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METHOD OF GUIDING FUNCTIONS AND BIRKHOFF-KELLOGG-ROTHE AND
KAKUTANI FIXED POINT THEOREMS
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Abstract. We apply the method of guiding functions to prove an extension of the Gustafson-Schmitt theorem on
a periodic solution to the case of differential inclusions. This result is used to obtain the Birkhoff-Kellogg-Rothe
and Kakutani fixed point theorems for multivalued maps.
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1. INTRODUCTION

Professor Petr Zabreiko has made the significant contribution in the development of the
method of guiding functions which demonstrated its high efficiency in the searching of peri-
odic and bounded solutions of differential equations and inclusions, in the study of bifurcation
phenomena and in some other problems; see, e.g., [4, 7, 8, 10, 11] and the references therein. In
the present paper, we show how the modification of the method of guiding functions for differ-
ential inclusions can be applied to the proof of some fixed point theorems for multivalued maps
whose justification is based usually on the topological degree theory (cf. [10, Theorem 2.2.21]).

To this end, we first prove the assertion on the existence of a periodic solution for a differential
inclusion (Theorem 3.1) extending the theorem of G.B. Gustafson and K. Schmitt ([5], see
also [3]). The application of this result yields the fixed point theorem for a multivalued map
satisfying boundary condition of the Birkhoff-Kellogg-Rothe type (see [1], [12] and also [9])
which in turn implies the classical Kakutani fixed point theorem ([6], see also [10]).

2. PRELIMINARIES

Let us mention necessary facts from the theory of multivalued maps (see, e.g., [10]).
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Let M ⊆ Rn be a nonempty closed subset. By the symbols C(M ), K(M ), Cv(M ), and
Kv(M ) we will denote, respectively, the collections of all nonempty closed, compact, closed
convex, and compact convex subsets of M .

Let (X ,ρ) be a metric space.

Definition 2.1. A multivalued map (multimap) F : X→ K(Rn) is called upper semicontinuous
at a point x ∈ X if for each ε > 0 there exists δ > 0 such that ρ(x,x′) < δ implies F (x′) ⊂
Uε(F (x)), where Uε denotes the ε-neighborhood of a set.

If F is upper semicontinuous at each point of X it is called upper semicontinuous (u.s.c.)

Definition 2.2. A multimap F : X →C(Rn) is called closed if its graph

Gr(F) = {(x,y) ∈ X×Rn : y ∈F (x)}

is a closed subset of X×Rn.

We will need the following property (see [10], Theorem 1.3.3).

Proposition 2.3. Let a multimap F0 : X→C(Rn) be closed, a multimap F1 : X→K(Rn) u.s.c.
and

F0(x)∩F1(x) 6= /0, ∀x ∈ X .

Then the intersection of multimaps F = F0∩F1 : X → K(Rn),

F (x) = F0(x)∩F1(x), ∀x ∈ X

is u.s.c.

Let us mention also the following property (cf. [10], Theorem 1.2.35).

Proposition 2.4. Let F : X → K(Rn) be a u.s.c. multimap. Then, for each compact subset
Q⊂ X the image F (Q) = ∪x∈QF (x) is relatively compact, i.e., bounded.

Now we collect some facts concerning the method of guiding functions for differential inclu-
sions (see [4], [10], and [11]).

For T > 0, let F : [0,T ]×Rn→Kv(Rn) be a u.s.c. multimap. By a solution of the differential
inclusion

x′(t) ∈ F(t,x(t)) (2.1)

we mean an absolutely continuous function x : [0,T ]→ Rn satisfying (2.1) for a.e. t ∈ [0,T ].
A continuously differentiable function ϕ : Rn→ R is called the non-degenerate potential if

there exists such rϕ > 0 that

grad ϕ(x) =
{

∂ϕ(x)
∂x1

,
∂ϕ(x)

∂x2
, ...,

∂ϕ(x)
∂xn

}
6= 0

for all x ∈ Rn, ‖x‖ ≥ rϕ .

Definition 2.5. A non-degenerate potential ϕ is called a guiding function of differential inclu-
sion (2.1) if

〈grad ϕ(x),y〉 ≤ 0

for all y ∈ F(t,x), 0≤ t ≤ T, and ‖x‖ ≥ rϕ .
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Proposition 2.6. Let F : [0,T ]×Rn → Kv(Rn) be a u.s.c. globally bounded multimap. If
differential inclusion (2.1) admits a guiding function ϕ satisfying the coercivity condition:

lim
‖x‖→∞

|ϕ(x)| → ∞,

then it has a solution x(·) satisfying the periodicity condition

x(0) = x(T ).

3. MAIN RESULTS

3.1. Existence of periodic solutions of differential inclusions. Let B ⊂ Rn be a closed ball
of radius r > 0 centered at the origin; S = ∂B its boundary. The following assertion is a version
of the Gustafson-Schmitt theorem (see [3, 5]).

