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Abstract. We propose a new relative-error inexact version of the alternating direction method of multipliers
(ADMM) for convex optimization. We prove the asymptotic convergence of our main algorithm as well as point-
wise and ergodic iteration-complexities for residuals. We also justify the effectiveness of the proposed algorithm
through some preliminary numerical experiments on regression problems.
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1. INTRODUCTION

Consider the convex problem

minimize
x∈H

f (x)+g(Lx), (1.1)

where f : H → (−∞,∞] and g : G → (−∞,∞] are lower semicontinuous proper convex func-
tions and L : H → G is a linear operator (H and G denote finite-dimensional inner product
spaces). Problem (1.1) appears in different contexts in applied mathematics, including opti-
mization, inverse problems, machine learning, among others.

One of the most popular numerical algorithms for solving (1.1) is the alternating direction
method of multipliers (ADMM) [22, 23, 24], which has now attracted a lot of attention from
the numerical optimization community (see, e.g., [9, 11, 12, 13, 14, 16, 20, 21, 25, 26, 27, 29,
31, 35, 39]).

In this paper we propose and study a new inexact version of the ADMM allowing relative-
error criteria for the solution of the second subproblem (which will appear in the formulation of
the proposed algorithm) and promoting inertial effects on iterations.
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Organization of the paper. The material is organized as follows. In Section 2 we motivate the
definition of our main algorithm, review some related works and discuss the main contributions
of this paper. In Section 3, we present our main algorithm (Algorithm 1) and some preliminary
results that will be needed to study its convergence and iteration-complexity. In Section 4, we
study the asymptotic behavior of Algorithm 1 under different assumptions under the inertial
parameters involved in the formulation of the method. The main results are Theorems 4.2 and
4.4. In Section 5 we study the iteration-complexities of Algorithm 1. The main results in
this section are Theorems 5.2 and 5.4. Numerical experiments will be presented in Section 6.
Appendix A contains some auxiliary results.

2. MOTIVATION, RELATED WORKS AND CONTRIBUTIONS

Motivation. We first note that (1.1) is clearly equivalent to the separable problem

minimize f (x)+g(y),

subject to Lx− y = 0.
(2.1)

An iteration of the standard ADMM [20] for solving (2.1) can be described as follows: given a
starting point (y0,z0) ∈ G 2 and a regularization parameter γ > 0, iterate for k ≥ 0:

xk+1 ∈ argmin
x∈H

{
f (x)+ 〈zk |Lx− yk〉+

γ

2
‖Lx− yk‖2

}
, (2.2)

yk+1 ∈ argmin
y∈G

{
g(y)+ 〈zk |Lxk+1− y〉+ γ

2
‖Lxk+1− y‖2

}
, (2.3)

zk+1 = zk + γ (Lxk+1− yk+1) . (2.4)

We consider here the case in which (2.2) can be solved exactly and, on the other hand, (2.3) is
supposed to be solved only approximately by some other (inner) algorithm, like, for instance,
CG or BFGS, depending on the particular structure of the function g(·) in (2.1).

With this in mind, we will introduce a notion of relative-error approximate solution for (2.3)
(more details will be given on Section 3). To this end, first note that (2.3) is an instance of the
general family of minimization problems

minimize
y∈G

{
g(y)+ 〈z |Lx− y〉+ γ

2
‖Lx− y‖2

}
, (2.5)

where x ∈H , z ∈ G and γ > 0 are given (in the case of (2.3), we have (x,z) = (xk+1,zk)).
Moreover, since the function g(·) is convex, we have that (2.5) is also equivalent to the inclu-
sion/equation system for the pair (y,v):v ∈ ∂g(y),

v− z+ γ(y−Lx) = 0.
(2.6)

A formal definition of approximate (inexact) solution of (2.6) (or, equivalently, (2.5)) will be
given in Definition 3.1 in Section 3; such a notion of approximate solution will allow for errors
in both the inclusion and the equation in (2.6).
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The extended-solution set. The Fenchel dual of (1.1) is

maximize
z∈G

− f ∗(−L∗z)−g∗(z), (2.7)

where f ∗ : H → (−∞,∞] and g∗ : G → (−∞,∞] denote the Fenchel conjugates of f and g,
respectively, and L∗ : G →H denotes the adjoint operator of L. Under standard regularity
conditions [10] on f ,g and L it is well-known that (1.1) and (2.7) are, respectively, equivalent
to the (monotone) inclusions

0 ∈ ∂ f (x)+L∗∂g(Lx), (2.8)

and

0 ∈ −L∂ f ∗(−L∗z)+∂g∗(z). (2.9)

We make the blanket assumption:

Assumption 2.1. For the function f and the operator L as in (1.1), the following holds:

∂ ( f ∗ ◦−L∗) =−L◦∂ f ∗ ◦−L∗.

Several sufficient conditions for Assumption 2.1 to hold true can be found, e.g., in [10]. We
will also consider an extended-solution set S , attached to the pair of inclusions (2.8)–(2.9),
defined as

S = {(z,w) ∈ G 2 | −w ∈ ∂ ( f ∗ ◦−L∗)(z) and w ∈ ∂g∗(z)}. (2.10)

Under Assumption 2.1, it is easy to check that if (z,w) ∈S , then it follows that there exists
x∈H such that x∈ ∂ f ∗(−L∗z), w= Lx and x and z are solutions of (2.8) and (2.9), respectively.

Throughout this work we will assume the following.

Assumption 2.2. We assume the extended solution set S as in (2.10) is nonempty.

Inertial algorithms. Iterative algorithms with inertial effects for monotone inclusions (and
related topics in optimization, saddle-point, equilibrium problems, etc) were first proposed in
the seminal paper [2] and subsequently developed in various directions of research by different
authors and research groups (see, e.g., [3, 5, 6, 7, 8, 12, 17] and references therein). Basically,
the main idea consists in at a current iterate, say pk, produce an “inertial effect” by a simple
extrapolation:

p̂k = pk +αk(pk− pk−1),

where αk ≥ 0, and then generate the next iterate pk+1 from p̂k instead of pk (see (3.5)–(3.6)
below). Our main algorithm, namely Algorithm 1, will benefit from inertial effects on the
iteration; see the comments and remarks following Algorithm 1 for more discussions regarding
the effects of inertia.

Main contributions. We present a theoretical (asymptotic and iteration-complexity analysis)
and computational study of a partially inexact ADMM splitting algorithm for solving (1.1).
Our main algorithm, namely Algorithm 1 below, benefits from the addition of inertial effects;
see (3.5) and (3.6). The convergence analysis is presented in Theorem 4.2, to which the proof
incorporates some elements of [3] and [39]. We also obtained iteration-complexities for the
proposed algorithm by showing pointwise O(1/

√
k) and ergodic O(1/k) global convergence

rates for residuals; see Theorems 5.2 and 5.4 below. We justify the effectiveness of our main
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algorithm through the realization of numerical experiments on the LASSO problem (see Section
6).

Related works. A partially inexact ADMM splitting algorithm was recently proposed and
studied in [39]. Paper [1] proposes a partially inexact ADMM for which the first subproblem
is supposed to be solved inexactly. The analysis of the main algorithm in [1] is performed by
viewing it as a special instance of a non-Euclidean version of the hybrid proximal extragradient
method [30]. In contrast to this, analogously to [39], our main algorithm (Algorithm 1 below)
assumes the second subproblem is solved inexactly. Moreover, since (3.9)–(3.11) below also
allows for errors in ∂g, the error criterion we propose here is potentially more flexible than the
corresponding one in [1]. Other relative-error inexact versions of ADMM were also previously
studied in [42, 43], but we notice that the convergence results were restricted to the analysis
of the dual sequences. We also mention that the relative-error inexact variants of the ADMM
from [3, 21] only apply to (1.1) in the particular case of L = I, and, additionally, these variants
assume the first subproblem to be solved inexactly with the error condition verified only a-
posteriori, that is, only after the computation of second subproblem’s solution.

