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JÜRGEN APPELL

Department of Mathematics, University of Würzburg, Emil-Fischer-Str. 30, D-97074 Würzburg, Germany

Dedicated with infinite gratitude to the memory of Pjotr Petrovich Zabrejko, a distinguished scientist, wonderful
teacher, and true friend

Abstract. We give continuity and compactness conditions for the linear substitution operator Sϕ( f )(t) := f (ϕ(t))
and the nonlinear composition operator Cg( f )(x) := g( f (x)), in terms of the generating functions ϕ : [0,1]→ [0,1]
resp. g : R→ R, with a particular emphasis on examples and counterexamples.
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The author of this survey has written not less than 50 papers jointly with Pjotr Zabrejko. Up to 1990, many of these
papers were dedicated to the study of superposition operators, a fact which led to the publication of the book [6].
He taught me what is mathematics, and we became true friends. Therefore I remember him with infinite gratitude,
admiration, and appreciation, but also with profound sadness since he has been taken away from us in 2019, shortly
after his 80th birthday which we celebrated together in Minsk.

1. SPACES AND OPERATORS

We start with describing the three spaces we will work in. Without loss of generality, we
consider only real functions defined on the interval [0,1]. By C we denote the linear space of all
continuous functions f : [0,1]→ R, equipped with the usual norm

‖ f‖C := max{| f (t)| : 0≤ t ≤ 1} ( f ∈C),

by Lip the linear subspace of C of all Lipschitz continuous functions f : [0,1]→ R with norm

‖ f‖Lip := | f (0)|+ lip( f ) ( f ∈ Lip),

where lip( f ) denotes the minimal Lipschitz constant of f , and by BV the linear space of all
functions f : [0,1]→ R of bounded variation with norm

‖ f‖BV := | f (0)|+ var( f ) ( f ∈ BV ),
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where var( f ) denotes the Jordan variation of f . It is well-known that all these spaces are linear
spaces and algebras, i.e., closed under addition and multiplication of functions, and also Banach
spaces when equipped with the indicated norms. These spaces are so different that a parallel
study of operators and equations in them becomes a rewarding and interesting task.

In the sequel, we study two operators in the above mentioned spaces. The first is the substi-
tution operator (also called inner superposition operator)

(1) Sϕ( f )(t) := ( f ◦ϕ)(t) = f (ϕ(t)),

generated by some function ϕ : [0,1]→ [0,1], the second the composition operator (also called
outer superposition operator)

(2) Cg( f )(x) := (g◦ f )(x) = g( f (x))

generated by some function g : R→ R. These operators may be considered as some kind of
“twin brothers”: in (1) the inner function is fixed and the outer function f varies over some
function space, while in (2) the outer function is fixed and the inner function f varies over some
function space. There is one essential difference, however: the operator Sϕ in (1) is linear, while
the operator Cg in (2) is nonlinear (which makes its study pretty complicated). Thus, in contrast
to Sϕ we have to distinguish between boundedness and continuity for Cg, because a nonlinear
operator may be bounded and discontinuous, or continuous and unbounded, as is shown, e.g.,
by Example 6 below.

In the monograph [6], the nonlinear operator (2) has been studied in these and many other
functions spaces1; however, many (in part completely unexpected) new results have been pub-
lished by the nonlinear community since then. For example, the monograph [16] contains many
remarkable results on composition operators in Sobolev and related spaces which are of utmost
importance in the theory and applications of nonlinear partial differential equations.

The purpose of this survey is to discuss the analytical and topological properties of the oper-
ators (1) and (2), to provide a comparison of such properties, and to illustrate them by means of
examples and counterexamples. Typical questions we are interested in read as follows:

• Under which condition on ϕ is Sϕ injective in BV ?
• Under which condition on ϕ is Sϕ bounded in Lip?
• Under which condition on ϕ is Sϕ an isometry in Lip?
• Under which condition on ϕ is Sϕ compact in C?
• Under which condition on ϕ is Sϕ compact in BV ?
• Under which condition on g is Cg injective in C?
• Under which condition on g is Cg bounded in Lip?
• Under which condition on g is Cg continuous in Lip?
• Under which condition on g is Cg Lipschitz continuous in Lip?
• Under which condition on g is Cg compact in BV ?

Complete answers to all these and many more questions, in the sense of conditions which are
both necessary and sufficient, will be given below2.

