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ON BETTER APPROXIMATION ORDER FOR THE NONLINEAR BASKAKOV
OPERATOR OF MAXIMUM PRODUCT KIND

SEZİN ÇİT∗, OGÜN DOĞRU

Department of Mathematics, Gazi University, Ankara, Turkey

Abstract. The nonlinear Baskakov operator of the max-product type, which uses the maximum instead of the sum,
was introduced by Bede et al. [8]. Our aim in this paper is to obtain a better approximation order for this operator.

In [8], the approximation order for this operator was found to be
√

x(1+x)√
n with the help of the classical modulus

of continuity, and it was claimed that this approximation order cannot be improved except for some subclasses of
functions. Contrary to this claim, under some circumstances, we show that a better order of approximation can be
obtained with the help of classical and weighted modulus of continuities.
Keywords. Approximation operators; Modulus of continuity; Nonlinear Baskakov operator of maximum product
kind.
2020 MSC. 41A10, 41A25, 41A36.

1. INTRODUCTION

In response to the question of whether all approximation operators need to be linear, Bede et
al. presented nonlinear operators for the open problem in [27]. They defined nonlinear max-
imum product operators by taking the maximum (or supremum) instead of the sum. These
operators provide the property of pseudo-linearity, which is weaker than linearity. Studies of
nonlinear maximum product operators started with Shepard operators (see [13]), and the maxi-
mum product type of many operators was introduced. The order of approximation was obtained
with the help of the classical modulus of continuity:

ω ( f ,δ ) = max{| f (x)− f (y)| ; x,y ∈ I, |x− y| ≤ δ} (1.1)

and shape preserving properties were examined [6, 7, 8, 9, 10, 11]. Also, some statistical
approximation properties of max-product type operators were given by Duman in [18].

The nonlinear max-product type Baskakov operator, which is the main subject of this study,
was examined in [8]. The order of approximation for the max-product type Baskakov operator
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can be found by means of the modulus of continuity as ω

(
f ;
√

x(1+ x)/n
)

. Additionally,

Bede et al. indicated that the order of approximation under the modulus was
√

x(1+ x)/n, and
it could not be improved except for some subclasses of functions (see [8] for details).

Contrary to this claim, under some circumstances, we will show that a better order of ap-
proximation can be obtained with the help of classical and weighted modulus of continuities.
Notice that, in [24, 25, 26], we showed that the rates of approximation of some max-product
type operators can be improved.

2. THE CONCEPT OF NONLINEAR MAX-PRODUCT OPERATORS

We recall the basic definitions and theorems about nonlinear operators given in [11] and [12].
Let us consider together the set of non-negative real numbers, R+, with the operations ∨

(maximum) and · (product). Then (R+,∨, ·) has a semi-ring structure called a maximum product
algebra.

Let I ⊂ R be bounded or unbounded interval, and

CB+ (I) = { f : I→ R+ : f continuous and bounded on I } .

Let us take the general form of Ln : CB+(I)→CB+(I), as

Ln ( f )(x) =
n∨

i=0

Kn (x,xi) f (xi)

or

Ln ( f )(x) =
∞∨

i=0

Kn (x,xi) f (xi),

where n∈N, f ∈CB+(I), Kn (.,xi)∈CB+ (I) and xi ∈ I, for all i. These operators are nonlinear,
positive operators and moreover they satisfy the following pseudo-linearity condition of the
form

Ln (α f ∨βg)(x) = α Ln ( f )(x)∨β Ln (g)(x) ,

where ∀α,β ∈ R+, f ,g ∈CB+(I).
In this section, we present some general results on these kinds of operators which will be

used later.

Lemma 2.1. [11] Let I ⊂ R be bounded or unbounded interval,

CB+ (I) = { f : I→ R+ : f continuous and bounded on I } ,

and Ln : CB+(I)→CB+(I), n ∈ N be a sequence of operators satisfying the following proper-
ties:

(i) If f ,g ∈CB+ (I) satisfy f ≤ g then Ln ( f )≤ Ln (g) for all n ∈ N.
(ii) Ln ( f +g)≤ Ln ( f )+Ln (g) for all f ,g ∈CB+ (I) .
Then, for all f ,g ∈CB+ (I) , n ∈ N and x ∈ I,

|Ln ( f )(x)−Ln (g)(x)| ≤ Ln (| f −g|)(x) .
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Corollary 2.2. [11] Let Ln : CB+(I)→ CB+(I), n ∈ N be a sequence of operators satisfying
the conditions (i),(ii) in Lemma 2.1 and in addition being positive homogenous. Then, for all
f ∈CB+(I), n ∈ N and x ∈ I,

|Ln ( f )(x)− f (x)| ≤
[

1
δ

Ln (ϕx)(x)+Ln (e0)(x)
]

ω ( f ,δ )+ f (x) |Ln (e0)(x)−1| ,

where ω ( f ,δ ) is the classical modulus of continuity defined by (1.1), δ > 0, e0 (t) = 1, ϕx (t) =
|t− x| for all t ∈ I, x ∈ I, and if I is unbounded then we suppose thet there exists Ln (ϕx)(x) ∈
R+∪{∞} , for any x ∈ I, n ∈ N.

A consequence of Corollary 2.2, we have the following result.

Corollary 2.3. [11] Suppose that in addition to the conditions in Corollary 2.2, the sequence
(Ln)n satisfies Ln (e0) = e0, for all n ∈ N. Then, for all f ∈CB+ (I), n ∈ N and x ∈ I,

|Ln ( f )(x)− f (x)| ≤
[

1+
1
δ

Ln (ϕx)(x)
]

ω ( f ,δ )

where ω ( f ,δ ) is the classical modulus of continuity defined by (1.1) and δ > 0.