General notation. We denote by H and G finite-dimensional inner product spaces with inner
product and induced norm denoted, respectively, by 〈 | 〉 and ‖·‖ =

√
〈· | ·〉. For any set X

we denote by Xn the n-product X × ·· ·×X . In G 2, we will consider the inner product and
induced norm defined, respectively, by

〈p | p′〉γ :=
1
γ
〈z |z′〉+ γ〈w |w′〉 and ‖p‖2

γ := 〈p | p〉γ , (2.11)

where p = (z,w), p′ = (z′,w′) ∈ G 2 and γ > 0. More precisely, for p = (z,w) ∈ G 2, the norm of
p is

‖p‖2
γ =

1
γ
‖z‖2 + γ‖w‖2. (2.12)

An extended-real valued function f : H → (−∞,∞] is said to be convex whenever f (λx+(1−
λ )y) ≤ λ f (x) + (1− λ ) f (y) for all x,y ∈H and λ ∈ (0,1), and f is proper if its effective
domain, denoted by dom f , is nonempty. The Fenchel conjugate of a proper function f : H →
(−∞,∞] is f ∗ : H → (−∞,∞], defined at any u ∈H by f (u) = supx∈H {〈x |u〉− f (x)}. The
ε-subdifferential and the subdifferential of a convex function g : H → (−∞,∞] at x ∈H are
defined as ∂εg(x) := {u ∈H | g(y) ≥ g(x)+ 〈u |y− x〉− ε ∀y ∈H } and ∂g(x) := ∂0g(x),
respectively. For additional details on standard notations and definitions of convex analysis we
refer the reader to the references [10, 34].

3. THE MAIN ALGORITHM AND SOME PRELIMINARY RESULTS

Consider the minimization problem (1.1), i.e.,

minimize
x∈H

f (x)+g(Lx), (3.1)

where f : H → (−∞,∞] and g : G → (−∞,∞] are lower semicontinuous proper convex func-
tions and L : H → G is a linear operator between finite-dimensional inner product spaces H
and G .
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In this section we present our main algorithm, namely Algorithm 1 below. This is a partially
inexact (the second block is allowed to be solved inexactly) ADMM with relative-error criterion
for the second subproblem. Recall the extended solution set S as in (2.10) and Assumptions
2.1 and 2.2. The three technical lemmas 3.2, 3.3, 3.4 and 3.5 will be used in the subsequent
section.

Before presenting our main algorithm, as we discussed in the Introduction, we have to for-
malize the notion of inexact solution that will be used to compute approximate solution for the
second subproblem. Recall that the second subproblem of the standard ADMM (see (2.3)) be-
longs to the general family of minimization problems (2.5), which is, in particular, equivalent
to the inclusion/equation system (2.6) for the pair (y,v), i.e.,v ∈ ∂g(y),

v− z+ γ(y−Lx) = 0.
(3.2)

Definition 3.1 (σ -approximate solution of (2.5)). For x ∈H , (ẑ, ŷ) ∈ G 2 and γ > 0, a triple
(ỹ,v,ε) ∈ G ×G ×R+ is said to be a σ -approximate solution of (2.5) (or, equivalently, of (2.6))
at (x, ẑ, ŷ) if σ ∈ [0,1) and

v ∈ ∂εg(ỹ),

v− ẑ+ γ(ỹ−Lx) =: e

‖e‖2 +2γε ≤ σ2 min
{

γ2‖Lx− ŷ‖2,‖v− ẑ‖2} .
(3.3)

We will also write

ỹ
σ≈ argmin

y∈G

{
g(y)+ 〈ẑ |Lx− y〉+ γ

2
‖Lx− y‖2

}
meaning that there exists (v,ε) such that (ỹ,v,ε) satisfies (3.3).

We now make some remarks regarding Definition 3.1:
(i) Note that if σ = 0 in (3.3), then it follows that e = 0 and ε = 0, which is to say that

the pair (ỹ,v) satisfies the inclusion/equation system (2.6) (recall that ∂0g = ∂g) and, in
particular, ỹ is an exact solution of (2.5).

(ii) The error criterion for (2.6) as in (3.3) belongs to the class of relative-error criteria
for proximal-type algorithms. Different variants of such error conditions have been
employed for computing approximate solution for (sub) problems for a wide range of
algorithms in monotone inclusions, convex optimization, saddle-point problems, etc
(see, e.g., [3, 21, 30, 36, 37, 38]).

(iii) The error criterion (3.3) will be used to compute approximate solutions in step 3 of our
main algorithm, namely Algorithm 1 below (see (3.9)–(3.11)).

(iv) As an illustrative example, consider the special case of the LASSO problem [40]

min
x∈Rd

{
1
2
‖Ax−b‖2 +ν‖x‖1

}
, (3.4)

where A ∈ Rn×d , b ∈ Rn and ν > 0. Problem (3.4) is clearly a special instance of (1.1)
in which L := I, f (x) := ν‖x‖1 and g(x) := (1/2)‖Ax−b‖2 (see also Section 6 below).
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In this case, our inclusion/equation system (2.6) clearly reduces to

v = A∗(Ay−b), v− z+ γ(y− x) = 0,

or, in other words, in this special case, (2.6) is equivalent to the linear system (operator
equation) (

A∗A+ γI
)

y = A∗b+ z+ γx.

The latter linear system can be solved by the CG algorithm [32], where e as in (3.3)
will simply denote the residual of the system and the inequality in (3.3) can be used as
a stopping criterion for CG.

Next is our main algorithm.

Algorithm 1. An inexact inertial ADMM algorithm for solving (1.1)

(0) Let (z0,y0) = (z−1,y−1) ∈ G 2 and let α,σ ∈ [0,1), τ ∈ (0,1) and γ > 0. Set k = 0.
(1) Choose αk ∈ [0,α] and let

ẑk = zk +αk(zk− zk−1), (3.5)

ŷk = yk +αk(yk− yk−1). (3.6)

(2) Compute

xk ∈ argmin
x∈H

{
f (x)+ 〈ẑk |Lx− ŷk〉+

γ

2
‖Lx− ŷk‖2

}
. (3.7)

(3) Compute

ỹk
σ
≈ argmin

y∈G

{
g(y)+ 〈ẑk |Lxk− y〉+ γ

2
‖Lxk− y‖2

}
(3.8)

at (xk, ẑk, ŷk) in the sense of Definition 3.1, i.e., compute (ỹk,vk,εk) ∈ G ×G ×R+ such that

vk ∈ ∂εk g(ỹk), (3.9)

vk− ẑk + γ(ỹk−Lxk) =: ek, (3.10)

‖ek‖2 +2γεk ≤ σ
2 min

{
γ

2‖Lxk− ŷk‖2,‖vk− ẑk‖2} . (3.11)

(4) Set

zk+1 = ẑk + τγ(Lxk− ỹk), (3.12)

yk+1 = (1− τ)ŷk +
τ

γ
(ẑk + γLxk− vk), (3.13)

k = k+1 and go to step 1.

We now make some remarks concerning Algorithm 1:

(i) Algorithm 1 is specially designed for instances of (1.1) in which (3.7) has a closed-form
solution, i.e., for problems in which (3.7) is easy to solve. In this regard, one example
of interest is when f (·) = ‖·‖1 and L = I, in which case (3.7) has a unique solution
given explicitly by xk = proxγ−1‖·‖1

(ŷk− γ−1ẑk). On the other hand, we assume that the
computation of ỹk as in (3.8) demands the use of an (inner) algorithm, which the choice
of depends on the particular structure of the function g, and, in this case, one can use
(3.9)–(3.11) as a stopping criterion for the inner algorithm of choice.

(ii) Recall that we discussed in the Introduction (see “Related works”) other ADMM-type
algorithms related to Algorithm 1.
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(iii) The main results on the convergence and iteration-complexity of Algorithm 1 are Theo-
rems 4.2, 4.4, 5.2 and 5.4 below. Numerical experiments will be presented and discussed
in Section 6.

(iv) The role of the parameter 0 < τ < 1 is to introduce (under) relaxation in the iterative
process; see (3.12) and (3.13).