1In the book [6] the main emphasis is put on non-autonomous operators of the form Cg( f )(x) = g(x, f (x))
which creates several additional difficulties. In this paper we restict ourselves to the autonomous case (2) for not
overburdening the presentation. The linear operator (1) is not considered in [6].

2If you are curious or impatient, here are the answers to the above list: ϕ surjective; ϕ Lipschitz continuous;
ϕ(t) = t; ϕ constant; ϕ([0,1]) finite; g injective; always; g ∈C1; g affine; g constant.
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This survey paper is organized as follows. We start with characterizing some mapping prop-
erties of the operators (1) and (2), like injectivity and surjectivity, in terms of the generating
functions ϕ resp. g. Afterwards we study some of their analytical properties, like bounded-
ness, continuity, and Lipschitz continuity. One of the most important topological properties of
an operator is compactness, which we will consider in the last section. Recall that Lipschitz
continuity and compactness are the crucial properties of nonlinear operators in applications of
standard fixed point principles, like the Banach fixed point theorem, the Schauder fixed point
theorem, and their numerous generalizations.

Loosely speaking, our general question may be posed as follows: does ϕ “feel” the properties
of Sϕ , and does g “feel” the properties of Cg? The answer to this question is sometimes quite
easy, sometimes surprisingly difficult, and sometimes simply unknown.

We point out that most theorems presented below are known; this is not unusual for a survey
article. Instead, we put the main emphasis on examples and counterexamples which illustrate
that the hypotheses of a result are sharp or, in some cases, how far sufficient conditions are from
being necessary.

2. MAPPING PROPERTIES

Although this is not our main focus here, we recall in this section some elementary mapping
properties of the operators (1) and (2).

The first question is of course to find conditions on ϕ resp. g, both necessary and sufficient,
under which the operator (1) resp. (2) maps the above spaces into themselves. In other words,
we want to find the largest possible class of “changes of variable”ϕ for which the composition
f ◦ϕ remains in some space if we take f from that space. Similarly, we want to find the largest
possible class of “perturbations”g for which the composition g◦ f remains in some space if we
take f from that space. For the spaces C and Lip this is completely trivial: since both spaces
are stable under compositions and contain the identity f (x) = x, we have Sϕ(C)⊆C iff ϕ ∈C,
Cg(C)⊆C iff g ∈C(R), Sϕ(Lip)⊆ Lip iff ϕ ∈ Lip, and Cg(Lip)⊆ Lip iff g ∈ Liploc(R).

The analogous problem for BV is much harder. It is clear that the monotonicity of ϕ is
sufficient for Sϕ(BV ) ⊆ BV but it is obviously not necessary. On the other hand, the condition
ϕ ∈ BV is necessary, since the identity f (x) = x has bounded variation, but it is not sufficient,
as the following example shows which is taught in every first year calculus course.

Example 1. The function ϕ(t) = t2 sin2(1/t) has bounded variation on [0,1], but the corre-
sponding operator (1) does not map BV into itself, since f ∈ BV for f (x) =

√
|x|, but Sϕ( f ) =

f ◦ϕ 6∈ BV . �

The problem of characterizing the admissible class of functions ϕ was completely solved in
a pioneering paper by Josephy [10], where the author introduced a class of functions which we
call pseudomonotone in the paper [5]. Pseudomonotonicity means, loosely speaking, that the
number of connected components of ϕ−1(I) is bounded for every interval I. It is clear that every
monotone function ϕ is pseudomonotone, since ϕ−1(I) is again an interval for each interval I,
and it is easy to find functions which are pseudomonotone but not monotone. On the other hand,
one can show that every pseudomonotone function lies in BV , but not vice versa, as Example 1
shows. Josephy’s main result reads as follows.
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Theorem 1 [10]. (a) The substitution operator Sϕ maps BV into itself iff ϕ is pseudomonotone.

(b) The composition operator Cg maps BV into itself iff g is locally Lipschitz.

In this introductory section we will also be interested in elementary mapping properties, like
injectivity, surjectivity, or bijectivity of Sϕ and Cg. A stronger property than injectivity is being
an isometry, i.e., preserving norms. Even when dealing with such harmless properties one
encounters some unexpected features, and it turns out that these properties heavily depend on
the function space we are working in. We summarize with the following Tables 1–3 and, later,
Tables 4 and 5.

