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1. PROPERTIES OF UNIFORMLY LOCALLY CONTRACTIVE MAPPINGS

The fixed points of nonexpansive mappings have a wide real applications in numerous fields.
The fixed point theory of nonexpansive mappings has been a rapidly growing area of research
since the seminal result of Banach [1]; see, e.g., [3, 6, 7, 10, 12, 13, 14, 15, 17, 21, 27, 28, 29]
and the reference therein. Many developments have taken place in the field of nonexpansive
mappings, such as the studies of feasibility and common fixed point problems, which find im-
portant applications in engineering and medical sciences [4, 5, 9, 28, 29]. In this paper, we
survey our recent fixed point results which were obtained for two classes of nonlinear mappings
in [22, 23, 24, 25, 26, 30]. The first class consists of uniformly locally contractive mappings
while the second one is the class of nonexpansive mappings in metric spaces with graphs.

In this section, we begin our discussion of uniformly locally contractive mappings. We show
that a uniformly locally contractive mapping has a fixed point, the corresponding fixed point
problem is well posed and that inexact iterates of such a mapping converge to its unique fixed
point, uniformly on bounded sets. Using the porosity notion, we also show that most uniformly
locally nonexpansive mappings are, in fact, uniformly locally contractive. We aso extend these
results to uniformly locally contractive non-self mappings defined on a closed subset of the
metric space. The results of this section were obtained in [23].

Assume that (X ,ρ) is a complete metric space, ∆ > 0, and that the following assumption
holds.
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(A) For each x,y ∈ X , there exist an integer q≥ 1 and points xi ∈ X , i = 0, . . . ,q, such that

x0 = x, xq = y, ρ(xi,xi+1)≤ ∆, i ∈ {0, . . . ,q}\{q}.

For each x,y ∈ X , define

ρ1(x,y) := inf{
q−1

∑
i=0

ρ(xi,xi+1) : q≥ 1 is an integer,

xi ∈ X , i = 0, . . . ,q, x0 = x, xq = y, ρ(xi,xi+1)≤ ∆, i ∈ {0, . . . ,q}\{q}}.
It follows from assumption (A) and the above definition that for each x,y,z∈X , ρ1(x,y) is finite,

ρ(x,y)≤ ρ1(x,y)< ∞,

if ρ(x,y)≤ ∆, then ρ1(x,y) = ρ(x,y),

ρ1(x,y) = ρ1(y,x),

ρ1(x,x) = 0,

if ρ1(x,y) = 0, then ρ(x,y) = 0 and x = y,

and
ρ1(x,z)≤ ρ1(x,y)+ρ1(y,z).

It is clear that ρ1 is a metric on X . This metric plays an important role in our study.
Let T : X→X be a self-mapping of X . We assume that for each x,y∈X satisfying ρ(x,y)≤∆,

the inequality
ρ(T (x),T (y))≤ ρ(x,y)

holds. It is not difficult to see that, for each x,y ∈ X , ρ1(T (x),T (y))≤ ρ1(x,y).
Such a mapping T is said to be uniformly locally nonexpansive. We remark in passing that the

smaller class of uniformly local (strict) contractions was introduced in [8], while the larger class
of locally nonexpansive mappings was studied in [2]. The work [8] also contains an example of
a uniformly local (strict) contraction which is not nonexpansive. Assume that φ : [0,∆]→ [0,1]
is a decreasing function, φ(t)< 1 for all t ∈ (0,∆], and for each x,y ∈ X satisfying ρ(x,y)≤ ∆,
we have

ρ(T (x),T (y))≤ φ(ρ(x,y))ρ(x,y).

The following theorems were obtained in [23]. They are established under all the assumptions
made above. The first of them shows the well-posedness of the fixed point problem for the
mapping T .

Theorem 1.1. Given ε > 0, there exists δ > 0 such that, for each x,y ∈ X satisfying

max{ρ(T (x),x), ρ(T (y),y)} ≤ δ ,

the inequality ρ(x,y)≤ ε holds.