3. THE NONLINEAR BASKAKOV OPERATOR OF MAX-PRODUCT KIND

For f ∈C[0,∞), the classical Baskakov operators is given in [5] as

Vn( f ;x) =
∞

∑
k=0

bn,k (x) f
(

k
n

)
,

where x ∈ [0,∞), n ∈ N and bn,k (x) =
(n+k−1

k

) xk

(1+x)n+k .

Since Vn(e0;x) = ∑
∞
k=0 bn,k (x) = 1, we can also write the classical Baskakov operator as

Vn( f ;x) =
∑

∞
k=0 bn,k (x) f

( k
n

)
∑

∞
k=0 bn,k (x)

.

Now, if we replace the sum operator ∑ by the supremum operator
∨

, we obtain the nonlinear
Baskakov operator:

V (M)
n ( f )(x) :=

∞∨
k=0

bn,k (x) f
( k

n

)
∞∨

k=0
bn,k (x)

, (3.1)

where bn,k (x) =
(n+k−1

k

) xk

(1+x)n+k , f ∈C[0,∞), x ∈ [0,∞), n ∈ N as introduced by Bede et al. in
[8].

Remark 3.1. [8] 1) It is easy to see that the nonlinear Baskakov max-product operator satisfy
the conditions (i), (ii) of Lemma 2.1. In fact, instead of (i) it also satisfies the following stronger
condition:

V (M)
n ( f ∨g)(x) = V (M)

n ( f )(x)∨ V (M)
n (g)(x) ,

where f ,g ∈ CB+(I), I = [0,∞) . Indeed, taking into consideration of the equality above, for
f ≤ g, f ,g ∈CB+(I), it easily follows

V (M)
n ( f )(x)≤V (M)

n (g)(x).
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2) In addition to this, it is immadiate that the nonlinear Baskakov max-product operator is
positive homogenous, that is V (M)

n (λ f ) = λV (M)
n ( f ) for all λ ≥ 0.

Lemma 3.2. [8] For any arbitrary bounded function f : [0,∞)→ R+, max-product operator
V (M)

n ( f )(x) is positive, bounded, continuous and satisfies V (M)
n ( f )(0) = f (0) , for all n ∈ N,

n≥ 3.

4. AUXILIARY RESULTS

In this section, we present the statements and the lemmas given in [8] for the approximation
theorem without proof, except for Lemma 4.5. We revise Lemma 4.5, which allows us to
improve the order of approximation of the operator, and different from [8], we prove it by
induction method again.

Lemma 4.1. [8] Let n ∈ N, n≥ 2. Then,
∞∨

k=0

bn,k (x) = bn, j(x), for all x ∈
[

j
n−1

,
j+1
n−1

]
, j = 0,1,2, ...

where bn,k (x) =
(n+k−1

k

) xk

(1+x)n+k .

We define the following expression similar to [8].
For each n ∈ N,n≥ 2, k, j ∈ {0,1,2, ...} and x ∈

[
j

n−1 ,
j+1
n−1

]
, x > 0,

mk,n, j (x) : =
bn,k (x)
bn, j (x)

=

(n+k−1
k

)(n+ j−1
j

) xk

(1+ x)n+k
(1+ x)n+ j

x j =

(n+k−1
k

)(n+ j−1
j

) ( x
1+ x

)k− j

.

For x = 0 let us denote m0,n,0 (x) = 1 and mk,n,0 (x) = 0 for all k ∈ {1,2, ...} .

Lemma 4.2. [8] Let n ∈ N, n≥ 2. For all k, j ∈ {0,1,2, ...} and x ∈
[

j
n−1 ,

j+1
n−1

]
, mk,n, j(x)≤ 1.

Remark 4.3. [8] From Lemmas 3.2, 4.1, and 4.2, it is clear that V (M)
n ( f )(x) satisfies, for all

n ∈ N, n≥ 2, all the hypothesis in Lemma 2.1, Corollary 2.2 and Corollary 2.3 for I = [0,∞) .

From Lemma 3.2, we have V (M)
n ( f )(0)− f (0) = 0 for all n≥ 3, so, in this part, we consider

x > 0 in the notations, proofs and statements of the all approximation results. Again, let us
define the following expressions similar to [8]. For each n ∈ N, n ≥ 3, k, j ∈ {0,1,2, ...} and
x ∈
[

j
n−1 ,

j+1
n−1

]
,

Mk,n, j (x) := mk,n, j (x)
∣∣∣∣kn − x

∣∣∣∣ .
It is clear that if k ≥ n

n−1 ( j+1) , then

Mk,n, j (x) = mk,n, j (x)
(

k
n
− x
)

and if k ≤ n
n−1 j, then

Mk,n, j (x) = mk,n, j (x)
(

x− k
n

)
.
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Also, for each n ∈ N, n≥ 3, k, j ∈ N, k ≥ n
n−1 ( j+1) and x ∈

[
j

n−1 ,
j+1
n−1

]
Mk,n, j (x) := mk,n, j (x)

(
k

n−1
− x
)

and for each n ∈ N, n≥ 3, k, j ∈ N, k ≤ n
n+1 j and x ∈

[
j

n−1 ,
j+1
n−1

]
Mk,n, j (x) := mk,n, j (x)

(
x− k

n−1

)
.

At this point, let us recall the following lemma.

