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Abstract. In this work, we consider set-valued Perov contractive mappings acting in a generalized metric space.
Our first result shows that a certain iterative process generates approximate fixed points. In our second result, we
prove that an iterative process generates iterates which converge to a fixed point of the mapping.
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1. INTRODUCTION

For more than sixty years now, there have been considerable research activities regarding
the fixed point theory of certain classes of nonlinear mappings; see, e.g, [3, 4, 6, 7, 8, 9, 10,
11, 12, 13, 14, 18, 19, 20, 25, 26] and the references therein. These activities mainly stem
from Banach’s classical theorem [1] regarding the existence of a unique fixed point for a strict
contraction. It also concerns the convergence of (inexact) iterates of a nonexpansive mapping
to one of its fixed points. Since that seminal result, many developments have taken place in
this field including, for instance, studies of convex feasibility, common fixed point problems,
and variational inequalities, which find significant applications in engineering, medical and the
natural sciences [2, 5, 21, 22, 23, 25, 26].

The study of a class of mappings of Perov type acting in a generalized metric space is an
important topic in the fixed point theory [15, 16, 17, 24, 27, 28]. In this work we consider set-
valued Perov contractive mappings acting in a generalized metric space. Our first result shows
that a certain iterative process generates approximate fixed points. In our second result we prove
that an iterative process generates iterates which converge to a fixed point of the mapping.

We use the following notation. Let Rn be an n-dimensional Euclidean space. In other words,

Rn = {x = (x1, . . . ,xn) : xi ∈ R1, i = 1, . . . ,n}.
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Let
Rn
+ = {x = (x1, . . . ,xn) ∈ Rn : xi ≥ 0, i = 1, . . . ,n}

and e = (1,1, . . . ,1) ∈ Rn. We say that x = (x1, . . . ,xn), y = (y1, . . . ,yn) ∈ Rn satisfy x ≤ y if
xi ≤ yi for all i = 1, . . . ,n. For each x = (x1, . . . ,xn) ∈ Rn set ‖x‖1 = ∑

n
i=1 |xi|. If {ui}∞

i=1 ⊂ Rn
+

and ∑
∞
i=1 ‖ui‖1 < ∞, then

∞

∑
i=1

ui = lim
k→∞

k

∑
i=1

ui.

Let Y be a nonempty set and S : Y →Y . We denote by S0 the identity mapping in Y , set S1 = S
and for every integer i≥ 0 define

Si+1 = S◦Si.

We suppose that the sum over an empty set is zero.

2. PRELIMINARIES AND THE FIRST MAIN RESULTS

Assume that X is a nonempty set and a function d : X×X → Rn
+ satisfies for each x,y,z ∈ X ,

d(x,y) = 0 if and only if x = y,

d(x,y) = d(y,x),

d(x,z)≤ d(x,y)+d(y,z).

The pair (X ,d) is called a generalized metric space and d is called a generalized metric [15, 16,
17, 24].

For all x,y ∈ X set
d(x,y) = (d1(x,y), . . . ,dn(x,y))

and
d̃(x,y) = ‖d(x,y)‖1 = d1(x,y)+ · · ·+dn(x,y).

Clearly, (X , d̃) is a metric space.
For each x ∈ X and each r ∈ Rn

+ set

B(x,r) = {y ∈ X : d(x,y)≤ r}.

We say that a sequence {xi}∞
i=0 ⊂ X converges to x∗ ∈ X if

lim
i→∞
‖d(xi,x∗)‖1 = 0.

We say that {xi}∞
i=0 ⊂ X is a Cauchy sequence if for each ε > 0 there exists a natural number

n(ε) such that, for each pair of integers p,m≥ n(ε), ‖d(xp,xm)‖1 ≤ ε. Clearly, the convergence
in (X ,d) is equivalent to the convergence in (X , d̃). We assume that the metric space (X , d̃) is
complete.