Theorem 1.2. Let ε,M > 0. Then there exist a number δ ∈ (0,ε) and an integer n0 ≥ 1 such
that for each integer n > n0 and each finite sequence {xi}n

i=0 ⊂ X which satisfies ρ1(x0,x1)≤M
and

ρ(xi+1,T (xi))≤ δ , i = 0, . . . ,n−1,

the inequality ρ(xi+1,xi)≤ ε holds for all i = n0, . . . ,n−1.
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Theorems 1.1 and 1.2 imply that there exists a unique x∗ ∈ K such that T (x∗) = x∗. Note that
the existence of the unique fixed point was obtained in [16] (see also [18]). Theorems 1.1 and
1.2 easily imply the following convergence result for inexact iterates of the mapping T .

Theorem 1.3. Let the point x∗ ∈ X satisfy T (x∗) = x∗ and let ε,M > 0. Then there exist a
number δ > 0 and an integer n0 ≥ 1 such that for each integer n > n0 and each finite sequence
{xi}n

i=0 ⊂ X which satisfies ρ1(x0,x1)≤M and

ρ(xi+1,T (xi))≤ δ , i = 0, . . . ,n−1,

the inequality ρ(xi,x∗)≤ ε holds for all i = n0, . . . ,n−1.

2. THE FIRST POROSITY RESULT

The results of this section were obtained in [23]. Let (Y,d) be a complete metric space. We
denote by B(y,r) the closed ball of center y ∈ Y and radius r > 0. Recall that a subset E ⊂ Y
is called porous (with respect to the metric d) if there exist α ∈ (0,1) and r0 > 0 such that for
each r ∈ (0,r0] and each y ∈ Y , there exists z ∈ Y for which

B(z,αr)⊂ B(y,r)\E.

A subset of the space Y is called σ -porous (with respect to d) if it is a countable union of porous
subsets of Y .

Using the porosity notion, we now show that most uniformly locally nonexpansive mappings
are, in fact, uniformly locally contractive. For mappings which are nonexpansive and contrac-
tive, respectively, such a result was obtained in [20].

We continue to use the definitions, notations and assumptions introduced in Section 1. As-
sume that

diam(X) := sup{ρ1(x,y) : x,y ∈ X}< ∞.

We call a mapping T : X → X ∆-contractive if there exists a decreasing function

φ : [0,∆]→ [0,1]

such that φ(t)< 1, t ∈ (0,∆], and for each x,y ∈ X satisfying ρ(x,y)≤ ∆,

ρ(T (x),T (y))≤ φ(ρ(x,y))ρ(x,y).

Denote by F the set of all ∆-contractive self-mappings of X .
Also, denote by M the set of all mappings T : X → X such that for each x,y ∈ X satisfying

ρ(x,y) ≤ ∆, ρ(T (x),T (y)) ≤ ρ(x,y). Assume that θ ∈ X and that for each γ ∈ (0,1) and each
x ∈ X , there is a point (1− γ)x⊕ γθ ∈ X such that for each x,y ∈ X and each γ ∈ (0,1),

ρ((1− γ)x⊕ γθ , (1− γ)y⊕ γθ)≤ (1− γ)ρ(x,y)

and
ρ((1− γ)x⊕ γθ ,x)≤ γρ(x,θ).

Note that this assumption indeed holds if X is a convex subset of a hyperbolic space in the
sense of [10, 21].

For each S,T ∈M, set

d(S,T ) := sup{ρ(S(x),T (x)) : x ∈ X}.



4 S. REICH, A.J. ZASLAVSK

It is not difficult to see that (M,d) is a complete metric space. The following result was
established in [23] under all the assumptions made in this section.

Theorem 2.1. The set M\F is σ -porous in (M,d).

3. UNIFORMLY LOCALLY CONTRACTIVE NON-SELF MAPPINGS

Now we extend the results of the previous sections to uniformly locally contractive non-self
mappings defined on a closed subset of the metric space. These extensions were obtained in
[24].

