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Abstract. Recently, M. K. Tam considered a framework for the analysis of iterative algorithms which can be
described in terms of a structured set-valued operator in 2018. At each point in the ambient space, the value of
the operator is expressed as a finite union of values of single-valued paracontracting operators. Tam proved that
the associated fixed point iteration is locally convergent around strong fixed points. We generalize Tam’s result
and investigate the global convergence of his algorithm for an arbitrary starting point. In this paper, this result is
generalized for an operator expressed as a finite union of values of single-valued quasi-nonexpansive operators.
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1. INTRODUCTION

In the past six decades, fixed point theory of nonlinear mappings is under the spotlight; see,
e.g., [3, 8, 11, 12, 14, 15, 16, 17, 19, 21, 22, 29] and the references cited therein. The most
important fixed point theorem is from Banach [1], which is the existence of a unique fixed
point of strict contractions. In addition, it also concerns the convergence of (inexact) iterates
of a nonexpansive mapping to one of its fixed points. Various feasibility problems, which
find real applications in medical science, computer science, management science, and others,
receive much attention; see, e.g., [4, 5, 6, 10, 13, 18, 20, 23, 24, 26, 27, 28]. In particular,
in [7, 25], it was considered a framework for the convergence analysis which is described in
terms of a structured set-valued operator. For each point in the ambient space, it is assumed
that the operator value is expressed as a finite union of values of single-valued paracontracting
operators. For such algorithms, a convergence result was proved which generalizes the pertinent
result in [2]. The result in [25] involves an application of its main result to sparsity constrained
minimisation. Indeed, it was demonstrated in [25] that the associated fixed point iterations is
locally convergent around strong fixed points. In [30], we proved the global convergence of the
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algorithm for an arbitrary starting point. Here, this result is further generalized for an operator
expressed as a finite union of values of single-valued quasi-nonexpansive operators.

Let C ⊂ X be its nonempty, closed set of a metric space (X ,ρ). Put B(x,r) = {y ∈ X :
ρ(x,y) ≤ r} for each x ∈ X and each r > 0. Define Fix(S) = {x ∈ C : S(x) = x} for each
mapping S on C. Fix θ ∈C and suppose that the following assumption holds: For each M > 0,
B(θ ,M)∩C is compact.

Assume that m is a natural number, Ti : C→C, i = 1, . . . ,m are continuous operators and that
the following assumption holds:

For each i ∈ {1, . . . ,m}, each z ∈ Fix(Ti), each x ∈ C and each y ∈ C \ Fix(Ti), we have
ρ(z,Ti(x))≤ ρ(z,x) and ρ(z,Ti(y))< ρ(z,y). Note that the operators satisfying (A2) are called
paracontractions [9]. Let, for every point x ∈ X , φ(x) ⊂ {1, . . . ,m} be a given nonempty set,
that is, φ : X → 2{1,...,m} \{ /0}. Suppose that the following assumption holds:

There exists δ > 0 such that, for each y ∈ B(x,δ )∩C, φ(y) ⊂ φ(x) for each x ∈ C. Define
T (x) = {Ti(x) : i ∈ φ(x)} for each x ∈C, F̄(T ) = {z ∈C : Ti(z) = z, i = 1, . . . ,m} and F(T ) =
{z ∈C : z ∈ T (z)}. Set F̄(T ) 6= /0 and denote by Card(D) the cardinality of a set D. For each
z ∈ R1, set

bzc= max{i : i is an integer and i≤ z}.
In the sequel, we suppose that the sum over empty set is zero. We studied the asymptotic

behavior of sequences of iterates xt+1 ∈ F(xt), t = 0,1, . . . in [30]. In particular, we were
interested in their convergence to a fixed point of T . This iterative algorithm was introduced in
[25] which also contains its application to sparsity constrained minimization.

The following result of [30] shows that almost all iterates of our set-valued mappings are
approximated solutions of the corresponding fixed point problem. Many results of this type are
collected in [27, 28].