Sϕ(C)⊆C Sϕ surjective Sϕ injective ⇔ Sϕ isometry

m m m m

ϕ continuous ϕ injective ϕ surjective ϕ surjective

Table 1: Properties of Sϕ : C→C

Sϕ(Lip)⊆ Lip Sϕ surjective Sϕ injective ⇐ Sϕ isometry

m ⇓ m m

ϕ Lipschitz ϕ injective ϕ surjective ϕ(t) = t

Table 2: Properties of Sϕ : Lip→ Lip

Sϕ(BV )⊆ BV Sϕ surjective Sϕ injective ⇐ Sϕ isometry

m ⇓ m m

ϕ pseudomonotone ϕ injective ϕ surjective ϕ homeomorphism

Table 3: Properties of Sϕ : BV → BV

We do not prove the single assertions, since the (nontrivial) proofs may be found in the
recent paper [5]. Instead, we make some comments which illustrate both the expected and the
unexpected features.

First of all, Table 1 shows that the situation is most satisfactory in the space C, since all
conditions are both necessary and sufficient. It is interesting to note the “crossover” in Table
1: injectivity and surjectivity change their roles. The subsequent Tables 2 and 3 show that the
situation is slightly different in the space Lip and BV : the surjectivity of Sϕ is only sufficient
for the injectivity of ϕ but not necessary (see below for counterexamples).

Remarkably, whenever Sϕ is injective in C, we get as a fringe benefit that it is even an isom-
etry, which is of course much more. This is easy to see: if Sϕ is injective, ϕ is surjective, and
therefore

‖Sϕ( f )‖C = max{| f (ϕ(s))| : 0≤ s≤ 1}= max{| f (t)| : 0≤ t ≤ 1}= ‖ f‖C.
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Table 2 and Table 3 show that this is different in Lip and BV . For the isometry property of Sϕ we
also have necessary and sufficient criteria in terms of ϕ in all spaces, but they are all different
in the three tables. To be specific, the function ϕ(t) = t generates an isometric substitution
operator in C, Lip, and BV , the function ϕ(t) = t2 only in C and BV , but not in Lip, and the
function ϕ(t) = 4t(1− t) only in C, but neither in Lip nor in BV .

In the next two tables we compare what we know about mapping properties of composition
operators in the spaces C, Lip, and BV . Since the properties of Cg in Lip and BV are the same,
we unify them in one table.

Cg(C)⊆C Cg surjective Cg injective

m ⇓ m

g ∈C g surjective g injective

Table 4: Properties of Cg in C

Cg(X)⊆ X Cg surjective Cg injective

m ⇓ m

g ∈ Liploc g surjective g injective

Table 5: Properties of Cg in X ∈ {Lip,BV}
Note that for the operator (2) there is no “crossover” between injectivity and surjectivity in

C, as for the operator (1). Our tables show that the nonlinear composition operator behaves
in rather the same way in the three spaces C, Lip, and BV , while the behavior of the linear
substitution operator is quite different in these spaces. This is somewhat surprising, because
usually a nonlinear operator exhibits more peculiarities than a linear operator. The operator
Cg has the most interesting analytical properties in the space BV , as we will show in the next
section.

Before passing to such properties, however, we give some examples which show that, when-
ever we only have an implication in the Tables 1–5, these implications cannot be inverted.

Example 2. The function ϕ : [0,1]→ [0,1] defined by ϕ(t) := t2 is injective. On the hand, the
corresponding operator Sϕ is not surjective in Lip, because the function h(x) := x is not in its
range. �

Example 3. Constructing an analogous example for BV is much more complicated. The paper
[5] contains a sophisticated example (too technical to be reproduced here) of a bijective pseu-
domonotone function ϕ : [0,1]→ [0,1] such that ϕ−1 : [0,1]→ [0,1] is not pseudomonotone,
and even not of bounded variation. So the corresponding operator Sϕ maps BV into itself, but it
is not surjective, because the function h(x) := x is not in its range. �

Example 4. The function g : R→R defined by g(u) := min{u+2, |u|} is piecewise monotone.
Geometrically, the graph of g consists of three linear pieces with corner points at (−1,1) and
(0,0). This shows that g is (even globally) Lipschitz continuous on R with Lipschitz constant
1, so the operator Cg maps C into C and Lip into Lip. Moreover, g is certainly surjective. On
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the other hand, the corresponding operator Cg is not surjective, neither in C nor in Lip, which
can be seen as follows.