Theorem 3.1. Let a multimap F : [0,T ]× B → Kv(Rn) be u.s.c. and satisfy the following
condition:

(?) for each (t,x) ∈ [0,T ]×S there exists y ∈ F(t,x) such that

〈x,y〉 ≤ 0. (3.1)

Then the differential inclusion

x′(t) ∈ F(t,x(t)) a.e. t ∈ [0,T ] (3.2)

has a solution x(·) satisfying periodicity condition x(0) = x(T ) and such that

x(t) ∈ B,∀t ∈ [0,T ]. (3.3)

Before proving this assertion, we consider its following weakened version.

Lemma 3.2. Let a multimap F : [0,T ]×B→ Kv(Rn) be u.s.c. and satisfy the following condi-
tion:
(??) for each (t,x) ∈ [0,T ]×S and all y ∈ F(t,x), we have

〈x,y〉 ≤ 0. (3.4)

Then the conclusion of Theorem 3.1 holds true.

Proof. (i) Let p : Rn→ B be a radial projection:

p(x) =

{
x, ‖x‖ ≤ r; ,
r x
‖x‖ , ‖x‖> r.

Let us extend the multimap F to [0,T ]×Rn by the formula

F̃(t,x) =−x+ p(x)+F(t, p(x)).

From the properties of multivalued maps (see, e.g., [10]) it follows that the multimap F̃ : [0,T ]×
Rn→ Kv(Rn) is u.s.c. Moreover, for each (t,x) ∈ [0,T ]×Rn, ‖x‖ ≥ r and ỹ ∈ F̃(t,x) we have

〈x, ỹ〉 ≤ 0.

Indeed, if ‖x‖= r, then p(x) = x and the above relation follows from (3.4). In case ‖x‖> r, for
each ỹ ∈ F̃(t,x) we get

ỹ =−µx+ y,
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where µ > 0 and y ∈ F(t, p(x)). But then from (3.4) it follows that

〈x, ỹ〉= 〈x,−µx+ y〉=−µ〈x,x〉+ 〈x,y〉 ≤ −µ〈x,x〉< 0.

But this means that the function ϕ(x) = 1
2‖x‖

2 is guiding for the differential inclusion

x′(t) ∈ F̃(t,x(t)) (3.5)

and hence according to Proposition 2.6 this inclusion possesses a solution x(·) satisfying condi-
tion x(0) = x(T ).
(ii) Let us show now that x(t) ∈ B, ∀t ∈ [0,T ] and hence x(·) is a solution of the inclusion

x′(t) ∈ F(t,x(t)), a.e. t ∈ [0,T ].

Consider the open subset m of [0,T ] given as

m = {t ∈ [0,T ] : x(t) ∈ Rn \B},

which can be defined also as the set of such t ∈ [0,T ] for which ‖x(t)− p(x(t))‖> 0.
Then, for t ∈ m, we have

d
dt

[1
2
‖x(t)− p(x(t))‖2

]
= 〈x(t)− p(x(t)),x′(t)〉=

= 〈x(t)− p(x(t)), ỹ(t)〉 = 〈x(t)− p(x(t)),−x(t)+ p(x(t))+ y(t)〉,
where y(t) ∈ F(t, p(x(t)).

Therefore, we obtain

d
dt

[1
2
‖x(t)− p(x(t))‖2

]
= −‖x(t)− p(x(t))‖2 + 〈x(t)− p(x(t)),y(t)〉 ≤

≤ −‖x(t)− p(x(t))‖2 < 0, (3.6)

since x(t)− p(x(t)) = λx(t), λ > 0 and we can apply relation (3.4).
Now, let t? ∈ [0,T ] be such that

1
2
‖x(t?)− p(x(t?))‖2 = max

t∈[0,T ]

1
2
‖x(t)− p(x(t))‖2.

If t? ∈ m\{0,T}, then
d
dt

[1
2
‖x(t?)− p(x(t?))‖2

]
= 0,

in contradiction to (3.6). If t? = 0, then, by the periodicity condition, the maximum is achieved
also at t? = T . Hence

d
dt

[1
2
‖x(T )− p(x(T ))‖2

]
≥ 0,

and in this case t? also does not belong to m.
So, t? ∈ [0,T ]\m. For an arbitrary t ∈ [0,T ] we have

0≤ ‖x(t)− p(x(t))‖2 ≤ ‖x(t?)− p(x(t?))‖2 = 0,

i.e., x(t) = p(x(t)) and hence x(t) ∈ B. �
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Proof of Theorm 3.1. Extend the multimap F to [0,T ]×Rn by the formula

F(t,x) = F(t, p(x)).