Assume that A : Rn
+→ Rn

+ and that the following properties hold:
(i) A(0) = 0 and A is continuous at zero;
(ii) for each z1,z2 ∈ Rn

+ satisfying 0≤ z1 ≤ z2, A(z1)≤ A(z2);
(iii) for each z1,z2 ∈ Rn

+, A(z1 + z2)≤ A(z1 + z2);
(iv) At(e)→ 0 as t→ ∞;
(v) A(λ z) = λA(z) for each λ ≥ 0 and each z ∈ Rn

+.
Assume that T : X → 2X \{ /0} satisfies the following assumption.
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(B1) For each x,y ∈ X , each u ∈ T (x) and each ε > 0 there exists v ∈ T (y) such that

d(u,v)≤ A(d(x,y))+ εe.

Clearly, T is a set-valued analog of a single-valued Perov contraction.
The following theorem is our first main result.

Theorem 2.1. Let M > 0, ε ∈ (0,M), m0 ≥ 2 be an integer,

‖Ak(Me)‖1 ≤ ε/2 (1)
for each integer k ≥ m0, δ ∈ (0,ε) and

δ

2m0−1

∑
i=0

Ai(e)≤ 2−1
εe. (2)

Assume that {xi}∞
i=0 ⊂ X,

d(x0,x1)≤Me (3)
and that for each integer i≥ 0,

xi+1 ∈ T (xi) (4)
and

d(xi+1,xi+2)≤ A(d(xi,xi+1))+δe. (5)
Then, for each integer n≥ m0, d(xn,xn+1)≤ εe.

3. AN AUXILIARY RESULT FOR THEOREM 2.1

Lemma 3.1. Let M > ε > 0, m0 ≥ 2 be an integer, (1) hold for each integer k ≥ m0, δ ∈ (0,ε)
satisfy (2), {xi}2m0

i=0 ⊂ X,
d(x0,x1)≤Me, (6)

for each integer i ∈ {0, . . . ,2m0−1},
xi+1 ∈ T (xi) (7)

and for each i ∈ {0, . . . ,2m0−2},
d(xi+1,xi+2)≤ A(d(xi,xi+1))+δe. (8)

Then, for each integer k ∈ {m0, . . . ,2m0−1}, d(xk,xk+1)≤ εe.

Proof. We show by induction that for each k ∈ {1, . . . ,2m0−1},

d(xk,xk+1)≤ Ak(d(x0,x1))+δ

k−1

∑
i=0

Ai(e). (9)

In view of (8), equation (9) holds for k = 1. Assume that k ∈ {0, . . . ,2m0−2} and (9) holds. It
follows from (8), (9) and properties (ii), (iii) and (v),

d(xk+1,xk+2)≤ A(d(xk,xk+1))+δe

≤ Ak+1(d(x0,x1))+δ

k−1

∑
i=0

Ai+1(e)+δe

= Ak+1(d(x0,x1))+δ

k

∑
i=0

Ai+1(e)
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and our assumption holds for k+ 1 too. Thus by induction we showed that (9) holds for each
k ∈ {1, . . . ,2m0−1}. By (1), (2), (6) and (9), for each k ∈ {m0, . . . ,2m0−1},

d(xk,xk+1)≤ Ak(d(x0,x1))+δ

2m0−1

∑
i=0

Ai(e)

≤ 2−1
εe+δ

2m0−1

∑
i=0

Ai(e)≤ εe.

Lemma 3.1 is proved. �

4. PROOF OF THEOREM 2.1

Lemma 3.1 implies that
d(xk,xk+1)≤ ε (10)

for all k =m0, . . . ,2m0−1. Assume that p≥m0 is an integer and (10) holds for all k = p, . . . , p+
m0−1. (Note that in view of (10) our assumption holds for p = m0.) We apply Lemma 3.1 to
{xi}p+2m0

i=p and obtain that
d(xk,xk+1)≤ εe

for each k ∈ {p, . . . , p + m0 − 1}. Thus if p ≥ m0 is an integer and (10) holds for all k =
p, . . . , p+m0−1, then (10) holds for all k = p, . . . , p+2m0−1. This implies that d(xk,xk+1)≤ ε

for all integers k ≥ m0. Theorem 2.1 is proved.

5. THE SECOND MAIN RESULT

By property (iv), there exists ∆0 > 0 such that

Ai(e)≤ ∆0e, i = 0,1, . . . . (11)

Assume that T : X → 2X \{ /0}, x∗ ∈ X satisfies

x∗ ∈ T (x∗) (12)

and that the following property holds:
(B2) For each x ∈ X and each ε > 0 there exists y ∈ T (x) such that

d(y,x∗)≤ A(d(x,x∗))+ εe.