Lemma 4.4. [8] Let x ∈
[

j
n−1 ,

j+1
n−1

]
and n ∈ N, n≥ 3.

(i) For all k, j ∈ {0,1,2, ...} with k ≥ n
n−1 ( j+1), Mk,n, j (x)≤Mk,n, j (x) .

(ii) For all k, j ∈ N with k ≥ n
n−2 ( j+1), Mk,n, j (x)≤ 2Mk,n, j (x) .

(iii) For all k, j ∈ N with k ≤ n
n+1 j, Mk,n, j (x)≤Mk,n, j (x)≤ 2Mk,n, j (x) .

Now, we give our first main result of this part which is proven by not only using the proof
techniques given in [8] but also using the induction method.

Lemma 4.5. Let x ∈
[

j
n−1 ,

j+1
n−1

]
and n ∈ N, n≥ 3 and α ∈ {2,3, ...} .

(i) If j ∈ {0,1,2, ...} is such that k ≥ n
n−1 ( j+1) and (k− j)α ≥ (n+ j)(k+1)

(n−1) , then Mk,n, j(x)≥
Mk+1,n, j(x).

(ii) If k ∈ {1,2, ..., j} is such that k ≤ n
n+1 j and ( j− k)α ≥ k(n+ j−1)

(n−1) , then

Mk,n, j(x)≥Mk−1,n, j(x).

Proof. (i) From the case (i) of Lemma 3.2 in [8], we can write

Mk,n, j(x)
Mk+1,n, j(x)

≥ k+1
n+ k

n+ j
j+1

k− j−1
k− j

.

After this point we use a different proof technique from [8]. By using the induction method, let
us show that the following inequality

k+1
n+ k

n+ j
j+1

k− j−1
k− j

≥ 1 (4.1)

holds for (k− j)α ≥ (n+ j)(k+1)
(n−1) . For α = 2, condition (k− j)2 ≥ (n+ j)(k+1)

(n−1) is equivalent to

(n−1)(k− j)2− (n+ j)(k+1)≥ 0 or
n
[
(k− j)2− (k+1)

]
+ k j− j2− k2− j ≥ 0. Therefore, this condition is the same as in (i) of

Lemma 3.2 in [8], and inequality (4.1) holds for α = 2.
Now, we assume that inequality (4.1) is provided for α − 1. It follows k+1

n+k
n+ j
j+1

k− j−1
k− j ≥ 1

when (k− j)α−1 ≥ (n+ j)(k+1)
(n−1) . Since k ≥ n

n−1 ( j+1) , we have nk− k ≥ n j+ n, and clearly it

follows n(k− j)≥ n+k or (k− j)≥ 1+ k
n ≥ 1, and α = 2,3, ... . Then we can write (k− j)α ≥

(k− j)α−1 ≥ (n+ j)(k+1)
(n−1) . It is true for α; hence, for arbitrary α = 2,3, ... the inequality (4.1) is
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provided when (k− j)α ≥ (n+ j)(k+1)
(n−1) . So we obtain

Mk,n, j(x)
Mk+1,n, j(x)

≥ k+1
n+ k

n+ j
j+1

k− j−1
k− j

≥ 1.

(ii) From the case (ii) of Lemma 3.2 in [8], we can write

Mk,n, j(x)
Mk−1,n, j(x)

≥ n+ k−1
k

j
n+ j−1

j− k
j− k+1

.

After this point, we use the our proof technique again. By using the induction method, let us
show that the following inequality

n+ k−1
k

j
n+ j−1

j− k
j− k+1

≥ 1 (4.2)

holds for ( j− k)α ≥ k(n+ j−1)
(n−1) = k

(
j

n−1 +1
)

. For α = 2, similarly previous case (i), the condi-

tion ( j− k)2≥ k(n+ j−1)
(n−1) is equivalent to ( j− k)2 (n−1)−k (n+ j−1)≥ 0 or n

[
( j− k)2− k

]
+

k j− j2− k2− j ≥ 0. Therefore, this condition is the same as in (ii) of Lemma 3.2 in [8], and
the inequality (4.2) holds for α = 2.

Now, we assume that (4.2) is correct for α − 1. Hence, n+k−1
k

j
n+ j−1

j−k
j−k+1 ≥ 1 is provided

when ( j− k)α−1 ≥ k(n+ j−1)
(n−1) and k ≤ n

n+1 j. For k = j, conditions k ≤ n
n+1 j and ( j− k)α ≥

k(n+ j−1)
(n−1) are not satisfied, so we can take k ≤ j−1. Therefore, since 1≤ j− k and α = 2,3, ...

it follows that ( j− k)α ≥ ( j− k)α−1 ≥ k(n+ j−1)
(n−1) . It is true for α = 2,3, ... and then the desired

inequality is provided for ( j− k)α ≥ k(n+ j−1)
(n−1) . So we obtain

Mk,n, j(x)
Mk−1,n, j(x)

≥ n+ k−1
k

j
n+ j−1

j− k
j− k+1

≥ 1,

which gives the desired result. �

5. POINTWISE RATE OF CONVERGENCE

Our aim in this section is to improve the order of approximation for the operators V (M)
n ( f )(x0).

And our motivation is that when approximating the nonlinear max-product operators by the clas-
sical modulus of continuity, the rate of approximation does not have to be square-root since the
Cauchy-Schwarz inequality is not used. From the following theorem, we can say that the order
of the pointwise approximation can be improved when α is big enough. Furthermore, if α = 2
then these approximation results become the results in [8].

