900863 · · ·

Table 1

Without Assumption 3.1 the optimal level of the normalized macroeconomic activity u(t)
could always be equal to 0 due to − 1

β
≥ λ (t) for each t ≥ 0. In order to obtain a nontrivial

optimal solution and a nontrivial non-autonomous limit cycle we explicitly assume Assumption
3.1 in the rest of the paper, and we shall construct a series of arguments in order to exclude such
a trivial solution as u(t) = 0 for all t ≥ 0 as well as such a trivial ω−limit set as a set composed
of a single point. If Assumption 3.1 is satisfied, but if Assumption 3.2 is not satisfied, then
u(t)> 0 for some t ≥ 0, but u(t) = 0 for other t ≥ 0. In contrast if Assumption 3.2 is satisfied,
then u(t) > 0 for each t ≥ 0. In order to avoid a corner solution we need Assumption 3.2. As
mentioned above we always assume Assumption 3.1 in the rest of paper, and we shall argue at
the ends of Section 3.3 and Section 4 that if we strengthen Assumption 3.1 with Assumption
3.2, we can exclude a corner solution. As mentioned above Assumption 3.2 is a more natural
assumption than Assumption 3.1 from the view point of economics. However we shall pay due
attentions to Assumption 3.1 in order to clarify the logical relationship of a hypothesis to an
obtained solution in the intertemporal optimization problem (P1).

3.3. A unique nontrivial optimal solution. We have sufficient preparations for showing that
the unique optimal solution in Proposition 1 is a nontrivial solution under Assumption 3.1.

Proposition 2. Assume that Assumption 3.1 is satisfied. For some t0 ∈ [0,T ) and for each n∈N

u(t0) = u(t0 +T ) = · · ·= u(t0 +nT ) = · · ·> 0 (3.2)

so that the unique optimal solution of the problem (P1) is a nontrivial solution.
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Proof of Proposition 2. Let t0 ∈ [0,T ) be a solution of the following equation.

λ (t0) = λmax(r, δ̄ ,a,T,θ), (3.3)

where λmax(r, δ̄ ,a,T,θ) is the constant given by the definition (A). Recall λ (T ) = λ (0) by
construction. Therefore by the definition (A) the equation (3.3) has a solution t0 in [0,T ). And
by Assumption 3.1 we have

λ (t0)>−
1
β
. (3.4)

And we have λ (t0) = λ (t0 + nT ) for each n ∈ N. Thus we obtain the relation (3.2) from the
relations (2.8) and (3.4). Therefore there exists a unique nontrivial optimal solution to the
problem (P1) under Assumption 3.1. �

Proposition 2 is due to the present study. Under Assumption 3.1, i.e., λmax(r, δ̄ ,a,T,θ) > − 1
β

alone we might have u(t) = ψ(λ (t)) = 0 for some t ∈ R+. If we strengthen this assumption by
Assumption 3.2, i.e., λmin(r, δ̄ ,a,T,θ)>− 1

β
, we should have u(t) = ψ(λ (t))> 0 for all t ∈R+

by construction.

4. THE DYNAMICS OF THE STATE VARIABLE ON THE UNIQUE OPTIMAL PATH

In Section 3.1 we have obtained the relation (3.1) for λ = λ (t), t ≥ 0. And we also have

λ (t) = λ (t +T ).

In the present section we assume Assumption 3.1, and characterize the state variable x∗(t) = x∗t
on the unique optimal path of the CO2 emissions control problem (P1). We shall show that
the state variable converges to a non-autonomous limit cycle globally on the optimal path of
this problem (P1) and that the unique optimal path exhibits the turnpike property such that the
non-autonomous limit cycle constitutes the turnpike of the problem (P1).

Under this assumption by Proposition 2 we have for some t0 ∈ [0,T ) and for each n ∈ N

u(t0) = u(t0 +T ) = · · ·= u(t0 +nT ) = · · ·> 0.

Let ψ : R→ [0,1] be the function given by the definition (2.4). Then the dynamics of the
state variable x∗(t) = x∗t on the unique optimal path is given by the following non-autonomous
ordinary differential equation together with the initial condition.