(v) We will also need the sequences (z̆k) and (y̆k), where, for all k ≥ 0,

z̆k := ẑk + γ(Lxk− ỹk), y̆k :=
1
γ
(ẑk + γLxk− vk). (3.14)

Note that z̆k = zk+1 and y̆k = yk+1 if we set τ = 1 in (3.12) and (3.13), respectively.

Next we present four technical lemmas – Lemmas 3.2, 3.3, 3.4 and 3.5 –, which will be useful
in the subsequent sections.

Lemma 3.2. Consider the sequences evolved by Algorithm 1, let S be as in (2.10) and let (z̆k)
and (y̆k) be as in (3.14). Define

pk = (zk,yk), p̂k = (ẑk, ŷk), p̆k = (z̆k, y̆k) and p̃k = (vk,Lxk) ∀k ≥ 0. (3.15)

(a) For all k ≥ 0,

pk+1 = (1− τ)p̂k + τ p̆k.

(b) For all k ≥ 0,

−Lxk ∈ ∂ ( f ∗ ◦−L∗)(z′k),

where

z′k := ẑk + γ (Lxk− ŷk) . (3.16)

(c) For all k ≥ 0,

p̆k− p̂k =

(
γ(Lxk− ỹk),

1
γ

(
z′k− vk

))
.

(d) For all k ≥ 0 and p = (z,w) ∈S ,

〈p̆k− p̂k | p− p̃k〉γ ≥−εk.

(e) For all k ≥ 0,

p̂k = pk +αk(pk− pk−1).

Proof. (a) This result is a direct consequence of the definitions of pk, p̂k and p̆k as in (3.15) –
see also (3.14) – combined with (3.12) and (3.13).

(b) First note that from (3.7) and (3.16), we obtain 0 ∈ ∂ f (xk) + L∗z′k, or, equivalently,
−L∗z′k ∈ ∂ f (xk). As (∂ f )−1 = ∂ f ∗, the latter inclusion is also equivalent to xk ∈ ∂ f ∗(−L∗z′k),
which in turn yields −Lxk ∈ −L∂ f ∗(−L∗z′k), which by Assumption 2.1 gives item (b).

(c) This follows easily from (3.14) – (3.16) and some simple algebraic manipulations.
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(d) As (∂εkg)−1 = ∂εkg∗ – see, e.g., [44, p. 85, Theorem 2.4.4(iv)]–, we have that (3.9) is
equivalent to the inclusion

ỹk ∈ ∂εkg∗(vk). (3.17)

As p = (z,w)∈S , according to the definition of S in (2.10), we have−w∈ ∂ ( f ∗ ◦−L∗)(z)
and w ∈ ∂g∗(z). The latter inclusions combined with item (b) and (3.17) and the monotonicity
of ∂ ( f ∗ ◦−L∗) and ∂g∗ yield

〈z′k− z |w−Lxk〉 ≥ 0 and 〈z− vk |w− ỹk〉 ≥ −εk. (3.18)

Now using (3.15), item (c), (3.18) and the definition of 〈· | ·〉γ as in (2.11) we find

〈p̆k− p̂k | p− p̃k〉γ =
1
γ
〈γ(Lxk− ỹk) |z− vk〉+ γ

〈
1
γ

(
z′k− vk

)
|w−Lxk

〉
= 〈Lxk− ỹk |z− vk〉+ 〈z′k− z |w−Lxk〉+ 〈z− vk |w−Lxk〉

= 〈z− vk |w− ỹk〉+ 〈z′k− z |w−Lxk〉

≥ −εk.

(e) This follows directly from (3.5), (3.6) and the definition of p̂k as in (3.15). �

Lemma 3.3. Consider the sequences evolved by Algorithm 1 and let (p̆k), (p̂k) and (p̃k) be as
in (3.15). For all k ≥ 0,

(a) ‖p̃k− p̆k‖2
γ =

1
γ

(
‖ek‖2 +‖vk− ẑk‖2

)
.

(b) ‖p̆k− p̂k‖γ ≤ 2‖p̃k− p̂k‖γ .

Proof. (a) Direct use of (2.12), (3.10), (3.14) and (3.15) gives

‖p̃k− p̆k‖2
γ =

1
γ
‖vk− z̆k‖2 + γ‖Lxk− y̆k‖2

=
1
γ
‖vk− ẑk + γ(ỹk−Lxk)︸ ︷︷ ︸

ek

‖2 + γ‖Lxk−
[
γ
−1(ẑk + γLxk− vk)

]
‖2

=
1
γ

(
‖ek‖2 +‖vk− ẑk‖2

)
.

(b) In view of (3.11), (3.15) and item (a),

‖p̃k− p̆k‖2
γ =

1
γ

(
‖ek‖2 +‖vk− ẑk‖2)

≤ 1
γ

(
σ

2‖γ(Lxk− ŷk)‖2 +‖vk− ẑk‖2)
≤ 1

γ
‖vk− ẑk‖2 + γ‖Lxk− ŷk‖2

= ‖p̃k− p̂k‖2
γ .
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Hence, using the triangle inequality,

‖p̆k− p̂k‖γ ≤ ‖ p̃k− p̆k‖γ +‖p̃k− p̂k‖γ ≤ 2‖p̃k− p̂k‖γ .

�

Lemma 3.4. Consider the sequences evolved by Algorithm 1 and let (p̂k), (p̆k) and (p̃k) be as
in (3.15).

(a) For all k ≥ 0 and p ∈ G 2,

‖p− p̂k‖2
γ −‖p− p̆k‖2

γ = ‖p̃k− p̂k‖2
γ −‖ p̃k− p̆k‖2

γ +2〈p̆k− p̂k | p− p̃k〉γ .

(b) For all k ≥ 0 and p ∈ G 2,

‖p− p̂k‖2
γ −‖p− p̆k‖2

γ ≥ γ(1−σ
2)‖Lxk− ŷk‖2 +2

[
εk + 〈p̆k− p̂k | p− p̃k〉γ

]
.

(c) For all k ≥ 0 and p = (z,w) ∈S ,

‖p− p̂k‖2
γ −‖p− p̆k‖2

γ ≥ γ(1−σ
2)‖Lxk− ŷk‖2.

(d) For all k ≥ 0 and p = (z,w) ∈S ,

‖p− p̂k‖2
γ −‖p− pk+1‖2

γ ≥ τγ(1−σ
2)‖Lxk− ŷk‖2 +(1− τ)τ‖p̆k− p̂k‖2

γ .

(e) For all k ≥ 0 and p = (z,w) ∈S ,

‖p− p̂k‖2
γ −‖p− pk+1‖2

γ ≥ τ(1− τ)(1−σ)2‖p̃k− p̂k‖2
γ

≥ (1− τ)(1−σ)2

4τ
‖pk+1− p̂k‖2

γ .

Proof. (a) The desired result follows directly from the well-known identity ‖a−b‖2
γ −‖a− c‖2

γ

= ‖d−b‖2
γ −‖d− c‖2

γ +2〈c−b |a−d〉γ with a = p, b = p̂k, c = p̆k and d = p̃k.

(b) Using (2.12) and the definitions of (p̃k) and (p̂k) as in (3.15) we get

‖p̃k− p̂k‖2
γ =

1
γ
‖vk− ẑk‖2 + γ‖Lxk− ŷk‖2,

which in turn combined with Lemma 3.3(a) yields

‖p̃k− p̂k‖2
γ −‖ p̃k− p̆k‖2

γ = γ‖Lxk− ŷk‖2− 1
γ
‖ek‖2.

From (3.11), item (a), the latter identity and some algebraic manipulations,

‖p− p̂k‖2
γ −‖p− p̆k‖2

γ = γ‖Lxk− ŷk‖2− 1
γ
‖ek‖2 +2〈p̆k− p̂k | p− p̃k〉γ

= γ‖Lxk− ŷk‖2− 1
γ

(
‖ek‖2 +2γεk

)
+2
[
εk + 〈p̆k− p̂k | p− p̃k〉γ

]
≥ γ(1−σ

2)‖Lxk− ŷk‖2 +2
[
εk + 〈p̆k− p̂k | p− p̃k〉γ

]
,

which finishes the proof of (b).