We use the notations, definitions and assumptions of Section 1. In particular, we assume that
assumption (A), which we recall below for the reader’s convenience, holds.

Assume that (X ,ρ) is a complete metric space, ∆ > 0, and that the following assumption
holds.

(A) For each x,y ∈ X , there exist an integer q≥ 1 and points xi ∈ X , i = 0, . . . ,q, such that

x0 = x, xq = y, ρ(xi,xi+1)≤ ∆, i ∈ {0, . . . ,q}\{q}.

Next, we also recall that for each x,y ∈ X ,

ρ1(x,y) := inf{
q−1

∑
i=0

ρ(xi,xi+1) : q≥ 1 is an integer,

xi ∈ X , i = 0, . . . ,q, x0 = x, xq = y, ρ(xi,xi+1)≤ ∆, i ∈ {0, . . . ,q}\{q}}.
Clearly, ρ1 is a metric on X .

Assume that K ⊂ X is a nonempty closed set and that the following assumption holds.
(B) For each x,y ∈ K,

ρ1(x,y) := inf{
q−1

∑
i=0

ρ(xi,xi+1) : q≥ 1 is an integer,

xi ∈ K, i = 0, . . . ,q, x0 = x, xq = y, ρ(xi,xi+1)≤ ∆, i ∈ {0, . . . ,q}\{q}}.
Let T : K → X be a mapping. We assume that for each x,y ∈ X satisfying ρ(x,y) ≤ ∆,

the inequality ρ(T (x),T (y)) ≤ ρ(x,y) holds. In view of (B) and the above relation, for each
x,y ∈ X , we have ρ1(T (x),T (y)) ≤ ρ1(x,y). Such a mapping T is said to be uniformly locally
nonexpansive. Assume that φ : [0,∆]→ [0,1] is a decreasing function, φ(t)< 1 for all t ∈ (0,∆],
and that for each x,y ∈ K satisfying ρ(x,y)≤ ∆, we have

ρ(T (x),T (y))≤ φ(ρ(x,y))ρ(x,y).

The following theorems were established in [24] under all the assumptions made in this
section. The first of them shows the well-posedness of the fixed point problem for the mapping
T .

Theorem 3.1. Given ε > 0, there exists δ > 0 such that for each x,y ∈ K satisfying

max{ρ(T (x),x), ρ(T (y),y)} ≤ δ ,

the inequality ρ(x,y)≤ ε holds.
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Theorem 3.2. Let ε,M > 0 be given. Then there exist a number δ ∈ (0,ε) and an integer n0≥ 1
such that for each integer n > n0 and each finite sequence {xi}n

i=0 ⊂ K which satisfies

ρ1(x0,x1)≤M

and
ρ(xi+1,T (xi))≤ δ , i = 0, . . . ,n−1,

the inequality ρ(xi,xi+1)≤ ε holds for all i = n0, . . . ,n−1.

Theorems 3.1 and 3.2 easily imply the following two results regarding the existence of a
unique fixed point and the convergence of inexact iterates.

Theorem 3.3. Assume that for each integer n≥ 1, there exists a finite sequence {x(n)}n
i=0 ⊂ K

such that
sup{ρ1(x

(n)
0 ,x(n)1 ) : n = 1,2, . . .}< ∞

and
lim
n→∞

sup{ρ(x(n)i+1,T x(n)i ) : i = 0, . . . ,n−1}= 0.

Then there exists a unique point x∗ ∈ K such that T (x∗) = x∗.

Theorem 3.4. Let the point x∗ ∈ K satisfy T (x∗) = x∗ and let ε,M > 0 be given. Then there
exist a number δ > 0 and an integer n0 ≥ 1 such that for each integer n > n0 and each finite
sequence {xi}n

i=0 ⊂ K which satisfies ρ1(x0,x1)≤M and

ρ(xi+1,T (xi))≤ δ , i = 0, . . . ,n−1,

the inequality ρ(xi,x∗)≤ ε holds for all i = n0, . . . ,n.