ẋ∗t = βψ(λ (t))−δ (t)x∗t ∧ x∗(0) = x0 ∈ R+, (4.1)

where λ = λ (t), t ≥ 0, is given by the relation (3.1) with β ∈ R++, and where

δ (t) = δ̄ +acos(
2π

T
(t−θ))

with δ̄ ,a,T ∈ R++∧0≤ θ < T and with

δ̄ −a > 0,

which implies that
δ (t)≥ δ̄ −a > 0.

Let f : R+→ R+ be defined as

f (t) := exp(−
∫ t

0
δ (s)ds)

∫ t

0
βψ(λ (τ))exp(

∫
τ

0
δ (s)ds)dτ.
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The function f = f (t) satisfies

d
dt

f (t) = βψ(λ (t))−δ (t) f (t)∧ f (0) = 0.

Let φ : R+×R+ → R+ be defined as the solution of the initial value problem of the non-
autonomous ordinary differential equation (4.1). Then by construction we have

φ(t,x0) = x0 exp(−
∫ t

0
δ (s)ds)+ f (t)∧φ(0,x0) = x0.

And we have the following result.

Theorem 1. Assume that Assumption 3.1 is satisfied so that the CO2 emissions control problem
(P1) has a unique nontrivial optimal solution.

(1) There exists a unique point xeq in R+ such that

φ(T,xeq) = xeq∧∃t ′ ∈ (0,T ) : φ(t ′,xeq) 6= xeq.

(2) For each n ∈ N, for each t ∈ [0,T ), and for each x0 ∈ R+

φ(nT + t,xeq) = φ(t,xeq)∧ lim
n→∞

φ(nT + t,x0) = φ(t,xeq).

In other words there exists a unique non-autonomous limit cycle to which the state variable
globally converges on the unique optimal path of the CO2 emissions control problem (P1), and
the unique optimal path exhibits the turnpike property in the sense that the optimal programs
from different initial states converge to one another, where the unique non-autonomous limit
cycle constitutes the turnpike of the problem (P1).

Proof of Theorem 1. (1) Note that δ (t) ≥ δ̄ − a > 0, and we obtain the following bound for
any two initial conditions x′0 and x′′0 in R+.

|φ(t,x′0)−φ(t,x′′0)|= |x′0− x′′0|exp(−
∫ t

0
δ (s)ds)≤ |x′0− x′′0|exp(−[δ̄ −a]t).

Note that R+ is a complete metric space with the metric d(x′,x′′) := |x′− x′′| for each x′ and x′′

in R+. Let S : R+→ R+ be a mapping defined asS(x) := φ(T,x). Then, for each x′ and x′′ in
R+,

|S(x′)−S(x′′)| ≤ |x′− x′′|exp(−[δ̄ −a]T ).

Since 0 < exp(−[δ̄ − a]T ) < 1, the mapping S : R+→ R+ is a contraction mapping with 0 <
exp(−[δ̄ − a]T ) < 1. Therefore by the contraction mapping fixed point theorem the mapping
S(·) has a unique fixed point in R+. See Theorem 8.1 in Kolmogorov and Fomin (1970) for
the contraction mapping fixed point theorem. We shall denote this unique fixed point of S(·) by
xeq ∈ R+. Then by construction we have φ(T,xeq) = xeq. By Assumption 3.1 ψ(λ (t)) exhibits
oscillations with the period T > 0, and the solution of the following initial value problem of the
non-autonomous differential equation

∂

∂ t
φ(t,xeq) = βψ(λ (t))−δ (t)φ(t,xeq)∧φ(0,xeq) = xeq ∈ R+,
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i.e., φ = φ(t,xeq) could not be constant on the interval [0,T ). This is because if φ = φ(t,xeq)
could be constant and so equal to xeq on the interval [0,T ), then we should have for all t ∈ [0,T )

ψ(λ (t))
δ (t)

=
xeq

β
.