(c) This is a direct consequence of Lemma 3.2(d) and item (b) above.
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(d) Using Lemma 3.2(a) and the identity

‖(1− τ)a+ τb‖2
γ = (1− τ)‖a‖2

γ + τ‖b‖2
γ − (1− τ)τ‖a−b‖2

γ

with a = p− p̂k and b = p− p̆k, we obtain

‖p− pk+1‖2
γ = ‖(1− τ)(p− p̂k)+ τ(p− p̆k)‖2

γ

= (1− τ)‖p− p̂k‖2
γ + τ‖p− p̆k‖2

γ − (1− τ)τ‖p̆k− p̂k‖2
γ .

Now by multiplying the inequality in item (c) by τ > 0, using the latter identity and some simple
algebraic manipulations, we find the desired result.

(e) Note first that using (3.11) and the triangle inequality, we find

‖vk− ẑk‖ ≤ ‖vk− ẑk + γ(ỹk−Lxk)︸ ︷︷ ︸
ek

‖+‖γ(ỹk−Lxk)‖

≤ σ‖vk− ẑk‖+‖γ(ỹk−Lxk)‖,

so that

‖γ(ỹk−Lxk)‖ ≥ (1−σ)‖vk− ẑk‖,

which in turn combined with (2.12), (3.14) and (3.15) yields

‖ p̆k− p̂k‖2
γ =

1
γ
‖z̆k− ẑk‖2 + γ‖y̆k− ŷk‖2

≥ 1
γ
‖z̆k− ẑk‖2

=
1
γ
‖γ(ỹk−Lxk)‖2

≥ 1
γ
(1−σ)2‖vk− ẑk‖2. (3.19)

Now using (2.11), (3.15), item (d) above and (3.19),

‖p− p̂k‖2
γ −‖p− pk+1‖2

γ ≥ τγ(1−σ
2)‖Lxk− ŷk‖2 +(1− τ)τ‖p̆k− p̂k‖2

γ

≥ τγ(1−σ
2)‖Lxk− ŷk‖2 +(1− τ)τ

1
γ
(1−σ)2‖vk− ẑk‖2

≥ τ(1− τ)(1−σ)2
[1

γ
‖vk− ẑk‖2 + γ‖Lxk− ŷk‖2

]
= τ(1− τ)(1−σ)2‖p̃k− p̂k‖2

γ . (3.20)

To prove the second inequality, one can use Lemmas 3.2(a) and 3.3(b) to conclude that ‖pk+1− p̂k‖γ

≤ 2τ‖p̃k− p̂k‖γ and then apply it in (3.20). �
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Lemma 3.5. Consider the sequences evolved by Algorithm 1 and let (pk) and (p̂k) be as in
(3.15). Then, for all k ≥ 0,

‖ p̂k− p‖2
γ = (1+αk)‖pk− p‖2

γ −αk‖pk−1− p‖2
γ +αk(1+αk)‖pk− pk−1‖2

γ ∀p ∈ G 2.

Proof. Recall that from Lemma 3.2(e) we have

p̂k = pk +αk(pk− pk−1), (3.21)

which is clearly equivalent to

pk− p =
1

1+αk
(p̂k− p)+

αk

1+αk
(pk−1− p) .

Now using the well-known identity ‖tx+(1− t)y‖2
γ = t‖x‖2

γ +(1− t)‖y‖2
γ − t(1− t)‖x− y‖2

γ

with t = 1/(1+αk), x = p̂k− p and y = pk−1− p, we find

‖pk− p‖2
γ =

1
1+αk

‖ p̂k− p‖2
γ +

αk

1+αk
‖pk−1− p‖2

γ −
αk

(1+αk)2‖p̂k− pk−1‖2
γ ,

which, in turn, when combined with the fact that p̂k− pk−1 = (1+αk)(pk− pk−1) – see (3.21)
– and after some simple algebraic manipulations it yields

‖p̂k− p‖2
γ = (1+αk)‖pk− p‖2

γ −αk‖pk−1− p‖2
γ +αk(1+αk)‖pk− pk−1‖2

γ .

�

4. ASYMPTOTIC CONVERGENCE OF ALGORITHM 1

In this section, we study the asymptotic convergence of Algorithm 1. The main results are
Theorems 4.2 and 4.4.

Lemma 4.1. Consider the sequences evolved by Algorithm 1 and, for an arbitrary p = (z,w) ∈
S , define

hk = ‖pk− p‖2
γ ∀k ≥−1. (4.1)

Then h0 = h−1 and, for all k ≥ 0,

hk+1−hk−αk(hk−hk−1)+ τ(1− τ)(1−σ)2‖p̃k− p̂k‖2
γ ≤ αk(1+αk)‖pk− pk−1‖2

γ ,

i.e., (hk) satisfies the assumptions of Lemma A.1 below, where, for all k ≥ 0,

sk+1 := τ(1− τ)(1−σ)2‖ p̃k− p̂k‖2
γ , (4.2)

δk := αk(1+αk)‖pk− pk−1‖2
γ . (4.3)

Proof. The fact that h0 = h−1 follows directly from the fact that p0 = p−1 (see step 0 in Al-
gorithm 1 and the definition of pk as in (3.15)). On the other hand, from Lemma 3.5 and the
definition of hk as in (4.1),

‖p̂k− p‖2
γ = (1+αk)‖pk− p‖2

γ︸ ︷︷ ︸
hk

−αk ‖pk−1− p‖2
γ︸ ︷︷ ︸

hk−1

+αk(1+αk)‖pk− pk−1‖2
γ .

The desired result now follows from the above displayed equation, Lemma 3.4(e) and the
definition of hk as in (4.1). �
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Next we present our first result on the convergence of Algorithm 1 when k→+∞.

Theorem 4.2 (First result on the asymptotic convergence of Algorithm 1). Consider the se-
quences evolved by Algorithm 1 and let /0 6= S be as in (2.10). Assume that

∞

∑
k=0

αk‖pk− pk−1‖2
γ < ∞, (4.4)

where (pk) is as in (3.15). Then there exists (z∞,w∞) ∈S such that

zk→ z∞ and yk→ w∞. (4.5)

Additionally, we also have

vk→ z∞, Lxk→ w∞ and ỹk→ w∞. (4.6)

Proof. We start by making a few remarks. First, from (4.4) and the fact that αk(1+αk)≤ 2αk
(because 0 ≤ αk < 1), we conclude that ∑

∞
k=0 δk < ∞, where δk is as in (4.3), which, in turn,

combined with Lemmas 4.1 and A.1 (below) gives

lim
k→∞

hk exists and
∞

∑
k=1

sk < ∞, (4.7)

where hk and sk+1 are as in (4.1) and (4.2), respectively. Using (4.2) and the second statement
in (4.7) we also obtain ‖p̃k− p̂k‖2

γ → 0, which in turn when combined with the definitions of p̃k
and p̂k – as in (3.15) –, (2.12), (3.10) and (3.11) yields

vk− ẑk→ 0, Lxk− ŷk→ 0, ỹk−Lxk→ 0 and εk→ 0. (4.8)

Second, from (4.4) and the fact that α2
k ≤ αk, we obtain

lim
k→∞

αk‖zk− zk−1‖= lim
k→∞

αk‖yk− yk−1‖= 0,

which, in turn, when combined with the definitions of ẑk and ŷk as in (3.5) and (3.6) yields

ẑk− zk→ 0 and ŷk− yk→ 0. (4.9)

Now, let pk = (zk,yk) be as in (3.15). Note that using the first statement in (4.7), the definition
of hk as in (4.1) and Lemma A.2 below, it follows that to prove the convergence of (pk) to some
element in S – and hence the statement in (4.5) – it suffices to show that every cluster point
of (pk) belongs to S . To this end, let p∞ = (z∞,y∞) ∈ G 2 be a cluster point of (pk) (we know
from (4.7) and (4.1) that (pk) is bounded), i.e., let z∞ and y∞ be cluster points of (zk) and (yk),
respectively. Then let also (k j) be an increasing sequence of indexes such that

zk j → z∞ and yk j → y∞. (4.10)