Theorem 5.1. Let f : [0,∞)→ R+ be bounded and continuous. Then, for any fixed point x0
on the interval [0,∞), which also satisfy xα−2

0 ≤ n−1, we have the following order of approx-
imation for the operators (3.1) to the function f by means of the modulus of continuity, for all
n ∈ N, n≥ 4,∣∣∣V (M)

n ( f )(x0)− f (x0)
∣∣∣≤ (1+6 [x0 (1+ x0)]

1
α ) ω

(
f ;

1

(n−1)1− 1
α

)
,

where ω ( f ;δ ) is the classical modulus of continuity defined by (1.1) and α = 2,3, ... .
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Proof. Since nonlinear max-product Baskakov operators satisfy the conditions in Corollary 2.3,
for any x0 ∈ [0,∞), and using the properties of ω ( f ;δ ) , we obtain∣∣∣V (M)

n ( f )(x0)− f (x0)
∣∣∣≤ [1+

1
δn

V (M)
n (ϕx0)(x0)

]
ω ( f ,δ ) , (5.1)

where ϕx0 (t) = |t− x0| . At this point, let us define the following

En (x0) :=V (M)
n (ϕx0)(x0) =

∞∨
k=0

bn,k (x0)
∣∣ k

n − x0
∣∣

∞∨
k=0

bn,k (x0)
, x0 ∈ [0,∞) .

Let x0 ∈
[

j
n−1 ,

j+1
n−1

]
, where j ∈ {0,1, ...} is fixed arbitrarily. By Lemma 4.1 We easily find

En (x0) = max
k=0,1,...

{
Mk,n, j (x0)

}
.

Firstly let us check for j = 0,

Mk,n,0 (x0) =

(n+k−1
k

)(n+0−1
0

) ( x0

1+ x0

)k−0 ∣∣∣∣kn − x0

∣∣∣∣
=

(n+ k−1)!
(n−1)!k!

(
x0

1+ x0

)k ∣∣∣∣kn − x0

∣∣∣∣
where x0 ∈

[
0, 1

n−1

]
and α = 2,3, ... .

For k = 0, we have

M0,n,0 (x0) = x0 = x
1
α

0 x
1− 1

α

0 ≤
x

1
α

0

(n−1)1− 1
α

.

For k = 1, we obtain

M1,n,0 (x0) =

(
n
1

)(
x0

1+ x0

)∣∣∣∣1n − x0

∣∣∣∣≤ n
x0

1+ x0

1
n
≤ x0 ≤

x
1
α

0

(n−1)1− 1
α

.

Now suppose that k≥ 2. For j = 0 and k≥ 2, we see that all of the Lemma 4.4 (i)’s hypotheses
are satisfied. Thus we get Mk,n,0 (x0) ≤Mk,n,0(x). Also by Lemma 4.5 (i), for j = 0 it follows
that Mk,n,0(x) ≥ Mk+1,n,0(x) for every k ≥ 2 such that kα ≥ n(k+1)

n−1 then we have (n−1)kα −
nk−n≥ 0, when α = 2,3, ... . Let’s define the function γ as γ (t) := (n−1) tα −nt−n, t ≥ 1.
γ (t) is nondecreasing for t ≥ 1, since γ ′ (t) = α (n−1) tα−1−n≥ 0. Since

γ

(
n

1
α

)
= (n−1)n−nn

1
α −n = n

(
n−2−n

1
α

)
≥ 0, n≥ 4,

it follows Mk,n,0(x)≥Mk+1,n,0(x) for every k ∈ N, k ≥ n
1
α . Let us denote

Aα =
{

k ∈ N, 2≤ k ≤ n
1
α +1

}
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and let k ∈ Aα . Since 4 ≤ n then 0 ≤ k (n−3) it follows that 2nk ≤ 3nk− 3k or k
n−1 ≤

3k
2n . By

Lemma 4.2, we obtain

Mk,n,0(x0) =

(
n+ k−1

k

)(
x0

1+ x0

)k( k
n−1

− x0

)
≤

(
n+ k−1

k

)(
x0

1+ x0

)k k
n−1

≤
(

n+ k−1
k

)(
x0

1+ x0

)k 3k
2n

=
(n+ k−1)!
(k−1)!n!

3
2

(
x0

1+ x0

)k

=
3
2

(
n+ k−1

k−1

)(
x0

1+ x0

)k−1 x0

1+ x0

=
3
2

(
n+ k−1

k−1

)( 1
n

1+ 1
n

)k−1(
x0

1+ x0

1+ 1
n

1
n

)k−1
x0

1+ x0

=
3
2

mk−1,n+1,0

(
1
n

)(
(n+1)x0

1+ x0

)k−1 x0

1+ x0

≤ 3
2

(
(n+1)x0

1+ x0

)k−1 x0

(1+ x0)
,

taking into account that 1
n+1 =

1
n

1+ 1
n
. If we denote

ζn,k (x0) :=
(
(n+1)x0

1+ x0

)k−1

,

then we see that the function ζn,k (x0) is nondecreasing on the interval
[
0, 1

n−1

]
. Observe that

ζ
′
n,k (x0) = (k−1)

(
(n+1)x0

1+ x0

)k−2
(
(n+1)(1+ x0)− (n+1)x0

(1+ x0)
2

)

= (k−1)
(
(n+1)x0

1+ x0

)k−2 n+1

(1+ x0)
2 ≥ 0.