Theorem 1.1. Let M > 0, ε ∈ (0,1), and F̄(T )∩B(θ ,M) 6= /0. Then there exists an integer
Q≥ 1 such that for each sequence {xi}∞

i=0 ⊂C which satisfy ρ(x0,θ)≤M and xt+1 ∈ T (xt) for
each integer t ≥ 0 the inequality ρ(xt ,θ)≤ 3M holds for all integers t ≥ 0,

Card({t ∈ {0,1, . . . ,} : ρ(xt ,xt+1)> ε})≤ Q

and limt→∞ ρ(xt ,xt+1) = 0.

The following global result is due to [30].

Theorem 1.2. Assume that a sequence {xt}∞
t=0 ⊂ C and that for each integer t ≥ 0, xt+1 ∈

T (xt). Then there exist x∗ = limt→∞ xt and a natural number t0 such that for each integer t ≥ t0
φ(xt)⊂ φ(x∗) and if an integer i ∈ φ(xt) satisfies xt+1 = Ti(xt), then Ti(x∗) = x∗.

Theorem 1.2 generalizes the main result of [25] which establishes a local convergence of the
iterative algorithm for iterates starting from a point belonging to a neighborhood of a strong
fixed point belonging to the set F̄(T ). In the present paper we generalize these two theorem for
an essential larger class of operators.

2. PRELIMINARIES AND THE FIRST RESULT

Let C ⊂ X be a nonempty and closed subset of (X ,ρ), a metric space. Recall that, for each
x ∈ X and each r > 0, B(x,r) = {y ∈ X : ρ(x,y) ≤ r}. For each x ∈ X and each nonempty set
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D ⊂ X , set ρ(x,D) = inf{ρ(x,y) : y ∈ D}. Recall that for each mapping S : C→C, Fix(S) =
{x ∈C : S(x) = x}. Fix θ ∈C. Suppose that the following assumption holds:

(A1) For each M > 0, the set B(θ ,M)∩C is compact.
Assume that ψ : C → [0,∞) is a continuous function, m is a natural number, Ti : C → C,

i = 1, . . . ,m are continuous operators, and that the following assumptions hold:
(A2) For each M > 0, {z ∈C : ψ(z)≤M} is bounded;
(A3) For each i ∈ {1, . . . ,m}, each x ∈C and each y ∈C \Fix(Ti), we have ψ(Ti(x))≤ ψ(x)

and ψ(Ti(y))< ψ(y).
Note that, in Section 1, we discuss of a particular case of the problem studied here with

ψ(x) = ρ(z∗,x), x ∈ X , where z∗ is a common joint fixed point of mappings Ti, i = 1, . . . ,m..
Let, for every point x ∈C,

φ(x)⊂ {1, . . . ,m} (1)

be a nonempty set. In other words, φ : X → 2{1,...,m} \{ /0}. Suppose that the following assump-
tion holds:

(A4) For each x ∈ C, there exists δ > 0 such that, for each y ∈ B(x,δ )∩C, φ(y) ⊂ φ(x).
Define T (x) = {Ti(x) : i∈ φ(x)} for each x ∈C F(T ) = {z∈C : z∈ T (z)}. Denote by Card(D)
the cardinality of a set D. For each z ∈ R1, set

bzc= max{i : i is an integer and i≤ z}.

In the sequel, we suppose that the sum over empty set is zero.
We study the asymptotic behavior of sequences of iterates xt+1 ∈F(xt), t = 0,1, . . . and prove

in Section 4 the following result which shows that almost all iterates of our set-valued mappings
are approximated solutions of the corresponding fixed point problem.

Theorem 2.1. Let M > 0 and ε ∈ (0,1). Then there exists an integer Q≥ 1 such that, for each
sequence {xi}∞

i=0 ⊂ C which satisfy ψ(x0) ≤ M and xt+1 ∈ T (xt) for each integer t ≥ 0 the
inequality ψ(xt)≤M holds for all integers t ≥ 0,

Card({t ∈ {0,1, . . . ,} : ρ(xt ,xt+1)> ε})≤ Q

and limt→∞ ρ(xt ,xt+1) = 0.

3. AN AUXILIARY RESULT

We use all the notation, definitions, and assumptions introduced in Section 2.

Lemma 3.1. Let M,ε > 0. Then there exists δ > 0 such that for each s ∈ {1, . . . ,m} and each
x ∈C∩B(θ ,M) satisfying

ρ(x,Ts(x))> ε (2)

the inequality
ψ(Ts(x))≤ ψ(x)−δ (3)

is true.