In view of (4.9) and (4.10), we have

ẑk j → z∞ and ŷk j → y∞, (4.11)

which, in particular, when combined with (4.8) gives

vk j → z∞, Lxk j → y∞, ỹk j → y∞ and εk j → 0. (4.12)

From (3.16), the second statement in (4.8) (with k = k j) and the first statement in (4.11) we
also obtain z′k j

→ z∞, which combined with Lemma 3.2(b) (with k = k j), the fact that the graph
of ∂ ( f ∗ ◦−L∗) is closed and the second statement in (4.12) yields −y∞ ∈ ∂ ( f ∗ ◦−L∗)(z∞).
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As a consequence, according to the definition of S as in (2.10), to prove that (z∞,y∞) ∈ S ,
it remains to verify that y∞ ∈ ∂g∗(z∞). To this end, recall first that from (3.9) (with k = k j)
we know that vk j ∈ ∂εk j

g(ỹk j), which is equivalent to ỹk j ∈ ∂εk j
g∗(vk j). Combining the latter

inclusion with the first, third and fourth statements in (4.12) as well as with the closedness of
the graph of the ε-subdifferential of g∗, we obtain the desired result, namely y∞ ∈ ∂g∗(z∞).

Altogether, we have proved that every cluster point of (pk) belongs to S and so, as we
explained above, it guarantees that (pk) converges to some element in S , i.e., here we finish
the proof of (4.5).

Finally, the proof of (4.6) follows trivially from (4.5), (4.8) and (4.9). �

Remark: As we discussed in the Introduction (following Assumption 2.1), under standard
regularity conditions on (1.1), the result on (z∞,w∞) as in Theorem 4.2, gives that there exists
x∞ ∈H such that x∞ ∈ ∂ f ∗(−L∗z∞), w∞ = Lx∞ and x∞ and z∞ are solutions of (2.8) and (2.9),
respectively. Moreover, the second statements in (4.5) and (4.6) give, in particular, that Lxk−
yk→ 0.

We will consider the following two sufficient conditions on the sequences (αk) and/or (pk)
to ensure (4.4) holds – see (2.11) and the definition of pk as in (3.15) – :

Assumption A: for some 0 < θ < 1 and k0 ≥ 1,

αk ≤min
{

α,
θ k

γ−1‖zk− zk−1‖2 + γ‖yk− yk−1‖2

}
, ∀k ≥ k0; (4.13)

here we adopt the convention 1/0 = ∞.

Assumption B: (α,σ ,τ) ∈ [0,1)× [0,1)× (0,1) and the sequence (αk) satisfy

0≤ αk ≤ αk+1 ≤ α < β < 1 ∀k ≥ 0, (4.14)

where

β :=
2η

1+2η +
√

1+8η
(4.15)

and

η :=
(1− τ)(1−σ)2

4τ
. (4.16)

Lemma 4.3. Under the Assumption B on Algorithm 1, define the quadratic real function

q(t) := (η−1)t2− (1+2η)t +η ∀t ∈ R. (4.17)

Then, q(α)> 0 and, for every p = (z,w) ∈S ,
k

∑
j=0
‖p j− p j−1‖2

γ ≤
2‖p0− p‖2

γ

(1−α)q(α)
∀k ≥ 1. (4.18)

Proof. Note first that combining Lemmas 4.1 and 3.4(e) (second inequality) and (4.16) we ob-
tain, for all k ≥ 0,

hk+1−hk−αk(hk−hk−1)+η‖pk+1− p̂k‖2
γ ≤ αk(1+αk)‖pk− pk−1‖2

γ , (4.19)
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where hk is as in (4.1). On the other hand, using Lemma 3.2(e), the Cauchy-Schwarz inequality
and the Young inequality 2ab≤ a2 +b2 with a := ‖pk+1− pk‖γ and b := ‖pk− pk−1‖γ we find

‖pk+1− p̂k‖2
γ = ‖pk+1− pk‖2

γ +α
2
k ‖pk− pk−1‖2

γ −2αk〈pk+1− pk | pk− pk−1〉γ
≥ ‖pk+1− pk‖2

γ +α
2
k ‖pk− pk−1‖2

γ −αk
(
2‖pk+1− pk‖γ‖pk− pk−1‖γ

)
≥ (1−αk)‖pk+1− pk‖2

γ −αk(1−αk)‖pk− pk−1‖2
γ . (4.20)

Using (4.19), (4.20) and some simple algebraic manipulations we find

hk+1−hk−αk(hk−hk−1)+η(1−αk)‖pk+1− pk‖2
γ ≤ γk‖pk− pk−1‖2

γ , (4.21)

where, for all k ≥ 0,

γk := (1−η)α2
k +(1+η)αk. (4.22)

Define

µ0 := (1−α0)h0 ≥ 0 and µk := hk−αk−1hk−1 + γk‖pk− pk−1‖2
γ ∀k ≥ 1, (4.23)

where hk is as in (4.1). Using (4.17), the assumption that (αk) is nondecreasing – see (4.14) –
and (4.21)–(4.23) we obtain, for all k ≥ 1,

µk−µk−1 ≤
[
hk−hk−1−αk−1(hk−1−hk−2)− γk−1‖pk−1− pk−2‖2

γ

]
+ γk‖pk− pk−1‖2

γ

≤ [γk−η(1−αk)]‖pk− pk−1‖2
γ

=−
[
(η−1)α2

k − (1+2η)αk +η
]
‖pk− pk−1‖2

γ

=−q(αk)‖pk− pk−1‖2
γ . (4.24)

Note now that 0 < β < 1 as in (4.15) is either the smallest or the largest root of the quadratic
function q(·). Hence, from (4.14), for all k ≥ 0,

q(αk)≥ q(α)> q(β ) = 0.

The above inequalities combined with (4.24) yield

‖pk− pk−1‖2
γ ≤

1
q(α)

(µk−1−µk), ∀k ≥ 1, (4.25)

which combined with (4.14) and the definition of µk as in (4.23) gives
k

∑
j=0
‖p j− p j−1‖2

γ ≤
1

q(α)
(µ0−µk),

≤ 1
q(α)

(µ0 +αhk−1) ∀k ≥ 1. (4.26)

Note now that using (4.14), (4.23) and (4.25) we also find

µ0 ≥ . . .≥ µk =hk−αk−1hk−1 + γk‖pk− pk−1‖2
γ

≥hk−αhk−1, ∀k ≥ 1,

and so
hk ≤ α

kh0 +
µ0

1−α
≤ h0 +

µ0

1−α
∀k ≥ 0. (4.27)

Hence, (4.18) follows directly from (4.26), (4.27), the definition of µ0 as in (4.23) and the
definition of h0 as in (4.1). �
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Theorem 4.4 (Second result on the asymptotic convergence of Algorithm 1). Under the as-
sumptions A or B on the sequence (αk), all the conclusions of Theorem 4.2 hold true.

Proof. The proof follows form Theorem 4.2 (see (4.4)), Assumptions A and B above and
Lemma 4.3. �

5. GLOBAL CONVERGENCE RATES OF ALGORITHM 1

In this section, we study global convergence rates for Algorithm 1. We obtain (global) point-
wise O(1/

√
k) and ergodic O(1/k) rates for residuals; see Theorems 5.2 and 5.4 below.

Lemma 5.1. Consider the sequences evolved by Algorithm 1 and assume that

Assumption B holds.

Let (pk), (p̃k) and (p̂k) be as in (3.15) and let also q(·) be as in (4.17). Then, for all p = (z,w)∈
S ,

‖pk− p‖2
γ + τ(1− τ)(1−σ)2

k

∑
j=0
‖p̃ j− p̂ j‖2

γ ≤
(

1+
2α(1+α)

(1−α)2q(α)

)
‖p0− p‖2

γ .