4. THE SECOND POROSITY RESULT

The theorem of this section was established in [25]. In our second porosity result we consider
a complete metric space of uniformly locally nonexpansive self-mappings of a bounded and
closed subset of a complete hyperbolic space.

Let (X ,ρ) be a metric space and let R1 denote the real line. We say that a mapping c : R1→ X
is a metric embedding of R1 into X if ρ(c(s),c(t)) = |s− t| for all real s and t. The image
of R1 under a metric embedding is called a metric line. The image of a real interval [a,b]
= {t ∈ R1 : a≤ t ≤ b} under such a mapping is called a metric segment.

Assume that (X ,ρ) contains a family M of metric lines such that for each pair of distinct
points x and y in X , there is a unique metric line in M which passes through x and y. This metric
line determines a unique metric segment joining x and y. We denote this segment by [x,y]. For
each 0≤ t ≤ 1, there is a unique point z in [x,y] such that

ρ(x,z) = tρ(x,y) and ρ(z,y) = (1− t)ρ(x,y).

This point will be denoted by (1− t)x⊕ ty. We say that X , or more precisely (X ,ρ,M), is a
hyperbolic space if

ρ(
1
2

x⊕ 1
2

y,
1
2

x⊕ 1
2

z)≤ 1
2

ρ(y,z)

for all x,y and z in X . An equivalent requirement is that

ρ(
1
2

x⊕ 1
2

y,
1
2

w⊕ 1
2

z)≤ 1
2
(ρ(x,w)+ρ(y,z))
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for all x,y,z and w in X . A set K ⊂ X is called ρ-convex if [x,y]⊂ K for all x and y in K.
It is clear that all normed linear spaces are hyperbolic. A discussion of more examples of

hyperbolic spaces and, in particular, of the Hilbert ball can be found, for example, in [10, 19,
21].

Let (X ,ρ) be a complete hyperbolic space and let K be a nonempty, closed and bounded
subset of (X ,ρ). Assume that ∆ > 0, θ ∈ K and that for each γ ∈ (0,1) and each x ∈ K,

γθ ⊕ (1− γ)x ∈ K.

Set
diam(K) = sup{ρ(x,y) : x,y ∈ K}.

It follows from the boundedness of K in (X ,ρ) that (A) holds for X = K and that

sup{ρ1(x,y) : x,y ∈ K}< ∞.

Denote by A the set of all mappings T : K→ X such that

ρ(T (x),T (y))≤ ρ(x,y) for each x,y ∈ K satisfying ρ(x,y)≤ ∆.

For each A,B ∈A , define

d(A,B) := sup{ρ(A(x),B(x)) : x ∈ K}.
Since K is bounded in (X ,ρ1), d(A,B) is finite for each A,B ∈A .

It is not difficult to see that (A ,d) is a complete metric space.
Recall that a mapping T ∈ A is a uniformly local contraction if there exists a decreasing

function φ : [0,∆]→ [0,1] such that φ(t)< 1 for all t ∈ (0,∆], and that for each x,y∈K satisfying
ρ(x,y)≤ ∆, we have

ρ(T (x),T (y))≤ φ(ρ(x,y))ρ(x,y).
Denote by F the set of all uniformly local contractions A ∈ A . The following result was

established in [25] under all the assumptions made in this section.

Theorem 4.1. The set A \F is σ -porous.

5. G-NONEXPANSIVE MAPPINGS

In this section we begin our discussion of nonexpansive mappings in spaces with graphs. Let
(X ,ρ) be a complete metric space and let G be a (directed) graph. Let V (G) be the set of its
vertices and let E(G) be the set of its edges. We identify the graph G with the pair (V (G),E(G)).

Denote by Mne the set of all mappings T : X → X such that for each x,y ∈ X satisfying
(x,y) ∈ E(G), we have

(T (x),T (y)) ∈ E(G) and ρ(T (x),T (y))≤ ρ(x,y).