Proof. Let s ∈ {1, . . . ,m}. It is sufficient to prove that there exists δ > 0 such that, for each
x ∈C∩B(θ ,M) satisfying (2), inequality (3) is true. Then for each integer k ≥ 1, one assumes
that there exists

xk ∈C∩B(θ ,M) (4)
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such that
ρ(xk,Ts(xk))> ε (5)

and
ψ(Ts(xk))> ψ(xk)− k−1. (6)

In view of (A1) and (4), extracting a subsequence and re-indexing, we may assume without loss
of generality that there exists

x∗ = lim
k→∞

xk. (7)

By (4)-(7) and the continuity of Ts, ρ(x∗,θ)≤M,

ρ(x∗,Ts(x∗)) = lim
k→∞

ρ(xk,Ts(xk))≥ ε

and ψ(Ts(x∗))≥ψ(x∗), which contradicts (A3). The contradiction that we have reached proves
Lemma 3.1. �

4. PROOF OF THEOREM 2.1

(A2) implies that there exists M1 > 0 such that

{x ∈ X : ψ(x)≤M} ⊂ B(θ ,M1). (8)

Lemma 3.1 implies that there exists δ ∈ (0,ε) such that the following property holds:
(a) for each s ∈ {1, . . . ,m} and each x ∈ C∩B(θ ,M1) satisfying ρ(x,Ts(x)) > ε , we have

ψ(Ts(x))< ψ(x)−δ . Choose a natural number

Q≥Mδ
−1. (9)

Assume that {xi}∞
i=0 ⊂C,

ψ(x0)≤M (10)
and that for each integer t ≥ 0,

xt+1 ∈ F(xt). (11)
Let t ≥ 0 be an integer. In view of (8), (10) and (A3),

ψ(xt+1)≤ φ(xt)≤ φ(x0)≤M, (12)

ρ(xt ,θ)≤M1, t = 0,1, . . . . (13)
Let t ≥ 0 be an integer and

ρ(xt ,xt+1)> ε. (14)
There exists s ∈ {1, . . . ,m} such that

xt+1 = Ts(xt). (15)

Property (a) and equations (13)-(15) imply that ψ(xt+1) = ψ(Ts(xt)) ≤ ψ(xt)− δ . Thus the
following property holds:

(b) if an integer t ≥ 0 and ρ(xt ,xt+1) > ε , then ψ(xt+1) ≤ ψ(xt)− δ . Assume that n ≥ 1 is
an integer. Property (b) and equations (10), (12) imply that

M ≥ ψ(x0)≥ ψ(x0)−ψ(xn+1)

=
n

∑
t=0

(ψ(xt)−ψ(xt+1))

≥∑{ψ(xt)−ψ(xt+1) : t ∈ {0, . . . ,n}, ρ(xt ,xt+1)> ε}
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≥ δCard({t ∈ {0, . . . ,n} : ρ(xt ,xt+1)> ε})
and in view of (9), Card({t ∈ {0, . . . ,n} : ρ(xt ,xt+1)> ε})≤Mδ−1 ≤Q. Since n is an arbitrary
natural number, we conclude that

Card({t ∈ {0,1, . . .} : ρ(xt ,xt+1)> ε})≤ Q.

Since ε is any element of (0,1), Theorem 2.1 is proved.

5. THE SECOND MAIN RESULT

We assume that assumptions (A1), (A2) and (A4) hold and there exists

z∗ ∈ ∩m
j=1Fix(Tj), (16)

that there exists a function D : C×C→ [0,∞) such that

ψ(x) = D(z∗,x), x ∈C (17)

and that the following assumptions hold:
(B1) For each i ∈ {1, . . . ,m}, each x ∈ C and each y ∈ C \ Fix(Ti), we have D(z∗,Ti(x)) ≤

D(z∗,x) and D(z∗,Ti(y))< D(z∗,y).
(B2) For each i ∈ {1, . . . ,m}, each z ∈ Fix(Ti) and each y ∈C, we have D(z,Ti(y))≤ D(z,y).
(B3) For each z ∈ F(T ), the function D(z, ·) : C→ [0,∞) is continuous and for each M,ε > 0

there exists δ > 0 such that if x ∈ B(θ ,M)∩C and D(z,x)≤ δ , then ρ(z,x)≤ ε .
Clearly, (B1) implies (A3). Here our setting is less general then in Section 2 but it is still con-

tain problems studied in [30] as well as problems in spaces with a generalized metric including
well-known Bregman distance [22, 27].