Proof. From Lemmas 4.1 and A.1(a) (below),

hk +
k

∑
j=1

s j ≤ h0 +
1

1−α

k−1

∑
j=0

δ j,

where hk, sk and δk are as in (4.1), (4.2) and (4.3), respectively. Then, in view of (4.18),

‖pk− p‖2
γ + τ(1− τ)(1−σ)2

k

∑
j=0
‖p̃ j− p̂ j‖2

γ ≤ ‖p0− p‖2
γ +

1
1−α

k−1

∑
j=0

α j(1+α j)‖p j− p j−1‖2
γ

≤
(

1+
2α(1+α)

(1−α)2q(α)

)
‖p0− p‖2

γ .

�

Theorem 5.2 (Pointwise global convergence rates of Algorithm 1). Consider the sequences
evolved by Algorithm 1 and assume that

Assumption B holds.

Let (z′k) be as in (3.16) and let d0 denote the distance of p0 = (z0,y0) to the solution set S as
in (2.10). Then, for every k ≥ 0, there exists 0≤ i≤ k such that

−Lxi ∈ ∂ ( f ∗ ◦−L∗)(z′i), ỹi ∈ ∂εig
∗(vi),

γ‖Lxi− ỹi‖2 +
1
γ
‖z′i− vi‖2 ≤

2Cd2
0

k
,

εi ≤
σ2Cd2

0
2k

,

(5.1)



16 M. M. ALVES, M. GEREMIA

where

C :=
1

τ(1− τ)(1−σ)2

(
1+

2α(1+α)

(1−α)2q(α)

)
. (5.2)

Proof. Let p∗ = (z∗,w∗) ∈S be such that d0 = ‖p0− p∗‖γ . From Lemma 5.1 (with p = p∗)
and the definition of C > 0 as in (5.2),

k

∑
j=0
‖p̃ j− p̂ j‖2

γ ≤Cd2
0 . (5.3)

From (2.12) and Lemmas 3.2(c) and 3.3(b),
γ

2
‖Lxk− ỹk‖2 +

1
2γ
‖z′k− vk‖2 =

1
2
‖p̆k− p̂k‖2

γ ≤ ‖ p̃k− p̂k‖2
γ . (5.4)

Due to (2.12), (3.11) and the definitions of p̃k and p̂k as in (3.15) we also find
2εk

σ2 ≤ γ‖Lxk− ŷk‖2 +
1
γ
‖vk− ẑk‖2 = ‖p̃k− p̂k‖2

γ . (5.5)

Hence, from (5.3) – (5.5),
k

∑
j=0

∆ j ≤Cd2
0 , (5.6)

where

∆ j := max
{

γ

2
‖Lx j− ỹ j‖2 +

1
2γ
‖z′j− v j‖2,

2ε j

σ2

}
, j = 0, . . . ,k. (5.7)

The two inequalities in (5.1) follow by choosing i ∈ {0, . . . ,k} such that ∆i ≤ ∆ j for all j =
0, . . . ,k and using (5.6) and the definition of ∆i as in (5.7). To finish the proof of the theo-
rem, note that the inclusions in (5.1) follow directly from (3.9) (combined with the fact that
(∂εkg)−1 = ∂εkg∗) and Lemma 3.2(b). �

For the sequences generated by Algorithm 1 and (z′k) as in (3.16), define the ergodic means

xa
k :=

1
k+1

k

∑
j=0

x j, ỹa
k :=

1
k+1

k

∑
j=0

ỹ j,

z′ak :=
1

k+1

k

∑
j=0

z′j, va
k :=

1
k+1

k

∑
j=0

v j.

(5.8)

Define also, for all k ≥ 0,

δ
a
k :=

1
k+1

k

∑
j=0
〈z′j |L(xa

k− x j)〉,

ε
a
k :=

1
k+1

k

∑
j=0

[
ε j + 〈ỹ j |v j− va

k〉
]
.

(5.9)
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Lemma 5.3. Consider the sequences evolved by Algorithm 1, let (xa
k), (ỹ

a
k), (z

′a
k ) and (va

k) be
as in (5.8) and let (δ a

k ) and (εa
k ) be as in (5.9). Let also (p̆k), (p̂k) and (p̃k) be as in (3.15). For

all k ≥ 0,

(a) δ a
k ,ε

a
k ≥ 0 and −Lxa

k ∈ ∂δ a
k
( f ∗ ◦−L∗)(z′ak ), ỹa

k ∈ ∂εa
k
g∗(va

k).

(b) δ a
k + εa

k =
1

k+1
∑

k
j=0
[
ε j + 〈p̆ j− p̂ j | p̃a

k− p̃ j〉γ
]
, where

p̃a
k :=

1
k+1

k

∑
j=0

p̃ j = (va
k ,Lxa

k). (5.10)

Proof. (a) The desired result follows from [30, Theorem 2.3] and the inclusions in (3.9) and in
Lemma 3.2(b).

(b) In view of Lemma 3.2(c), for j = 0, . . . ,k, we have p̆ j− p̂ j =
(

γ(Lx j− ỹ j),
1
γ

(
z′j− v j

))
and so by using the definition of (p̃ j) and (5.10) we get

k

∑
j=0
〈p̆ j− p̂ j | p̃a

k− p̃ j〉γ =
k

∑
j=0

[
1
γ
〈γ(Lx j− ỹ j) |va

k− v j〉+ γ〈1
γ
(z′j− v j) |Lxa

k−Lx j〉
]

=
k

∑
j=0

[
〈Lx j− ỹ j |va

k− v j〉+ 〈z′j− v j |L(xa
k− x j)〉

]
=

k

∑
j=0

[
〈ỹ j |v j− va

k〉+ 〈Lx j |va
k〉+ 〈z

′
j |L(xa

k− x j)〉−〈v j |Lxa
k〉
]

=
k

∑
j=0

[
〈ỹ j |v j− va

k〉+ 〈z
′
j |L(xa

k− x j)〉
]
.

The desired result now follows by adding the two equations in (5.9) and using the latter identity.
�

Theorem 5.4 (Ergodic global convergence rates of Algorithm 1). Consider the sequences evolved
by Algorithm 1, let (xa

k), (ỹ
a
k), (z

′a
k ) and (va

k) be as in (5.8) and let (δ a
k ) and (εa

k ) be as in (5.9).
Let also d0 denote the distance of p0 = (z0,y0) to the solution set S as in (2.10). Assume that
αk ≡ α and that

Assumption B holds.

Then, for all k ≥ 0, δ a
k ,ε

a
k ≥ 0 and

−Lxa
k ∈ ∂δ a

k
( f ∗ ◦−L∗)(z′ak ), ỹa

k ∈ ∂εa
k
g∗(va

k),

γ‖Lxa
k− ỹa

k‖
2
γ +

1
γ
‖z′ak − va

k‖
2
γ ≤

D2d2
0

k2 ,

δ a
k + εa

k ≤
1
k

(
α(1+α)

τ(1−α)q(α)
+D(1+2

√
3)
√

C
)

d2
0 ,

(5.11)
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where C > 0 is as in (5.2) and

D :=
1+α

τ

(
1+

√
1+

2α(1+α)

(1−α)2q(α)

)
. (5.12)

Proof. Note first that the inclusions in (5.11) follow from Lemma 5.3(a). Now let p∗=(z∗,w∗)∈
S be such that d0 = ‖p0− p∗‖γ . Using Lemma 3.2[(a) and (e)] and the assumption αk ≡ α we
find τ(p̂k− p̆k) = pk− pk+1 +α(pk− pk−1), for all k ≥ 0, and so (recall that p0 = p−1)

τ

∥∥∥∥∥ k

∑
j=0

(p̂ j− p̆ j)

∥∥∥∥∥
γ

= ‖p0− pk+1 +α(pk− p0)‖γ ≤ ‖p0− pk+1‖γ +α‖pk− p0‖γ . (5.13)

In view of Lemma 5.1 (with p = p∗), the definitions of d0 and D > 0, and the triangle inequality,

‖pk− p0‖γ ≤ ‖pk− p∗‖γ +‖p∗− p0‖γ

≤

(
1+

√
1+

2α(1+α)

(1−α)2q(α)

)
d0

=
τDd0

1+α
∀k ≥ 0, (5.14)

which combined with (5.12) and (5.13) yields∥∥∥∥∥ k

∑
j=0

(p̂ j− p̆ j)

∥∥∥∥∥
γ

≤ Dd0. (5.15)

Recall that from Lemma 3.2(c) we have

p̆k− p̂k =

(
γ(Lxk− ỹk),

1
γ

(
z′k− vk

))
,

and so from the definitions of ergodic means as in (5.8), we find

1
k+1

k

∑
j=0

(p̆ j− p̂ j) =

(
γ(Lxa

k− ỹa
k),

1
γ
(z′ak − va

k)

)
.