Using the above property, and x0 ≤ 1
n−1 , we obtain

ζn,k (x0)≤ ζn,k

(
1

n−1

)
=

(
n+1
n−1

1+ 1
n−1

)k−1

=

(
n+1

n

)k−1

,
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for all x0 ∈
[
0, 1

n−1

]
. Then

Mk,n,0(x0) ≤
3
2

(
n+1

n

)k−1 x0

(1+ x0)

<
3
2

(
n+1

n

)n
1
α x0

(1+ x0)

≤ 3
2

(
n+1

n

)n x0

(1+ x0)

<
3
2

e
x0

1+ x0
<

3e
2

x0

≤ 5
x

1
α

0

(n−1)1− 1
α

taking into account that k+1≤ n
1
α and limn→∞

(
1+ 1

n

)n
= e and 3

2e < 5. So, we find an upper
estimate for any k = 0,1,2, ...

En (x0) = max
k=0,1,...

{
Mk,n,0 (x0)

}
≤ max

{
M0,n,0 (x0) ,M1,n,0 (x0) , max

k=2,3,...

{
Mk,n,0 (x0)

}}
= max

{
M0,n,0 (x0) ,M1,n,0 (x0) ,max

k∈A

{
Mk,n,0 (x0)

}}

< 5
x

1
α

0

(n−1)1− 1
α

≤ 5
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

,

when j = 0. As a result, it remains to find an upper estimate for each Mk,n, j (x0) when j = 1,2, ...

is fixed, x0 ∈
[

j
n−1 ,

j+1
n−1

]
, k ∈ {0,1, ...} and α = 2,3, .... In fact, we will show that

Mk,n, j (x0)≤ 6
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

(5.2)

for all x ∈
[

j
n−1 ,

j+1
n−1

]
, k = 0,1,2, ... which implies that directly

En (x0)≤ 6
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

, for all x0 ∈ [0,∞) and n ∈ N, n≥ 4.

Taking δn =
1

(n−1)1− 1
α

in (5.1), we received the estimate in the statement immediately. So, we

consider the following cases to complete the proof of (5.2):
1) n

n+1 j ≤ k ≤ n
n−1 ( j+1) ;

2) k > n
n−1 ( j+1) ;

3) k < n
n+1 j.
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Case 1). We have

k
n
− x0 ≤

n
n−1 ( j+1)

n
− x0 ≤

j+1
n−1

− j
n−1

=
1

n−1
≤ 2x0

n−1
+

1
n−1

.

On the other hand,

k
n
− x0 ≥

n
n+1 j

n
− x0 ≥

j
n+1

− j+1
n−1

=
n j− j−n j−n− j−1

(n−1)(n+1)
=
−2 j−n−1
(n−1)(n+1)

=
−2 j

(n−1)(n+1)
− 1

n−1
≥− 2x0

n+1
− 1

n−1

≥ − 2x0

n−1
− 1

n−1
.

As a result, we obtain| kn − x0| ≤ 2x0
n−1 +

1
n−1 . Since xα−2

0 ≤ n−1 and n≥ 4 from the hypothesis,
we obtain

x0

n−1
≤ [x0 (1+ x0)]

1
α

(n−1)1− 1
α

for all x > 0 and α = 2,3, ... And also

1
n−1

=

(
1

n−1

) 1
α
(

1
n−1

)1− 1
α

≤
(

j
n−1

) 1
α 1

(n−1)1− 1
α

≤ (x0)
1
α

(n−1)1− 1
α

≤ [x0 (1+ x0)]
1
α

(n−1)1− 1
α

.

Hence, it follows that Mk,n, j(x) = mk,n, j(x)| kn − x0| ≤ 3 [x0(1+x0)]
1
α

(n−1)1− 1
α

.

Case 2). Subcase a). Let us k > n
n−1 ( j+1) and assume first that (k− j)α < (n+ j)(k+1)

(n−1) . If we
denoting k = j+β , where β ≥ 1, the condition becomes

β α < (n+ j)( j+β+1)
(n−1)

β α (n−1)− (n+ j)( j+β +1)< 0

β α (n−1)−β (n+ j)− (n+ j)( j+1)< 0.

Let us define the function ηα (t) := tα (n−1)− t (n+ j)− (n+ j)( j+1) , t ∈R. We claim that

ηα

([
3( j+1)(n+ j)

n−1

] 1
α

)
> 0,
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which implies k− j = β <
[

3( j+1)(n+ j)
n−1

] 1
α

. After simple calculation, we have

ηα

([
3( j+1)(n+ j)

n−1

] 1
α

)

=
3( j+1)(n+ j)

n−1
(n−1)−

[
3( j+1)(n+ j)

n−1

] 1
α

(n+ j)− (n+ j)( j+1)

= 2(n+ j)( j+1)−
[

3( j+1)(n+ j)
n−1

] 1
α

(n+ j)

= (n+ j)( j+1)
1
α

{
2( j+1)1− 1

α −
(

3+
3 j+3
n−1

) 1
α

}

≥ (n+ j)( j+1)
1
α

{
2( j+1)1− 1

α −
(

3 j+9
2

) 1
α

}
> 0.

In the above, we have considered the following: It is clear that 2α+1 ( j+1)α−1 > 3 j+9 for all
α ≥ 2 and j ≥ 1. It follows that 2α ( j+1)α−1 > 3 j+9

2 and we obtain

2( j+1)1− 1
α >

(
3 j+9

2

) 1
α

.