A mapping T ∈Mne is called G-nonexpansive. If T ∈Mne, α ∈ (0,1) and for each x,y∈ X sat-
isfying (x,y)∈ E(G), we have ρ(T (x),T (y))≤ αρ(x,y), then T is called a G-strict contraction.
Fix θ ∈ X . For each x ∈ X and each r > 0, set

Bρ(x,r) := {y ∈ X : ρ(x,y)≤ r}.
We may assume without loss of generality that if x,y ∈ X satisfies (x,y) ∈ E(G), then (y,x) ∈
E(G).

We assume that the following assumption holds.
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(P) For each x,y ∈ X , there exist an integer q≥ 1 and points xi ∈ X , i = 0, . . . ,q, such that

x0 = x, xq = y, (xi,xi+1) ∈ E(G), i = 0, . . . ,q−1.

Thus, V (G) = X and the graph G is connected.
Let T ∈Mne be a G-strict contraction. It is known [11] that under certain mild assumptions,

the mapping T has a unique fixed point which attracts all the iterates of T . We begin our
discussion by presenting the results of [22], where we provided a very simple proof of this fact
by using a certain metric on X which is defined below. In [22] we also showed that the iterates
of T converge uniformly on bounded subsets of X and that this convergence is stable under
small perturbations of these iterates.

For each x,y ∈ X , define

ρ1(x,y) := inf{
q−1

∑
i=0

ρ(xi,xi+1) : q≥ 1 is an integer,

xi ∈ X , i = 0, . . . ,q, x0 = x, xq = y, (xi,xi+1) ∈ E(G), i = 0, . . . ,q−1}.
It is easy to see that for each x,y,z ∈ X , ρ1(x,y) is finite,

ρ1(x,y)≥ ρ(x,y),

ρ1(x,y) = ρ1(y,x),

ρ1(x,z)≤ ρ1(x,y)+ρ1(y,z),

and if ρ1(x,y) = 0, then x = y. However, ρ1 is a metric only if (x,x) ∈ E(G) for all x ∈ X . This
pseudometric ρ1 plays an important role in our study.

For each x ∈ X and each r > 0, we set Bρ1(x,r) := {y ∈ X : ρ1(x,y)≤ r}.

6. STRICT CONTRACTIONS

The results of this section were obtained in [22] under all the assumptions made in Section 5.

Theorem 6.1. Let T ∈Mne, α ∈ (0,1) and assume that for each x,y ∈ X satisfying (x,y) ∈
E(G), the inequality

ρ(T (x),T (y))≤ αρ(x,y)

holds. Then for each x,y ∈ X, ρ1(T (x),T (y))≤ αρ1(x,y). If T is continuous as a self-mapping
of (X ,ρ), then there exists a unique point x∗ ∈ X satisfying T (x∗) = x∗ and for each x ∈ X,

lim
i→∞

T i(x) = x∗ in (X ,ρ).

Theorem 6.2. Let all the assumptions of Theorem 6.1 hold, let the mapping T be continuous as
a self-mapping of (X ,ρ) and let x∗ ∈X be as guaranteed by Theorem 6.1 and satisfy x∗= T (x∗).
Suppose that the following assumption holds.

(A1) For each M0 > 0, there exists M1 > 0 such that, for each point x∈ Bρ(θ ,M0), ρ1(x,θ)≤
M1. Then T i(x)→ x∗ as i→ ∞ in (X ,ρ), uniformly on all bounded subsets of (X ,ρ).

Theorem 6.3. Let all the assumptions of Theorem 6.2 hold and let x∗ ∈ X be as guaranteed by
Theorem 6.1 and satisfy x∗ = T (x∗). Suppose that T is uniformly continuous and bounded on
bounded sets as a self-mapping of (X ,ρ) and let ε,M > 0 be given. Then there exist δ > 0 and
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a natural number n0 such that for each integer n ≥ n0 and every finite sequence {xi}n
i=0 ⊂ X

satisfying x0 ∈ Bρ(θ ,M) and

ρ(xi+1,T (xi))≤ δ , i = 0, . . . ,n−1,

the inequality ρ(xi,x∗)≤ ε holds for all i = n0, . . . ,n.