Theorem 5.1. Assume that a sequence {xt}∞
t=0 ⊂ C and that for each integer t ≥ 0, xt+1 ∈

T (xt). Then there exist x∗ = limt→∞ xt and a natural number t0 such that for each integer t ≥ t0
φ(xt)⊂ φ(x∗) and if an integer i ∈ φ(xt) satisfies xt+1 = Ti(xt), then Ti(x∗) = x∗.

Proof. Choose M0 > ψ(x0). By (A2), there exists M1 > M0 such that

{y ∈C : ψ(y)≤M0} ⊂ B(θ ,M1). (18)

In view of Theorem 2.1 and (A2), the sequence {xt}∞
t=0 is bounded. In view of (A1), it has a

limit point x∗ ∈C and a subsequence {xtk}∞
k=0 such that

x∗ = lim
k→∞

xtk . (19)

In view of (A4) and (19), we may assume without loss of generality that

φ(xtk)⊂ φ(x∗), k = 1,2, . . . (20)

and that there exists
p̂ ∈ φ(x∗) (21)

such that
xtk+1 = Tp̂(xtk), k = 1,2, . . . . (22)

It follows from Theorem 2.1, the continuity of Tp̂ and equation (19)

Tp̂(x∗) = lim
k→∞

Tp̂(xtk) = lim
k→∞

xtk+1 = lim
k→∞

xtk = x∗. (23)



6 A. J. ZASLAVSKI

Set I1 = {i ∈ φ(x∗) : Ti(x∗) = x∗}, I2 = φ(x∗)\ I1. In view of (23), one has

p̂ ∈ I1. (24)

Fix δ0 ∈ (0,1) such that
ρ(x∗,Ti(x∗))> 2δ0, i ∈ I2. (25)

Assumption (A4), the continuity of Ti, i = 1, . . . ,m and (25) imply that there exists δ1 ∈ (0,δ0)
such that for each x ∈ B(x∗,δ1)∩C,

φ(x)⊂ φ(x∗), (26)

ρ(x,Ti(x))> δ0, i ∈ I2. (27)
Fix

ε1 ∈ (0,δ1). (28)
Theorem 2.1 and (B3) imply that there exists an integer q1 ≥ 1 and ε0 ∈ (0,ε1) such that the
following property holds:

(a) D(x∗,xq1) ≤ ε0, ρ(xt ,xt+1) ≤ ε1 for each integer t ≥ q1 and if x ∈ B(θ ,M1)∩C satisfies
D(x∗,x)≤ ε0, then ρ(x∗,x)≤ ε1. Let t ≥ q1 be an integer and that

D(x∗,xt)≤ ε0. (29)

Property (a) and equations (17), (18) and (29) imply that ρ(xt ,x∗)≤ ε1. It follows from (26)-(28)
that

φ(xt)⊂ φ(x∗) (30)
and

ρ(xt ,Ti(xt))> δ0, i ∈ I2. (31)
In view of (30), there exists s ∈ φ(x∗) such that xt+1 = Ts(xt). Property (a) implies that

ρ(xt ,Ts(xt)) = ρ(xt ,xt+1)≤ ε1. (32)

It follows from (24), (28), (31), and (32) that s ∈ I1, Ts(x∗) = x∗. Assumption (B2) imply that

D(x∗,xt+1) = D(x∗,Ts(xt))≤ D(x∗,xt)≤ ε0.

Thus we have shown that if an integer t ≥ q1 satisfies D(x∗,xt)≤ ε0, then D(x∗,xt+1)≤ ε0 and
ρ(xt ,xt+1)≤ ε1, which implies that, for each integer t ≥ q1, D(x∗,xt)≤ ε0 and ρ(xt ,xt+1)≤ ε1.
Since ε i an arbitrary element of (0,δ1), we conclude that limt→∞ xt = x∗ and Theorem 5.1 is
proved. �
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