Based on the above findings, we have

Mk,n, j (x0) = mk,n, j (x0)

(
k

n−1
− x0

)
≤ k

n−1
− x0

≤ k
n−1

− j
n−1

=
k− j
n−1

=
β

n−1

<

[
3( j+1)(n+ j)

n−1

] 1
α

n−1
=

[3( j+1)(n+ j)]
1
α

(n−1)1+ 1
α

≤ [6 j (n+ j)]
1
α

(n−1)1+ 1
α

=
1

(n−1)1− 1
α

(
6 j

n−1

) 1
α
(

n+ j−1
n−1

) 1
α
(

n+ j
n+ j−1

) 1
α

≤ 1

(n−1)1− 1
α

(6x0)
1
α (1+ x0)

1
α

(
4
3

) 1
α

= 2
3
α
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

,

where we used that n+ j−1
n−1 = 1+ j

n−1 ≤ 1+ x0 and n+ j
n+ j−1 ≤

4
3 since j ≥ 1, n≥ 4.

Subcase b). Assume now that (k− j)α ≥ (n+ j)(k+1)
(n−1) , which means

(k− j)α (n−1)− (n+ j)(k+1)≥ 0.
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Because n and j are fixed, we can define the real function

λn, j (t) := (t− j)α (n−1)− (n+ j)(t +1) ,

for all t ∈ R. For t ≥ n
n−1 ( j+1), λn, j (t) is nondecreasing on the interval

[ n
n−1 ( j+1) ,∞

)
.

Observe that

λ
′
n, j (t) ≥ α

(
n

n−1
( j+1)− j

)α−1

(n−1)−n− j

= α

(
n+ j
n−1

)α−1

(n−1)−n− j

= (n+ j)

[
α

(
n+ j
n−1

)α−2

−1

]
> 0.

In the inequality above, we take into account that α ≥ 2, and n + j > n− 1 i.e. n+ j
n−1 > 1,

( n+ j
n−1)

α−2 > 1
α
. Since limt→∞ λn, j (t) = ∞, by the monotonicity of λn, j too, it follows that there

exists k̄ ∈ N, k̄ > n
n−1 ( j+1) of minimum value, satisfying the inequality

λn, j
(
k̄
)
=
(
k̄− j

)α
(n−1)− (n+ j)

(
k̄+1

)
≥ 0.

Denote k1 = k̄+1, where evidently k1 ≥ j+1. If k1 ≥ n
n−1 ( j+1) , then from the properties of

λn, j and by the way we choose k̄ it results that λn, j (k1)< 0. If k1 <
n

n−1 ( j+1) , then j < k1 <
n

n−1 ( j+1) . Now, let us prove

λn, j

(
n

n−1
( j+1)

)
< 0.

Observe that

λn, j

(
n

n−1
( j+1)

)
=

(
n

n−1
( j+1)− j

)α

(n−1)− (n+ j)
(

n
n−1

( j+1)+1
)

=

(
n+ j
n−1

)α

(n−1)− (n+ j)
(

n j+2n−1
n−1

)
= (n+ j)

[(
n+ j
n−1

)α−1

− n j+2n−1
n−1

]
< 0.

We were able to write the last inequality above because, firstly, it holds for α = 2. Sec-
ondly, for α > 2, we have xα−2

0 ≤ n− 1 from the hypothesis, and since also we have x0 ∈[
j

n−1 ,
j+1
n−1

]
, this give us that

(
j

n−1

)α−2
≤ n− 1 or equivalently j ≤ (n−1)1+ 1

2−α . Since λn, j

is a polynomial function and because λn, j ( j) < 0 and λn, j
( n

n−1 ( j+1)
)
< 0 we immediately

obtain the same conclusion as in the previous case, which is λn, j (k1) < 0 or equivalently
β α (n−1)− (n+ j)( j+β +1) < 0, where k1 = j+β . Using the same method as in subcase
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a), we have k1− j <
[

3( j+1)(n+ j)
n−1

] 1
α

. Then

Mk̄,n, j (x0) = mk̄,n, j (x0)

(
k̄

n−1
− x0

)
≤ k̄

n−1
− x0

≤ k̄
n−1

− j
n−1

=
k̄− j
n−1

=
k1− j
n−1

+
1

n−1

≤ 2
3
α
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

+
1

n−1

≤ 2
3
α
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

+
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

≤ 4
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

,

taking into account that 2
3
α +1≤ 4. By Lemma 4.5 (i), it follows that Mk̄,n, j (x0)≥Mk̄+1,n, j (x0)≥

... . Therefore, Mk̄,n, j (x0)< 4 [x0(1+x0)]
1
α

(n−1)1− 1
α

for any k ∈
{

k̄, k̄+1, ...
}
. As a result, in both subcases,

by Lemma 4.4 (i), we have

Mk,n, j (x0)< 4
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

.

Case 3). Subcase a). Assume first that ( j− k)α < k(n+ j−1)
(n−1) . If we denoting k = j−β , where

β ≥ 1, the condition becomes

β α < ( j−β )(n+ j−1)
(n−1)

β α (n−1)− ( j−β )(n+ j−1)< 0.

Let us define the function

φn, j (t) = tα (n−1)− ( j− t)(n+ j−1) , t ∈ R.