Hence, in view of (2.12) and (5.15),

γ‖Lxa
k− ỹa

k‖
2
γ +

1
γ
‖z′ak − va

k‖
2
γ =

1
(k+1)2

∥∥∥∥∥ k

∑
j=0

(p̆ j− p̂ j)

∥∥∥∥∥
2

γ

≤
D2d2

0
k2 ,

which gives the first inequality in (5.11).

Now let’s prove the second inequality in (5.11). To this end, let p = (z,w) ∈ G 2 and first note
that from Lemma 3.4(b),

‖p− p̂k‖2
γ −‖p− p̆k‖2

γ ≥ 2
[
εk + 〈p̆k− p̂k | p− p̃k〉γ

]
. (5.16)

By Lemma 3.2(a) and the identity ‖(1− τ)a+ τb‖2
γ = (1− τ)‖a‖2

γ + τ‖b‖2
γ − (1− τ)τ‖a−b‖2

γ

with a = p− p̂k and b = p− p̆k,

‖p− pk+1‖2
γ = (1− τ)‖p− p̂k‖2

γ + τ‖p− p̆k‖2
γ − (1− τ)τ‖p̆k− p̂k‖2

γ .
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Now multiplying (5.16) by τ > 0 and using the latter identity we get

‖p− p̂k‖2
γ −‖p− pk+1‖2

γ ≥ 2τ
[
εk + 〈p̆k− p̂k | p− p̃k〉γ

]
+(1− τ)τ‖p̆k− p̂k‖2

γ

≥ 2τ
[
εk + 〈p̆k− p̂k | p− p̃k〉γ

]
. (5.17)

Note that from Lemma 3.5 the assumption αk ≡ α we obtain

‖p− p̂k‖2
γ = (1+α)‖p− pk‖2

γ −α‖p− pk−1‖2
γ +α(1+α)‖pk− pk−1‖2

γ . (5.18)

Making the substitution of (5.18) into (5.17) and after some simple algebra, we find (now re-
placing the index k ≥ 0 by j ≥ 0),

‖p− p j‖2
γ −‖p− p j+1‖2

γ +α(1+α)‖p j− p j−1‖2
γ ≥ 2τ

[
ε j + 〈p̆ j− p̂ j | p− p̃ j〉γ

]
−α

[
‖p− p j‖2

γ −‖p− p j−1‖2
γ

]
.

Summing up the latter inequality from j = 0, . . . ,k and with p = p̃a
k — see (5.10) –, and using

Lemma 5.3(b),

‖ p̃a
k− p0‖2

γ −‖ p̃a
k− pk+1‖2

γ +α(1+α)
k

∑
j=0
‖p j− p j−1‖2

γ

≥ 2τ

k

∑
j=0

[
ε j + 〈p̆ j− p̂ j | p̃a

k− p̃ j〉γ
]
−α

[
‖p̃a

k− pk‖2
γ −‖ p̃a

k− p0‖2
γ

]
= 2τ(k+1)(δ a

k + ε
a
k )−α

[
‖p̃a

k− pk‖2
γ −‖ p̃a

k− p0‖2
γ

]
,

which combined with (4.18) (with p = p∗) and the definition of d0 yields

2τ(k+1)(δ a
k + ε

a
k )−

2α(1+α)d2
0

(1−α)q(α)
≤
[
‖ p̃a

k− p0‖2
γ −‖ p̃a

k− pk+1‖2
γ

]
+α

[
‖ p̃a

k− pk‖2
γ −‖ p̃a

k− p0‖2
γ

]
.

Now using the inequality ‖a‖2
γ −‖b‖2

γ ≤ 2‖a‖γ‖a−b‖γ (in both terms in the right-hand side of
the latter inequality) and (5.14) we find

2τ(k+1)(δ a
k + ε

a
k )−

2α(1+α)d2
0

(1−α)q(α)

≤ 2‖p̃a
k− p0‖γ‖pk+1− p0‖γ +2α‖p̃a

k− pk‖γ‖pk− p0‖γ

≤ 2τDd0

1+α

(
‖p̃a

k− p0‖γ +α‖p̃a
k− pk‖γ

)
≤ 2τDd0 max{‖ p̃a

k− p0‖γ ,‖ p̃a
k− pk‖γ}. (5.19)

Now define, for all k ≥ 0,

p̆a
k :=

1
k+1

k

∑
j=0

p̆ j. (5.20)
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Using (3.11), (3.15), Lemma 3.3(a), (5.10), (5.20) as well as the convexity of ‖·‖2
γ we find

‖p̃a
k− p̆a

k‖
2
γ ≤

1
k+1

k

∑
j=0
‖p̃ j− p̆ j‖2

γ

=
1

k+1

k

∑
j=0

[1
γ
‖e j‖2 +

1
γ
‖v j− ẑ j‖2

]

≤ 1
k+1

k

∑
j=0

[
γ‖Lx j− ŷ j‖2 +

1
γ
‖v j− ẑ j‖2

]

=
1

k+1

k

∑
j=0
‖p̃ j− p̂ j‖2

γ

≤
Cd2

0
k+1

≤Cd2
0 , (5.21)

where we used Lemma 5.1 (with p = p∗) and the definition of C > 0 as in (5.2). Similarly, using
(5.20), the triangle inequality and the well-known inequality

‖a+b‖2
γ ≤ 2

(
‖a‖2

γ +‖b‖2
γ

)
,

we get, for all `≥ 1,

‖p`− p̆a
k‖

2
γ =

∥∥∥∥∥ 1
k+1

k

∑
j=0

(p`− p̆ j)

∥∥∥∥∥
2

γ

≤ 1
k+1

k

∑
j=0
‖p`− p̆ j‖2

γ

≤ 2
k+1

k

∑
j=0

(
‖p`− p j+1‖2

γ +‖p j+1− p̆ j‖2
γ

)

=
2

k+1

k

∑
j=0
‖p`− p j+1‖2

γ +
2

k+1

k

∑
j=0
‖p j+1− p̆ j‖2

γ . (5.22)

Using (again) Lemma 5.1 (with p = p∗) as well as the definition of C > 0 as in (5.2), we find,
for all `, j ≥ 0,

‖p`− p j+1‖2
γ ≤ 2

(
‖p`− p∗‖2

γ +‖p j+1− p∗‖2
γ

)
≤ 2τ(1− τ)(1−σ)2Cd2

0 . (5.23)

Recall also that from Lemma 3.2(b) we have p j+1− p̆ j = (1− τ)(p̂ j− p̆ j) (0 ≤ j ≤ k) and so
from Lemma 3.3(a), for all j ≥ 0,

‖p j+1− p̆ j‖γ = (1− τ)‖p̂ j− p̆ j‖γ ≤ 2(1− τ)‖p̃ j− p̂ j‖γ ,
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which then yields (by Lemma 5.1 (with p = p∗) and the definition of C > 0)
k

∑
j=0
‖p j+1− p̆ j‖2

γ = 4(1− τ)2
k

∑
j=0
‖ p̃ j− p̂ j‖2

γ ≤ 4(1− τ)2Cd2
0 . (5.24)

Putting it all together, from (5.22) – (5.24) we obtain, for all `≥ 0,

‖p`− p̆a
k‖

2
γ ≤ 4τ(1− τ)(1−σ)2Cd2

0 +
8

k+1
(1− τ)2Cd2

0

= 4(1− τ)

(
τ(1−σ

2)+
2

k+1
(1− τ)

)
Cd2

0

≤ 12Cd2
0 . (5.25)

Using now the triangle inequality, (5.21) and (5.25) we find, for all `≥ 0,

‖p`− p̃a
k‖γ ≤ ‖p`− p̆a

k‖γ +‖p̆a
k− p̃a

k‖γ ≤ (1+2
√

3)
√

Cd0. (5.26)

Finally, using (5.19) and (5.26) (with `= 0 and `= k),

2τ(k+1)(δ a
k + ε

a
k )−

2α(1+α)d2
0

(1−α)q(α)
≤ 2τD(1+2

√
3)
√

Cd2
0

so that

δ
a
k + ε

a
k ≤

1
k

(
α(1+α)

τ(1−α)q(α)
+D(1+2

√
3)
√

C
)

d2
0 .