Denote by M the set of all mappings S ∈Mne which are uniformly continuous and bounded
on bounded sets as self-mappings of (X ,ρ). We equip the space M with the uniformity which
has the base

E (ε,M) = {(S1,S2) ∈M ×M : ρ(S1(x),S2(x))≤ ε for all x ∈ B(θ ,M)},

where M,ε > 0. It is not difficult to see that the uniform space M is metrizable and complete
(by a metric d).

Theorem 6.4. Let all the assumptions of Theorem 6.2 hold and let x∗ ∈ X be as guaranteed by
Theorem 6.1 and satisfy x∗ = T (x∗). Suppose that T ∈M and that ε,M > 0 are given. Then
there exist a neighborhood U of T in M and a natural number n0 such that for each C ∈U ,
each x ∈ Bρ(θ ,M) and each integer n≥ n0, we have

ρ(Cn(x),x∗)≤ ε.

7. G-CONTRACTIVE MAPPINGS

Now our goal is to show that the results of the previous sections, which were obtained in
[22], also hold for mappings on complete metric spaces with graphs that are merely contractive
under certain additional assumptions on the graphs. These results were established in [26].

Let (X ,ρ) be a complete metric space and let G be a (directed) graph. Let V (G) be the
set of its vertices and let E(G) be the set of its edges. We identify the graph G with the pair
(V (G),E(G)). Denote by Mne the set of all mappings T : X → X such that for each x,y ∈ X
satisfying (x,y) ∈ E(G), we have

(T (x),T (y)) ∈ E(G), ρ(T (x),T (y))≤ ρ(x,y)

and such that

{(x,T (x)) : x ∈ X} is a closed set in the product space X×X .

Recall that a mapping T ∈Mne is called G-nonexpansive. If T ∈Mne, α ∈ (0,1) and for
each x,y ∈ X satisfying (x,y) ∈ E(G), we have

ρ(T (x),T (y))≤ αρ(x,y),

then T is called a G-strict contraction.
A mapping T ∈Mne is called G-contractive (or G-Rakotch contraction [17]) if there exists

a decreasing function φ : [0,∞)→ [0,1] such that φ(t) < 1 t ∈ [0,∞), and for each x,y ∈ X
satisfying (x,y) ∈ E(G), we have

ρ(T (x),T (y))≤ φ(ρ(x,y))ρ(x,y).

In the sequel we assume that the infimum over the empty set is ∞, ∞+∞ = ∞, and a+∞ = ∞

for each a ∈ R1.
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For each point x ∈ X and each number r > 0, set

Bρ(x,r) := {y ∈ X : ρ(x,y)≤ r}.

Recall that for each x,y ∈ X ,

ρ1(x,y) := inf{
q−1

∑
i=0

ρ(xi,xi+1) : q≥ 1 is an integer,

xi ∈ X , i = 0, . . . ,q, x0 = x, xq = y, (xi,xi+1) ∈ E(G), i = 0, . . . ,q−1}.
For each point x ∈ X and each number r > 0, we set

Bρ1(x,r) := {y ∈ X : ρ1(x,y)≤ r}.

We assume that there exists a point x̄ ∈ X such that the following assumption holds.
(A1) For each x ∈ X , there exist an integer q≥ 1 and points xi ∈ X , i = 0, . . . ,q, such that

x0 = x̄, xq = x, (xi,xi+1) ∈ E(G), i = 0, . . . ,q−1.

(Note that (A1) holds if and only if ρ1(x̄,x) < ∞ for all x ∈ X .) We also assume that there
exists a number ∆̄ > 0 such that the following assumption holds.