The function h(x) = 3x−1 is a Lipschitz continuous homeomorphism between the intervals
[0,1] and [−1,2]. If f ∈ C or f ∈ Lip is a function satisfying Cg( f ) = h, then f must be
injective. On the other hand, since h(0) = −1 < 0 and h(1) = 2 > 1, we have f (t) = h(t)− 2
for 0≤ t ≤ 2/3, but simultaneously f (t) = h(t) for 1/3≤ t ≤ 1, a contradiction. �

Example 5. The function g : R→ R defined by g(u) := u3 is a homeomorphism with g ∈
Liploc(R), but g−1 6∈ Liploc(R). Clearly, the corresponding composition operator Cg is injective
in BV . However, Cg is not surjective. To see this, observe that the function

h(x) :=

{
1/n3 for x = 1/n,

0 otherwise

belongs to BV . The only possible preimage f of h satisfies f (1/n) = 1/n and f (t) = 0
otherwise, which does not belong to BV , since the harmonic series diverges. �

3. ANALYTICAL PROPERTIES

Now we turn to the most important analytical properties of operators which are boundedness
and continuity. While for the linear operator (1) this is the same, we point out again that these
properties are independent for the nonlinear operator (2). It is not hard to see that, whenever the
operator Sϕ maps one of our three spaces into itself, it is automatically bounded.

Continuity of the operators (1) and (2) in the respective norm is much more difficult (and
therefore more interesting). Proving that the condition Sϕ(C) ⊆ C (hence ϕ ∈ C) implies the
continuity of Sϕ , and the condition Cg(C)⊆C (hence g ∈C(R)) implies the continuity of Cg in
the respective norm is rather straightforward. It is not hard to see that the operator Cg is, under
the hypothesis g ∈ Liploc(R), always bounded in Lip, see, e.g., [4]. Remarkably, Cg need not
be continuous; this is in contrast to the situation in C.

Example 6 [7]. On the space Lip, consider the composition operator Cg generated by the
function g(u) := min{|u|,1}. Then Cg is bounded in Lip, but discontinuous at f (t) = t, because
for the sequence ( fn)n with fn(t) := t +1/n we have

|Cg( fn)(1)−Cg( f )(1)−Cg( fn)(1−1/n)+Cg( f )(1−1/n)|= 1
n
,

hence

‖Cg( fn)−Cg( f )‖Lip ≥
1/n
1/n

= 1,

although ‖ fn− f‖Lip→ 0 as n→ ∞. �
Example 6 shows that Lipschitz continuity of g does not guarantee the continuity of Cg in the

space Cg, so the right condition on g should be stronger. This problem was solved more than 20
years ago by Goebel and Sachweh who proved the following

Theorem 2 [9]. The composition operator Cg maps Lip into itself and is continuous in the norm
of Lip iff g ∈C1(R).
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Example 6 shows that a function g which fails to be differentiable at only few points may
generate a discontinuous composition operator in Lip. Continuity of Cg in BV is remarkable:

Theorem 3. Whenever the composition operator Cg maps BV into itself it is automatically
continuous in the norm of BV .

Theorem 3 has an interesting history. Finding a condition on g, both necessary and sufficient,
which guarantees the continuity of Cg in BV , has been an open problem for many years. The
first attempt to prove Theorem 3 has been done in [13], but the proof is 20 pages long and
probably not correct. The first complete proof was given by Maćkowiak [11], but it is still very
long. A rather brief and very elegant proof was given recently by Reinwand [14].

Let us make a brief detour on Lipschitz continuity of our operators. Of course, this problem
is irrelevant for Sϕ , since a bounded linear operator is always Lipschitz continuous. For the
nonlinear operator Cg, however, one encounters a surprising degeneracy of g when one requires
Lipschitz continuity of Cg. We summarize with the following

Theorem 4. (a) The operator Cg is Lipschitz continuous in the norm of the space C iff g is
Lipschitz continuous on R.

(b) The operator Cg is Lipschitz continuous in the norm of the space Lip iff g is affine on R,
i.e., g(u) = au+b for some a,b ∈ R.

(c) The operator Cg is Lipschitz continuous in the norm of the space BV iff g is affine on R,
i.e., g(u) = au+b for some a,b ∈ R.