And also because the following claim holds. Therefore we should have

∃t ′ ∈ (0,T ) : φ(t ′,xeq) 6= xeq.

Claim. ψ(λ (t))
δ (t) could not be constant on the interval [0,T ).

Proof of Claim.
(1) Suppose that λmax(r, δ̄ ,a,T,θ) > − 1

β
≥ λmin(r, δ̄ ,a,T,θ). In this case ψ(λ (t)) > 0 for

some t ∈ [0,T ), and ψ(λ (t))= 0 for other t ∈ [0,T ). On the other hand δ (t)> 0 for all t ∈ [0,T ).
Therefore ψ(λ (t))

δ (t) could not be constant on t ∈ [0,T ).

(2) Suppose that λmin(r, δ̄ ,a,T,θ)>− 1
β

. In this case ψ(λ (t)) = 1+βλ (t)> 0, where λ (t)

is the right hand side of the relation (3.1). Suppose that 1+βλ (t)
δ (t) is constant for each t ∈ [0,T ).

Then we should have for each t ∈ [0,T )

β
d
dt λ (t)

1+βλ (t)
=

d
dt δ (t)
δ (t)

,

which implies that for each t ∈ [0,T )

β +β [r+δ (t)]λ (t)
1+βλ (t)

=
−2πa

T sin(2π

T (t−θ))

δ̄ +acos(2π

T (t−θ))
,

which in turn implies that for each t ∈ [0,T ),λ (t) =

−2πa
T sin(2π

T (t−θ))−β [δ̄ +acos(2π

T (t−θ))]

β [δ̄ +acos(2π

T (t−θ))][r+ δ̄ +acos(2π

T (t−θ))]+β
2πa
T sin(2π

T (t−θ))
.

This relation contradicts with the relation (3.1). Therefore we have for some t ′ ∈ [0,T )

β
d
dt λ (t ′)

1+βλ (t ′)
6=

d
dt δ (t ′)
δ (t ′)

,

which implies that 1+βλ (t)
δ (t) could not be constant on the interval [0,T ). �

Note that if Assumption 3.1, i.e., λmax(r, δ̄ ,a,T,θ) > − 1
β

would not be satisfied, we should
have ψ(λ (t)) = 0 for all t ∈ R+, which implies both xeq = 0 and φ(t,0) = 0 for all t ∈ (0,T ).
In other words Assumption 3.1 guaranties ∃t ′ ∈ (0,T ) : φ(t ′,xeq) 6= xeq and the existence of a
nontrivial cyclical solution.

(2) Let L(t) be a set defined as for each t ∈ [0,T )

L(t) := {φ(t,x) ∈ R+ : x ∈ R+∧φ(t,x) := xexp(−
∫ t

0
δ (s)ds)+ f (t)}.
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By construction we have for each x′,x′′ ∈ R+ and for each t ∈ [0,T )

|φ(t,x′)−φ(t,x′′)|= |x′− x′′|exp(−
∫ t

0
δ (s)ds)≤ |x′− x′′|exp(−[δ̄ −a]t).

Let Φ(n, t) : L(t)→ R+ be a mapping defined as for each x ∈ R+, for each n ∈ N, and for each
t ∈ [0,T )

Φ(φ(t,x) : n, t) := φ(nT + t,x).

Then by λ (t + T ) = λ (t)∧ δ (t + T ) = δ (t) for each t ∈ R+, by the relation (4.1), and by
φ(T,xeq) = xeq we have for each n ∈ N and for each t ∈ [0,T )

Φ(φ(t,xeq) : n, t) = φ(nT + t,xeq) = φ(t,xeq),

and we also have for each x′,x′′ ∈ R+, for each n ∈ N, and for each t ∈ [0,T )∣∣Φ(φ(t,x′) : n, t)−Φ(φ(t,x′′) : n, t)
∣∣

= |x′− x′′|exp(−
∫ nT+t

0
δ (s)ds)≤ |x′− x′′|exp(−[δ̄ −a]× [nT + t]).