�

6. NUMERICAL EXPERIMENTS

This section presents some numerical experiments on the LASSO problem, which is an in-
stance of the minimization problem (1.1). We compared Algorithm 1 from this paper with and
without inertial effects; they are called Inexact ADMM and Inexact inertial ADMM, respec-
tively. We implemented both algorithms in Matlab R2021a and, for both algorithms and all
problem classes, used the same stopping criterion, namely

dist∞
(
0,∂ f (xk)+∂g(xk)

)
≤ ε, (6.1)

where dist∞(0,S) := inf{‖s‖∞ |s ∈ S} and ε is a tolerance parameter set to 10−6.
The inertial parameter αk (as in step 1 of Algorithm 1) is updated according to the rule (4.13)

with θ = 0.99 and k0 = 1. More precisely, we choose αk as

αk = min
{

α,
θ k

γ−1‖zk− zk−1‖2 + γ‖yk− yk−1‖2

}
, ∀k ≥ 1,

where 0≤ α < 1. The source codes are available under request (marina.geremia@ifsc.edu.br).

The LASSO problem. We perform numerical experiments on the LASSO problem (as already
discussed in (3.4)), namely

min
x∈Rd

{
1
2
‖Ax−b‖2 +ν‖x‖1

}
, (6.2)
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where A ∈ Rn×d , b ∈ Rn and ν > 0. For the data matrix A and the vector b, we used five
categories of non-artificial datasets

(available at the UCI Machine Learning Repository, https://archive.ics.uci.edu):

BlogFeedback: This category consists of one standard microarray datasets that contain
features extracted from a blog post from [15]. This problem is called blogFeedback
(with n = 60021 and d = 280).
Breast Cancer Wisconsin (Prognostic): This category consists of one prognostic Wis-
consin breast cancer database from [41], which has a dense matrix A. Each row repre-
sents follow-up data for one breast cancer case. This problem is called Wisconsin (with
n = 198 and d = 33).
DrivFace: This category comprises a single standard microarray dataset containing im-
age sequences of individuals driving in real-world scenarios from [28]. This problem
is called DrivFace (with n = 606 and d = 6400) and has a dense matrix A.
Gene expression: This category consists of six standard cancer DNA microarray datasets
from [18], which have dense and wide matrices A, with the number of rows n∈ [42,102]
and the number of columns d ∈ [2000,6033]. These problems are called brain (with
n = 42 and d = 5597), colon (with n = 62 and d = 2000), leukemia (with n = 72 and
d = 3571), lymphoma (with n= 62 and d = 4026), prostate (with n= 102 and d = 6033)
and srbct (with n = 63 and d = 2308).
Single-Pixel camera: This category consists of four compressed image sensing datasets
from [19], which have dense and wide matrices A, with n ∈ {410,1638} and d ∈
{1024,4096}]. These problems are called Ball64_singlepixcam (with n = 1638 and
d = 4096), Logo64_singlepixcam (with n = 1638 and d = 4096), Mug32_singlepixcam
(with n = 410 and d = 1024) and Mug128_singlepixcam (with n = 410 and d = 1024).

We implemented both algorithms Inexact ADMM and Inexact inertial ADMM in Matlab
R2021a, combined with a CG procedure to approximately solve the subproblems (3.8); see
also the fourth remark following Definition 3.1. As usual (see, e.g., [3]), we solved the (easy)
subproblem (3.7) by using the standard-soft thresholding operator. We also set (α,σ ,τ,γ) =
(0.33,0.99,0.999,1) and (σ ,τ,γ) = (0.99,0.999,1) for Inexact inertial ADMM and Inexact
ADMM, respectively. Moreover, as in [13], we set the regularization parameter ν as 0.1‖AT b‖∞,
and scaled the vector b and the columns of matrix A to have `2 unit norm.

Table 1 shows the number of outer iterations required by each algorithm on each problem in-
stance, the cumulative total number of inner iterations required by the CG algorithm for solving
(3.8) and runtimes in seconds demanded by each algorithm to achieve the prescribed tolerance
as in (6.1). From Table 1, we see that Inexact inertial ADMM outperforms Inexact ADMM
on average by about 30%, 25% and 25% on “Outer iterations”, “Total inner iterations” and
“Runtimes”, respectively.

APPENDIX A. AUXILIARY RESULTS

The following lemma was essentially proved by Alvarez and Attouch in [2, Theorem 2.1]
(see also [4, Lemma A.4]).
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TABLE 1. Comparison of performance in the LASSO problem

Inexact ADMM Inexact inertial ADMM
Outer

iterations
(outer1)

Total inner
iterations
(inner1)

Time
(time1)

Outer
iterations
(outer2)

Total inner
iterations
(inner2)

Time
(time2)

outer2
outer1

inner2
inner1

time2
time1

Brain 2923 14007 3.97 2120 11112 3.11 0.7253 0.7933 0.7834
Colon 505 2818 0.39 347 1866 0.27 0.6871 0.6622 0.6923
Leukemia 764 3695 0.83 544 2861 0.62 0.7121 0.7743 0.7469
Lymphoma 1101 6091 1.45 862 5119 1.13 0.7829 0.8404 0.7793
Prostate 2006 8328 4.13 1414 6561 3.46 0.7049 0.7878 0.8378
Srbct 511 3554 0.55 346 2293 0.38 0.6771 0.6452 0.6909
Ball64 313 490 8.77 216 325 5.93 0.6901 0.6633 0.6762
Logo64 316 495 8.47 221 359 5.98 0.6994 0.7253 0.7061
Mug32 134 282 0.09 88 197 0.06 0.6567 0.6986 0.6667
Mug128 955 1163 248.04 822 986 212.21 0.8607 0.8478 0.8555
DrivFace 2682 18727 165.47 1803 13284 115.36 0.6723 0.7094 0.6972
Wisconsin 285 605 0.07 182 456 0.05 0.6386 0.7537 0.7143
blogFeedback 386 1108 46.79 317 938 38.84 0.8212 0.8466 0.8301
Geometric mean 662.68 2187.47 3.21 473.79 1633.23 2.38 0.7149 0.7466 0.7414

Lemma A.1. Let the sequences (hk), (sk), (αk) and (δk) in [0,∞) and α ∈ R be such that
h0 = h−1, 0≤ αk ≤ α < 1 and

hk+1−hk + sk+1 ≤ αk(hk−hk−1)+δk ∀k ≥ 0. (A.1)

The following hold:
(a) For all k ≥ 1,

hk +
k

∑
j=1

s j ≤ h0 +
1

1−α

k−1

∑
j=0

δ j. (A.2)

(b) If ∑
∞
k=0 δk < ∞, then limk→∞ hk exists, i.e., the sequence (hk) converges to some element

in [0,∞).

Lemma A.2 (Opial [33]). Let H be a finite dimensional inner product space, let /0 6= S ⊂H
and let {pk} be a sequence in H such that every cluster point of {pk} belongs to S and
limk→∞ ‖pk− p‖ exists for every p ∈S . Then {pk} converges to a point in S .
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