We make some comments on this theorem. Part (a) was proved in [2] and is what we may
expect: Lipschitz continuity of g is reflected in Lipschitz continuity of Cg, and vice versa.
Part (b) was proved in [12] and shows that one has to be very careful with hypotheses on
composition operators in Lip: in particular, one may apply the Banach fixed point principle
only if the underlying problem is actually linear, and therefore not interesting at all. Part (c)
shows that the same degeneracy occurs in BV ; the proof may be found in [3].

We again summarize our results in the following two tables, the first referring to boundedness,
the second to (Lipschitz) continuity.

Sϕ in C Sϕ in Lip Sϕ in BV Cg in C Cg in Lip Cg in BV
bounded bounded bounded bounded bounded bounded

m m m m m m

always always always always always always

Table 6: Boundedness of Sϕ and Cg

Cg in C Cg in Lip Cg in BV Cg in C Cg in Lip Cg in BV
continuous continuous continuous Lip continuous Lip continuous Lip continuous

m m m m m m

always g ∈C1(R) always g ∈ Lip(R) g affine g affine
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Table 7: Continuity of Cg

Since boundedness, continuity and Lipschitz continuity is the same for linear operators, we
only consider the operator Cg in Table 7. Here the label “always” means, of course, under the
hypothesis that the operator maps the underlying space into itself.

4. TOPOLOGICAL PROPERTIES

Apart from Lipschitz continuity, compactness is another ingredient which is crucial in fixed
point theory. So we spend some time in this last section to analyze what compactness of the
operators (1) and (2) means in the three spaces we are interested in.

We begin with the linear operator Sϕ . Part (a) of the following theorem has been proved in
[5], part (b) in [6].

Theorem 5. (a) The operator Sϕ is compact in the space C iff ϕ is constant on [0,1]. The same
is true in the space Lip.

(b) The operator Cg is compact in the space C iff g is constant on R. The same is true in the
space Lip.

A several times before, the situation is different in the space BV . The following Example 7
shows that Sϕ may be compact in BV even if ϕ([0,1]) contains more than one element. On the
other hand, the subsequent Example 8 shows that Sϕ may become noncompact in BV if ϕ([0,1])
contains “too many elements”.

Example 7. Fix finitely many elements t1, . . . , tm ∈ (0,1], and define ϕ : [0,1]→ [0,1] by ϕ(t) :=
χ{t1,...,tm}(t). Since ϕ is pseudomonotone, the operator Sϕ maps BV into itself and is bounded.
Moreover, Sϕ is even compact, being an operator of finite rank. �

Example 8. Let In := (1/(n+1),1/n], and define ϕ : [0,1]→ [0,1] by ϕ(t) := 1/n if t ∈ In and
ϕ(0) := 0. Being monotonically increasing, ϕ is again pseudomonotone, therefore Sϕ maps BV
into itself and is bounded. However, Sϕ maps the bounded sequence (χ{1/n})n into the sequence
(χIn)n which does not contain a convergent subsequence. Therefore Sϕ cannot be compact in
BV . �

Very often the compactness of a linear operator is proved by approximating the operator by a
sequence of finite rank operators. It is interesting that there exist classes of operators for which
being compact and having finite rank are actually equivalent. An example are projections,
which are also compact if and only if they have finite rank, being the identity on their range.

Remarkably, the substitution operator Sϕ has the same property in BV , as is shown by the
following Theorem 6. Although the proof may be found in the book [15], we provide a proof
which gives some insight into the kind of argument that is typical for the space BV and fully
explains the Examples 7 and 8 above.

Theorem 6. For a pseudomonotone function ϕ , the following three assertions are equivalent.
(a) The operator Sϕ : BV → BV has finite rank.
(b) The operator Sϕ : BV → BV is compact.
(c) The set ϕ([0,1]) is finite.
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Proof. It is clear that (a) implies (b). Suppose that (c) is false. Then we may choose infinitely
many different points sn = ϕ(tn) in ϕ([0,1]). The sequence (xn)n with xn := χ{sn} is bounded
in BV , but its image under Sϕ satisfies

‖Sϕ(xm)−Sϕ(xn)‖BV ≥ |xm(ϕ(tn))− xn(ϕ(tn))|= |xm(sn)− xn(sn)|= 1

for m 6= n, and therefore cannot contain a convergent subsequence. It follows that Sϕ is not
compact, so we have shown that (b) implies (c).