(A2) If (x0,x1),(x1,x2) ∈ E(G) satisfy ρ(x0,x1)≤ ∆̄, ρ(x1,x2)≤ ∆̄, then (x0,x2) ∈ E(G).
It turns out that these assumptions hold for many important graphs; see, for instance, the

examples below.

Example 7.1. Assume that ∆ > 0, for each x,y∈ X , (x,y)∈ E(G) if and only if ρ(x,y)≤ ∆, and
that there exists a point x̄ ∈ X such that for each x ∈ X , there exist an integer q ≥ 1 and points
xi ∈X , i= 0, . . . ,q, satisfying x0 = x̄, xq = x and ρ(xi,xi+1)≤∆, i= 0, . . . ,q. Clearly, (A1) holds
and (A2) holds with ∆̄ = ∆/2. Note that in this case (A1) means that (X ,ρ) is ∆-chainable.

Example 7.2. Let X be a closed set in a Banach space (E,‖ ·‖) ordered by a closed and convex
cone E+ such that ‖x‖ ≤ ‖y‖ for each x,y ∈ E+ satisfying x ≤ y, ρ(x,y) = ‖x− y‖, x,y ∈ X ,
and (x,y) ∈ E(G) if and only if x ≤ y. Assume that x̄ ∈ X and x̄ ≤ x for each x ∈ X . Clearly,
both (A1) and (A2) hold. It is not difficult to see that every partially ordered metric space with
a smallest element satisfies both (A1) and (A2).

8. EXISTENCE AND CONVERGENCE RESULTS

The results of this section were obtained in [26]. Assume that T ∈Mne. It is easy to see that
for each x,y ∈ X , ρ1(T (x),T (y)) ≤ ρ1(x,y). Note that if α ∈ (0,1) and for each x,y ∈ E(G)
satisfying (x,y) ∈ E(G) the inequality

ρ(T (x),T (y))≤ αρ(x,y)

holds, then for each x,y ∈ X , ρ1(T (x),T (y)) ≤ αρ1(x,y). Assume that φ : [0,∞)→ [0,1] is a
decreasing function satisfying φ(t)< 1, t ∈ [0,∞), and that for each x,y ∈ X satisfying (x,y) ∈
E(G) the inequality

ρ(T (x),T (y))≤ φ(ρ(x,y))ρ(x,y)

holds. In other words, T is G-contractive.
The following results were obtained in [26] under all the assumptions made in the previous

section and in this one.
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Theorem 8.1. Assume that ρ1(T (x̄), x̄)< ∞. Then the following assertions hold.
1. There exists x∗ = limi→∞ T i(x̄) in (X ,ρ) and T (x∗) = x∗.
2. For every M0 > 0, limn→∞ T n(x) = x∗ in (X ,ρ), uniformly on Bρ1(x̄,M0).
3. Assume that for each M0 > 0, there exists M1 > 0 such that

Bρ(x̄,M0)⊂ Bρ1(x̄,M1).

Then limn→∞ T n(x) = x∗ in (X ,ρ), uniformly on all bounded subsets of (X ,ρ).

Theorem 8.2. Assume that ρ1(T (x̄), x̄)< ∞ and that for each M0 > 0, there exists M1 > 0 such
that

Bρ(x̄,M0)⊂ Bρ1(x̄,M1)

and that T is uniformly continuous and bounded on all bounded sets as a self-mapping of
(X ,ρ). Let M,ε > 0. Then there exist a number δ > 0 and a natural number n0 such that for
each integer n≥ n0 and each sequence {xi}n

i=0 ⊂ X which satisfies x0 ∈ Bρ(x̄,M) and

ρ(xi+1,T (xi))≤ δ , i = 0,1, . . . ,n−1,

the inequality ρ(xi,x∗)≤ ε holds for all i = n0, . . . ,n.