The following theorem is our second main result.

Theorem 5.1. Let M > 0. Then for each x0 ∈ X satisfying

d(x0,x∗)≤Me (13)

there exists a sequence {xi}∞
i=1 ⊂ X such that

xi+1 ∈ T (xi), i = 0,1, . . . , (14)

lim
i→∞

xi = x∗ (15)

in (X ,d) and that for each ε > 0 there exist an integer n(ε)≥ 1 depending only on ε such that

d̃(x,x∗)≤ ε for each integer i≥ n(ε).
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Proof. Let {εi}∞
i=0 ⊂ (0,1),

∆0

∞

∑
i=0

εi ≤ 2−1M, εi+1 ≤ εi, i = 0,1, . . . , (16)

ε ∈ (0,1), m1 ≥ 1 be an integer,

MAt(e)≤ 2−1e for each integer t ≥ m1, (17)

∆0 ∑
i=m1

εi < ε/2. (18)

Assume that x0 ∈ X satisfies (13) and that {xi}∞
i=1 ⊂ X satisfies for each integer i≥ 0,

xi+1 ∈ T (xi) (19)

and
d(x∗,xi+1)≤ A(d(xi,x∗))+ εie. (20)

(Note that this sequence does not depend on ε .)
Let k ≥ 0 be an integer. We show by induction that for each integer p≥ 1,

d(xk+p,x∗)≤ Ap(d(xk,x∗))+
p−1

∑
i=0

Ai(εk+p−i−1e). (21)

In view of (20) equation (21) holds for p = 1. Assume that p ≥ 1 is an integer and (21) holds.
Properties (ii), (iii), (v) and equations (20), (21) imply that

d(xk+p+1,x∗)≤ Ap(d(xk+p,x∗))+ εk+pe

≤ Ap+1(d(xk+p,x∗))+
p−1

∑
i=0

Ai+1(εk+p−i−1e)+ εk+pe

= Ap+1(d(xk+p,x∗))+
p

∑
i=0

Ai(εk+p−ie).

Hence our assumption holds for p+ 1. Therefore we showed by induction that (21) holds for
each integer p≥ 1. It follows from property (v), (11) and (21) that for each integer p≥ 1,

d(xk+p,x∗)≤ Ap(d(xk,x∗))+
k+p−1

∑
i=k

εi∆0e. (22)

By (18) and (22), with k = 0, for each integer p≥ 1,

d(xp,x∗)≤ Ap(d(x0,x∗))+
p−1

∑
i=0

εi∆0e

≤ Ap(d(x0,x∗))+2−1Me. (23)
Properties (ii), (v) and (17), (23) imply that for each integer p≥ m1,

d(xp,x∗)≤Me. (24)

Assume that p≥ 1 is an integer. By (16), (22) (with k = m1), (24) and properties (ii) and (iii),

d(xm1+p,x∗)≤ Ap(d(xm1,x∗))+
m1+p−1

∑
i=m1

εi∆0e≤MAp(e)+2−1
εe. (25)
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By property (v), there exists a natural number p0, such that, for each integer i ≥ p0, MAi(e) ≤
8−1εe. (Here p0 depends on ε .) Together with (25) this implies that for each integer i ≥ p0,
d(xm1+i,x∗)≤ εe. Theorem 5.1 is proved.

�
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dans un espace de Banach, C. R. Acad. Sci. Paris 283 (1976), 185–187.

[4] F. S. de Blasi, J. Myjak, S. Reich, A. J. Zaslavski, Generic existence and approximation of fixed points for
nonexpansive set-valued maps, Set-Valued and Variational Analysis 17 (2009), 97–112.

[5] A. Gibali, A new split inverse problem and an application to least intensity feasible solutions, Pure Appl.
Funct. Anal. 2 (2017), 243–258.

[6] K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990.
[7] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker,

New York and Basel, 1984.
[8] J. Jachymski, Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points,

Pure Appl. Funct. Anal. 2 (2017), 657–666.
[9] M. A. Khamsi, W. M. Kozlowski, Fixed point theory in modular function spaces, Birkhäuser/Springer, Cham,
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