It is easy to see that the multimap F possesses property (?) on the whole [0,T ]×Rn. Consider
the closed multimap K : Rn→Cv(Rn),

K(x) =

{
Rn, ‖x‖ ≤ r,
{y ∈ Rn : 〈x,y〉 ≤ 0}, ‖x‖> r.

Define the multimap FK : [0,T ]×Rn→ Kv(Rn),

FK(t,x) = F(t,x)∩K(x).

Notice that this multimap coincides with F on [0,T ]×B and satisfies condition (??) for each
(t,x) ∈ [0,T ]× (Rn \B). Moreover, from Proposition 2.3 it follows that FK is u.s.c.

For an arbitrary ε > 0, let Brε
⊂ Rn be a closed ball of the radius rε = r+ ε centered at the

origin. Then conditions of Lemma 3.2 are fulfilled for the multimap FK on the set [0,T ]×Brε

and hence there exists a solution xε(·) of the differential inclusion

x′(t) ∈ FK(t,x(t)), a.e. t ∈ [0,T ], (3.7)

satisfying condition xε(0) = xε(T ) and such that xε(t) ∈ Brε
, t ∈ [0,T ].

Now, let εi > 0, εi→ 0, i = 1,2, ... be an arbitrary sequence and {xεi(·)} the corresponding
sequence of solutions to differential inclusion (3.7). Since there exists N > 0 such that

‖FK(t,x)‖ := sup{‖y‖ : y ∈ FK(t,x)} ≤N , ∀(t,x) ∈ [0,T ]×Rn,

the sequence {xεi(·)} satisfies the conditions of the Arzelà - Ascoli theorem and hence is rela-
tively compact. So, we can assume, without loss of generality, that xεi(·)−→ x(·)∈C([0,T ];Rn).
Since the integral multioperator generated by the multimap FK is closed (see, e.g., [10], Corol-
lary 1.5.34) the function x(·) is a solution to differential inclusion (3.7). It is clear that x(t) ∈ B,
∀t ∈ B, so x(·) is a desired solution of (3.2) satisfying the condition x(0) = x(T ).

3.2. Fixed point theorems of Birkhoff-Kellogg-Rothe and Kakutani. In this section, we
show that Theorem 3.1 yields the following fixed point result for a multimap satisfying the
boundary condition of Birkhoff-Kellog-Rothe type.

Theorem 3.3. Let a multimap F : B→ Kv(Rn) be u.s.c. and satisfy the condition

F(x)∩B 6= /0, ∀x ∈ S.

Then F has a fixed point x? ∈ B, x? ∈ F(x?).

Proof. Consider the differential inclusion

x′(t) ∈ F(x(t)), a.e. t ∈ [0,T ], (3.8)

where F(x) = F(x)− x. It is clear that the multimap F : B→ Kv(Rn) is u.s.c. Moreover, F
satisfies conditions of Theorem 3.1. In fact, if for x ∈ S an element y ∈ F(x) is such that y ∈ B,
then

〈x,y− x〉 ≤ 0.
Since differential inclusion (3.8) is autonomous, the application of Theorem 3.1 implies for
each τ = T

m , m = 1,2, ... the existence of its τ-periodic solution xτ(·) which is contained in B.
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Consider a sequence {xi}∞
i=1 consisting of T

2i -periodic solutions of differential inclusion (3.8)
which are contained in B. Again we can use the boundedness of the multimap F to apply the
Arzelà - Ascoli theorem which yields the relative compactness of the sequence {xi}∞

i=1. So, we
can assume, without loss of generality, that xi(·) −→ x(·) ∈C([0,T ];Rn). Applying, as earlier,
the property of closedness of the integral multioperator generated by F we conclude that x(·) is
a solution of differential inclusion (3.8).

Moreover, the function x(·) is T
2i -periodic for each i = 1,2, ... and hence it is a constant,

x(t)≡ x? ∈ B, t ∈ [0,T ].
So, x(·) is a constant solution of differential inclusion (3.8), i.e.,

0 ∈ F(x?) = F(x?)− x?,

and x? is the desired fixed point of F. �

The known Kakutani fixed point theorem ([6], see also, e.g., [10]) may be regarded as a
corollary of Theorem 3.3.

Theorem 3.4. Let M ⊂ Rn be a convex closed and bounded subset. Then each u.s.c. multimap
G : M→ Kv(M) has a fixed point.

Proof. Let B ⊂ Rn be a closed ball centered at the origin such that M ⊂ B. By the Tietze-
Dugundji theorem (see, e.g. [2]) there exists a retraction θ : B→ M, i.e., a continuous map
such that θ(x) = x, ∀x ∈M. From properties of multivalued maps it follows that the multimap
F : B→ Kv(M), F(x) =G◦θ(x) is u.s.c. and hence satisfies conditions of Theorem 3.3.

A fixed point x? of a multimap F obviously belongs to M and hence θ(x?) = x? and x? is a
fixed point of G. �
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