This result easily follows from Theorem 8.1 and Theorem 2.65 of [21].
Denote by M the set of all S∈Mne which are uniformly continuous and bounded on bounded

sets as self-mappings of (X ,ρ). Denote by Mc the set of all continuous mappings T ∈Mne.
Fix a point θ ∈ X . The space Mne is equipped with the uniformity determined by the base

E (ε,M) = {(S1,S2) ∈Mne×Mne : ρ(S1(x),S2(x))≤ ε

for all x ∈ B(θ ,M)},
where M,ε > 0. The uniform space Mne is metrizable (by a metric d) and complete. It is
complete if the set {(x,y) ∈ X×X : (x,y) ∈ E(G)} is closed in the product topology. It is clear
that M is a closed subset of Mne. We equip it with the relative topology. The next result easily
follows from Theorem 8.1 and Theorem 2.68 of [21].

We say that a set C ⊂ X is bounded in (X ,ρ1) if sup{ρ1(x,y) : x,y ∈C}< ∞.

Theorem 8.3. Assume that ρ1(T (x̄), x̄) < ∞ and let x∗ be as guaranteed by Theorem 8.1. As-
sume further that each bounded set in (X ,ρ) is also bounded in (X ,ρ1) and let ε,M > 0.
Then there exist a neighborhood U of T in M and a natural number n0 such that for each
x ∈ B(θ ,M), each integer n≥ n0 and each {Bi}n

i=1 ⊂U , we have

ρ(Bq · · · ,B1(x),x∗)≤ ε, q = n0, . . . ,n.

9. EXTENSIONS OF THEOREM 8.1

The results of this section were obtained in [30] Assume that (X ,d) is a complete metric
space equipped with a graph G. We denote by V (G) the set of its vertices and by E(G) the
set of its edges. We assume that (x,x) ∈ E(G) for any point x ∈ X and that φ : [0,∞)→ [0,1]
is a decreasing function such that φ(t) < 1 t ∈ [0,∞) and φ(0) = 1. Assume that a mapping
T : X → X satisfies the following assumption.

(A1) For every pair of points x,y ∈ X satisfying (x,y) ∈ E(G) the inequality

d(T (x),T (y))≤ φ(d(x,y))d(x,y)
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holds and
(T (x),T (y)) ∈ E(G).

Theorem 8.1 shows the that T possesses a unique fixed point under the assumption that there
exists a number ∆̄ > 0 such that if (x0,x1),(x1,x2) ∈ E(G) satisfy ρ(x0,x1) ≤ ∆̄, ρ(x1,x2) ≤
∆̄, then (x0,x2) ∈ E(G). The following existence results were obtained in [30] under all the
assumptions made in this section.

Theorem 9.1. Assume that x̄ ∈ X and that there exist a natural number q and M > 1 such that
for each integer n≥ 1 there exist x(n)i ∈ X, i = 0, . . . ,q, such that

x(n)0 = x̄, x(n)q = T n(x̄)

and that for each i ∈ {0, . . . ,n−1}, d(x(n)i ,x(n)i+1)≤M and at least one of the following relations
hold:

(x(n)i ,x(n)i+1) ∈ E(G), (x(n)i+1,x
(n)
i ) ∈ E(G).

Then there exists x∗ = limi→∞ T i(x) and if T is continuous at x∗, then T (x∗) = x∗..

Theorem 9.2. Assume that x∗ ∈ X satisfies T (x∗) = x∗, q is a natural number, M > 0 and that

XM,q = {x ∈ X : there exist xi ∈ X , i = 0, . . . ,q,

such that x0 = x, xq = x∗ and for each i ∈ {0, . . . ,q−1},
d(xi,xi+1)≤M and at least one of the following relations holds:

(xi,xi+1) ∈ E(G); (xi+1,xi) ∈ E(G)}.
Then d(T n(x),x∗)→ 0 as n→ ∞ uniformly on Xq,M.

We believe that the results presented in the paper can be extended to classes of quasi-nonexpansive
mappings and mappings which map a subset of a complete metric space to the space itself.
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