We claim that φn, j

([
j(n+ j−1)

n−1

] 1
α

)
> 0 which implies j− k = β <

[
j(n+ j−1)

n−1

] 1
α

. After simple

calculation, we have

φn, j

([
j (n+ j−1)

n−1

] 1
α

)
=

j (n+ j−1)
n−1

(n−1)−

(
j−
[

j (n+ j−1)
n−1

] 1
α

)
(n+ j−1)

= j (n+ j−1)− j (n+ j−1)+
[

j (n+ j−1)
n−1

] 1
α

(n+ j−1)

=

[
j (n+ j−1)

n−1

] 1
α

(n+ j−1)> 0.
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Then we obtain

Mk,n, j (x0) = mk,n, j (x0)

(
x0−

k
n−1

)
≤ j+1

n−1
− k

n−1

=
j− k
n−1

+
1

n−1
<

[
j(n+ j−1)

n−1

] 1
α

n−1
+

1
n−1

=
1

(n−1)1− 1
α

(
j (n+ j−1)

n−1

) 1
α
(

1
n−1

) 1
α

+
1

n−1

=
1

(n−1)1− 1
α

(
j

n−1

) 1
α
(

1+
j

n−1

) 1
α

+
1

n−1

≤ 1

(n−1)1− 1
α

(x0)
1
α (1+ x0)

1
α +

[x0 (1+ x0)]
1
α

(n−1)1− 1
α

= 2
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

.

Subcase b). Assume now that ( j− k)α ≥ k(n+ j−1)
(n−1) it means ( j− k)α (n−1)−k (n+ j−1)≥ 0.

Since n and j are fixed, we can define the real function

ψn, j (t) := ( j− t)α (n−1)− t (n+ j−1) ,

for all t ∈ R. For t ≤ n
n+1 j, ψn, j (t) is nonicreasing on the interval

[
0, n

n+1 j
]
. Really since

ψ
′
n, j (t) =−α ( j− t)α−1 (n−1)− (n+ j−1)< 0.

Let’s we observe ψn, j

(
n j

n+1

)
< 0 :

ψn, j

(
n j

n+1

)
=

(
j− n j

n+1

)α

(n−1)− n j
n+1

(n+h−1)

= jα (n−1)
(n+1)α −

n j
n+1

(n+h−1)< 0.

We were able to write the last inequality above because of xα−2
0 ≤ n− 1 for the same reasons

as Case 2) subcase b). Considering these results, that we find above, and by the monotonicity
of ψn, j too, it follows that there exists k̃ ∈ N, k̃ < n j

n+1 of maximum value, such that ψn, j
(
k̃
)
=(

j− k̃
)α

(n−1)− k̃ (n+ j−1)≥ 0. Denoting k2 = k̃+1 and reasoning as in case 2), subcase b)

we have ψn, j (k2)< 0. Furter, reasoning as in case 3), subcase a) we have j−k2 <
[

j(n+ j−1)
n−1

] 1
α

.

It follows

Mk̃,n, j (x0) = mk̃,n, j (x0)

(
x0−

k̃
n−1

)
≤ j+1

n−1
− k̃

n−1

=
j− k2

n−1
+

2
n−1

< 3
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

.
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In light of Lemma 4.5, (ii), it follows that Mk̃,n, j (x0) ≥Mk̃−1,n, j (x0) ≥ ... ≥M0,n, j (x0) . Thus
we obtain

Mk,n, j (x0)< 3
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

for any k ∈
{

0,1, ..., k̃
}
. In both subcases, Lemma 4.4 (iii), we have

Mk,n, j (x0)< 6
[x0 (1+ x0)]

1
α

(n−1)1− 1
α

.

Taking into consideration the fact that

max
{

3 [x0(1+x0)]
1
α

(n−1)1− 1
α

,4 [x0(1+x0)]
1
α

(n−1)1− 1
α

,5 [x0(1+x0)]
1
α

(n−1)1− 1
α

,6 [x0(1+x0)]
1
α

(n−1)1− 1
α

}
≤ 6

[x0 (1+ x0)]
1
α

(n−1)1− 1
α

,

we have desired result immediately. �

6. WEIGHTED RATE OF CONVERGENCE

We see that previous results works for a fixed x0 point or finite intervals. If we want to obtain
a uniform approximation order on infinite intervals, then we should use weighted modulus of
continuities. Before giving useful properties about these type of modulus of continuities, let us
recall the following spaces and norm (see, for instance, [20] and [21])

Bρ(R) =
{

f : R→R| a constant M f depending on f exists

such that | f | ≤M f ρ
}
,

Cρ(R) =
{

f ∈ Bρ(R)
∣∣ f continuous on R

}
,

endowed with the norm:

‖ f‖
ρ
= sup

x≥0≥

| f (x)|
ρ(x)

.

In order to obtain rate of weighted approximation of the positive linear operators defined
on infinite intervals, various weighted modulus of continuities are introduced. Some of them
include term h in the denominator of the supremum expression. In the chronological order, let
us refer to some related papers as [1, 4, 16, 19, 22, 23, 28, 30]. The weighted modulus defined
in [1], in order to obtain weighted approximation properties of some linear positive operators
on R+. In [23], the second author together with Gadjieva introduced the following modulus of
continuity:

Ω( f ;δ ) = sup
0≤x,|h|≤δ

| f (x+h)− f (x)|
(1+h2)(1+ x2)

. (6.1)

There are some papers including rates of weighted approximation with the help of Ω( f ;δ ). (see,
for instance, [3], [14], [17], and [29]). In [16], second author defined the following modulus of
continuity:

ωρ( f ;δ ) = sup
0≤x,|h|≤δ

| f (x+h)− f (x)|
ρ(x+h)

(6.2)

where ρ(x)≥max(1,x).
In [16], the author introduced a generalization of the Gadjiev-Ibragimov operators which

includes many well-known operators and obtain its rate of weighted convergence with the help
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of ωρ( f ;δ ) defined in (6.2). In [30], Moreno introduced another type of modulus of continuity
in (6.2) as follows

Ωα( f ;δ ) = sup
0≤x,|h|≤δ

| f (x+h)− f (x)|
1+(x+h)α

.