Therefore we have for each x0 ∈ R+, for each n ∈ N, and for each t ∈ [0,T )∣∣φ(nT + t,x0)−φ(t,xeq)
∣∣= ∣∣Φ(φ(t,x0) : n, t)−Φ(φ(t,xeq) : n, t)

∣∣
≤
∣∣x0− xeq

∣∣exp(−[δ̄ −a]× [nT + t]).

And since 0 < exp(−[δ̄ − a]) < 1, we have for each n ∈ N, for each t ∈ [0,T ), and for each
x0 ∈ R+

φ(nT + t,xeq) = φ(t,xeq)∧ lim
n→∞

φ(nT + t,x0) = φ(t,xeq). �

The above proof that φ(T,xeq) = xeq ∧ limn→∞ φ(nT,x0) = xeq for n ∈ N and for x0 ∈ R+ is
essentially the same as the proof given by Appendix 2 of Gromov et al. [7], although our
fixed point argument is more streamlined than that of Gromov et al. [7]. Further arguments
given above are due to the present study. As mentioned immediately after the proof of Claim
Assumption 3.1 guaranties ∃t ′ ∈ (0,T ) : φ(t ′,xeq) 6= xeq and the existence of a nontrivial non-
autonomous limit cycle. And the unique optimal path exhibits the turnpike property in the
sense that the optimal programs from different initial states converge to one another, where the
mapping R+ 3 t → φ(t,xeq) ∈ R+ constitutes the turnpike of the intertemporal optimization
problem (P1). Under Assumption 3.1 alone we might have ψ(λ (t)) = 0 for some t ∈ R+. If
we strengthen this assumption by Assumption 3.2, i.e., λmin(r, δ̄ ,a,T,θ)>− 1

β
, we should have

ψ(λ (t))> 0 for all t ∈ R+ by construction.

5. CONCLUSION

We considered the intertemporal optimization problem (P1) that is intended to constitute a
CO2 emissions control problem with smooth seasonal fluctuations of the CO2 reduction rate
δ (t) due to photosynthesis, where u, u(1− 1

2u), and x are proportional to the macroeconomic
activity, the GDP, and the level of cumulative CO2 on some country that belongs to the temperate
zone on the earth, respectively. See the definition (2.2). The current value Hamiltonian

H(x,u,λ : δ (t)) = u
(

1− 1
2

u
)
− x+λ (βu−δ (t)x)
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is linear in the state variable x, and thus the dynamics of its co-state variable λ is de-coupled
from that of the state variable x. First we have prescribed a unique optimal solution to the prob-
lem (P1) by appealing to the maximum principle, and next we have characterized the dynamics
of co-state variable and have shown that we can not exclude a trivial optimal solution without
some additional inequality constraint. Thus we have also introduced the inequality constraint
stipulated in Assumption 3.1 in order to avoid such a trivial solution as u(t) = 0 for all t ∈R+ as
well as such a trivial ω−limit set as a set composed of a single point. Next we have shown that
under Assumption 3.1 there exists a unique nontrivial optimal solution to the CO2 emissions
control problem (P1). Finally we have shown that under Assumption 3.1 there exists a unique
non-autonomous limit cycle to which the state variable globally converges on the unique opti-
mal path of the CO2 emissions control problem (P1), where the unique optimal path exhibits
the turnpike property in the sense that the optimal programs from different initial states con-
verge to one another. The unique non-autonomous limit cycle constitutes the turnpike of the
intertemporal optimization problem (P1).

Under Assumption 3.1 alone aggregate variables such as u(t) and u(t)(1− 1
2u(t)) could be

equal to 0 for some t ∈ R+. On the other hand under Assumption 3.2 these aggregate variables
are strictly positive for all t ∈R+. Therefore from the view point of economics Assumption 3.2
is a more natural assumption to make than Assumption 3.1. In spite of the fact that Assumption
3.1 is slightly unrealistic as an assumption made for such a macroeconomic model as the CO2
emissions control problem (P1), we have paid due attentions to this assumption until now in or-
der to clarify the logical relationship of a hypothesis to an obtained solution in the intertemporal
optimization problem (P1).
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