Finally, suppose that ϕ([0,1]) is finite, say ϕ([0,1]) = {s1, . . . ,sm}. Then the sets A j :=
ϕ−1({s j}) ( j = 1, . . . ,m) form a disjoint covering of [0,1], and each of these sets has only
finitely many connected components, because we supposed ϕ to be pseudomonotone. Now, the
functions x j := χA j = Sϕ(χ{s j}) ( j = 1, . . . ,m) belong to BV and form a linearly independent
set. Moreover, for any x ∈ BV we have

Sϕ(x)(t) =
m

∑
j=1

x(s j)χA j(t) =
m

∑
j=1

x(s j)x j(t) (0≤ t ≤ 1).

We conclude that span({x1, . . . ,xm}) = R(Sϕ), so Sϕ has a finite dimensional range. �

Observe that the last part of the proof shows even more: if ϕ([0,1]) is finite, the dimension
of the range R(Sϕ) coincides precisely with the number of elements of ϕ([0,1]). So the range
of the operator Sϕ induced by the function ϕ from Example 7 has dimension m+1, and so the
dimension may be arbitrarily prescribed.

We point out again the difference between Theorem 5 and Theorem 6: the operator Sϕ is
compact in BV if and only if ϕ([0,1]) is finite, and compact in C (or Lip) if and only if ϕ([0,1])
is a singleton.

Concerning the compactness of the nonlinear operator Cg, we have the following Theorem 7;
the proof may be found in [6].

Theorem 7. The operator Cg is compact in the space C iff g is constant on R. The same is true
in the spaces Lip and BV .

Here is what we know about the compactness of the operators Sϕ and Cg in the spaces C, Lip,
and BV .

Sϕ in C Sϕ in Lip Sϕ in BV Cg in C Cg in Lip Cg in BV
compact compact compact compact compact compact

m m m m m m

ϕ constant ϕ constant ϕ([0,1]) finite g constant g constant g constant

Table 8: Compactness of Sϕ and Cg

If an operator is not compact it is interesting to measure its “degree of noncompactness”.
This may be done by calculating the measure of noncompactness of the operator; this leads to
Darbo’s celebrated fixed point principle [8] which has found numerous important applications.
For linear operators A in a normed space X , there is another way to measure how far A is from
being compact, namely its essential norm

|||A|||X→X := inf{‖A−K‖X→X : K : X → X compact}.



10 JÜRGEN APPELL

Of course, |||A|||X→X is nothing else but the distance of A from the closed two-sided ideal
K (X) of all compact operators in the normed space L (X) of all bounded linear operators in
X ; in particular, |||A|||X→X = 0 iff A is compact. Equivalently, |||A|||X→X may be viewed as
norm of the class of A in the Calkin algebra L (X)/K (X).

Now, in the recent paper [1] it is shown that, whenever ϕ([0,1]) contains infinitely many
point (and hence Sϕ is not compact in C), we always have |||Sϕ |||C→C = ‖Sϕ‖C→C = 1. This
surprising result shows that the norm and essential norm of Sϕ exhibit a certain “bang-bang
principle” in the space C: if ϕ is constant the essential norm of Sϕ can assume only the value 0,
and if ϕ is not constant, both the norm and the essential norm of Sϕ can assume only the value
1; intermediate values are not possible. In particular, the size of |||Sϕ |||C→C does not depend on
the size of the range ϕ([0,1]) of ϕ , as one could expect. For example, the function ϕc(t) := ct
(0 < c ≤ 1) satisfies |||Sϕc|||C→C = 1, no matter how close to 0 we choose c, i.e., how flat we
choose the graph of this function, and so the essential norm of Sϕc does not “feel” the size of
diamϕc([0,1]) = c and the slope of the graph.
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[5] J. Appell, B. López, S. Reinwand, S. Schöller, Some remarks on substitution and composition operators,
Rend. Ist. Mat. Univ. Trieste 53 (2021), 1–25; Corrigendum: Rend. Ist. Mat. Univ. Trieste 53 (2021), 1–2.

[6] J. Appell, P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 2012.
[7] M. Z. Berkolajko, On a nonlinear operator acting in generalized Hölder spaces (Russian), Voron. Gos. Univ.
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