In [22], Gadjiev and Aral defined the following modulus of continuity:

Ω̃ρ( f ;δ ) = sup
x,t∈R+,|ρ(t)−ρ(x)|≤δ

| f (t)− f (x)|
(|ρ(t)−ρ(x)|+1)ρ(x)

where ρ(0) = 1 and infx≥0 ρ(x) ≥ 1. It is obvious that by choosing α = 2, in the definition of
Ωα( f ;δ ), then we obtain Ω2( f ;δ ) = ωρ0( f ;δ ) for ρ0(x) = 1+x2, and if we choose α = 2+λ

in the definition of Ωα( f ;δ ), then we obtain

Ω̂ρλ ( f ;δ ) = sup
0≤x,|h|≤δ

| f (x+h)− f (x)|
1+(x+h)2+λ

(see [2]). Finally, in [28], Holhoş defined a more general weighted modulus of continuity as

ωϕ( f ;δ ) = sup
0≤x≤y,|ϕ(y)−ϕ(x)|≤δ

| f (x)− f (y)|
ρ(x)+ρ(y)

such that, for ϕ(x) = x, this modulus of continuity is equivalent to Ω( f ;δ ) defined in (6.1).
Also, let C0

ρ(R) be the subspace of all functions in Cρ(R) such that lim|x|→∞

f (x)
ρ(x) exists finitely.

Notice also that some remarkable properties about these type of modulus of continuities can be
found in [15]. In light of these definitions, we can give the following theorem.

Theorem 6.1. Let f : [0,∞)→ R+ be continuous. Then for all x ∈ [0,∞), which also satisfy
xα−2

0 ≤ n−1 and n ≥ 4, we have the following order of approximation for the operators (3.1)
to the function f by means of the weighted modulus of continuity defined in (6.2). Then for each
f ∈C0

ρ0
(R+), we have∣∣∣V (M)

n ( f )(x)− f (x)
∣∣∣

(ρ0(x))2 ≤

[
(1+9x2)

(
1+6 [x(1+ x)]

1
α

) ]
(1+ x2)2 ωρ0

(
f ;

1

(n−1)1− 1
α

)
, (6.3)

for all n ∈ N, n≥ 4, where ρ0(x) = 1+ x2 and α = 2,3, ... .

Proof. By using the properties of ωρ0( f ;δ ), (see [30] ), we can write∣∣∣V (M)
n ( f )(x)− f (x)

∣∣∣≤ [ (1+(2x+V (M)
n (e1)(x))2

)(
1
δ

V (M)
n (ϕx)(x)+1

) ]
ωρ0( f ;δ ). (6.4)

In the proof of Theorem 5.1, for all n ∈ N, n≥ 4 and x ∈ [0,∞) , xα−2
0 ≤ n−1, we obtain

V (M)
n (ϕx)(x)≤ 6

[x(1+ x)]
1
α

(n−1)1− 1
α

. (6.5)
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On the other hand, we have

V (M)
n (e1)(x) =

∞∨
k=0

(n+k−1)!
k!(n−1)!

xk

(1+x)n+k
k
n

∞∨
k=0

(n+k−1
k

) xk

(1+x)n+k

=

x
∞∨

k=1

(n+k−1
k−1

) xk−1

(1+x)n+k

∞∨
k=0

(n+k−1
k

) xk

(1+x)n+k

=

x
∞∨

k=0

(n+k
k

) xk

(1+x)n+k+1

∞∨
k=0

(n+k−1
k

) xk

(1+x)n+k

.

Thus
V (M)

n (e1)(x)≤ x. (6.6)
Substituting inequalities (6.5) and (6.6) into (6.4) and choosing

δ =
1

(n−1)1− 1
α

,

we obtain the desired conclusion immediately. �

This theorem allows us to express the following weighted uniform approximation result.

Theorem 6.2. Let f : [0,∞)→ R+ be continuous. Then, for all x ∈ [0,∞), which also satisfy
xα−2

0 ≤ n−1 and n≥ 4, we have the following order of approximation for the operators (3.1) to
the function f by means of the weighted modulus of continuity defined in (6.2). Then, for each
f ∈C0

ρ0
(R+), ∥∥∥V (M)

n ( f )(x)− f (x)
∥∥∥

ρ2
0 (x)
≤ 70 ωρ0

(
f ;

1

(n−1)1− 1
α

)
, (6.7)

for all n ∈ N, n≥ 4, where ρ0(x) = 1+ x2 and α = 2,3, ... .

Proof. From 1
1+x2 ≤ 1, x2

1+x2 ≤ 1, and [x(x+1)]
1
α

1+x2 ≤ 1, we have

(1+9x2)
(

1+6 [x(1+ x)]
1
α

)
(1+ x2)2 ≤ 70. (6.8)

With the aid of (6.8) in (6.3), we obtain desired result easily. �

Remark 6.3. Theorem 5.1, Theorem 6.1 and Theorem 6.2 show that the orders of pointwise ap-
proximation, weighted approximation and weighted uniform approximation are 1/(n−1)1− 1

α .

For big enough α , 1/(n−1)1− 1
α tends to 1/(n−1). As a result, since 1− 1

α
≥ 1

2 for α = 2,3, ...
this selection of α improves the order of approximation.
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[26] S. Çit, O. Doğru, On better approximation order for the nonlinear Favard-Szász-Mirakjan operator of max-

product kind, Math. Vesn. in press.
[27] S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston-Basel-
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