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Abstract. A finite horizon multi-model stochastic linear-quadratic optimal control problem is considered. For this
problem, we treat the case where the problem’s functional does not contain a control function. This means that
the problem under consideration is a singular optimal control problem. The solution to this problem is defined.
To solve the considered problem, it is associated with a new optimal control problem for the same multi-model
system. The functional in the new problem is the sum of the original functional and an integral of the square of the
Euclidean norm of the vector-valued control with a small positive weighting coefficient. Thus, the new problem
is regular. Moreover, it is a multi-model stochastic cheap control problem. Using the solvability conditions, the
solution of this cheap control problem is reduced to solution of the following two problems: (i) a terminal-value
problem for an extended matrix Riccati type differential equation; (ii) a nonlinear optimization (mathematical
programming) problem. Asymptotic behaviour of solutions to these problems is analyzed. Using this asymptotic
analysis, the optimal value of the functional of the original multi-model stochastic singular optimal control problem
is obtained and the solution to this problem is derived. An illustrative academic example is presented.
Keywords. Asymptotic analysis; Cheap control problem; Multi-model stochastic optimal control problem; Regu-
larization; Singular optimal control problem.
2020 Mathematics Subject Classification. 49N10, 49K40.

1. INTRODUCTION

Multi-model differential systems represent the class of uncertain systems depending on an
unknown numerical parameter belonging to some given set, finite or infinite and compact. Thus,
a multi-model differential system represents a set of single-model differential systems, each of
which is associated with one of the aforementioned parameters. Optimal control problem of
a multi-model differential system can be either of Min-Max or of Max-Min type optimization
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problem where the maximum is searched with respect to the parameter, while the minimum is
searched with respect to the control of a properly chosen functional.

Singular optimal control problem is such an optimal control problem that the first-order op-
timality conditions Maximum Principle ([57]), Robust Maximum Principle ([7]), Hamilton-
Jacobi-Bellman equation ([5]) are not applicable for obtaining its solution. Single-model singu-
lar optimal control problems are extensively studied in the literature. Several approaches to the
analysis and solution of such problems are widely used. Thus, higher order necessary/sufficient
control optimality conditions can be useful in solving the singular optimal control problems
(see, e.g., [4, 14, 38, 43, 48] and references therein). However, the higher order optimality
conditions fail to yield a candidate optimal control/optimal control for the problem, which does
not have an optimal control in the class of regular (non generalized) functions, even if the prob-
lem’s functional has a finite infimum/supremum in this class of functions. The second approach
is based on the design of a singular optimal control as a sequence of regular open-loop con-
trols, i.e., a sequence of regular control functions of time, along which the functional tends to
its infimum/supremum (see, e.g., [30, 31, 43] and references therein). A generalization of this
approach is the extension approach (see [32, 33, 34]). The third approach combines geometric
and analytic methods. Namely, this approach is based on a decomposition of the state space into
the ”singular” and ”regular” subspaces, and a design of an optimal open loop control as a sum
of impulsive (in the singular subspace) and regular (in the regular subspace) functions (see, e.g.,
[17, 18, 36, 65] and references therein). The fourth approach proposes to look for a solution of a
singular optimal control problem in a properly defined class of generalized functions (see, e.g.,
[67]). Finally, the fifth approach is based on a regularization of the original singular problem
by a ”small” correction of its ”singular” functional (see, e.g., [23, 24, 25, 26] and references
therein). Such a regularization is a kind of the Tikhonov’s regularization of ill-posed problems
[63]. This approach yields the solution of the original problem in the form of a sequence of
state-feedback controls.

However, to the best of our knowledge, the multi-model singular optimal control problem
was considered in the open literature only in the work [26]. In this paper, the finite horizon
multi-model deterministic singular linear-quadratic optimal control problem was studied with
respect to Min-Max of its functional. In the present paper, we consider the finite horizon multi-
model stochastic singular linear-quadratic optimal control problem with respect to Max-Min
of its properly designed functional. We solve this problem by application of the regularization
approach, which yields a new regular optimal control problem. The latter problem is a multi-
model stochastic cheap control problem. To the best of our knowledge, a multi-model cheap
control problem was considered only in the work [26] where the deterministic version of the
problem was treated with respect to Min-Max of its functional. Asymptotic analysis of the
multi-model stochastic cheap control problem with respect to Max-Min of its functional, ob-
tained in the present paper, is carried out. Based on this analysis, a properly defined solution to
the original multi-model stochastic singular control problem is obtained and the optimal value
of the functional of this problem is derived.

The paper is organized as follows. In the next section (Section 2), the rigorous formulation
of the considered problem is presented. Also, we present the main definitions. In Section 3,
we regularize the original singular problem. This regularization yields a new problem - multi-
model stochastic cheap control problem. The solvability conditions of this new problem are
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derived. In Section 4, these solvability conditions are analyzed asymptotically. In Section 5,
an asymptotically suboptimal solution to the multi-model stochastic cheap control problem is
designed. Based on the results of Sections 4 and 5, in Section 6, the solution to the original
multi-model stochastic singular optimal control problem is derived and the optimal value of
the functional of this problem is obtained. In Section 7, an illustrative academic example is
presented. Section 8 is devoted to concluding remarks.

The following main notations are applied in the paper.
1. En denotes the n-dimensional real Euclidean space.
2. ‖ · ‖ denotes the Euclidean norm either of a vector or of a matrix.
3. The superscript “T ” denotes the transposition of a matrix A (AT ), or of a vector x (xT ).
4. L2[a,b;En] denotes the linear space of n-dimensional vector-valued real functions, square-
integrable in the finite interval [a,b].
5. On1×n2 is used for the zero matrix of the dimension n1× n2, excepting the cases where the
dimension of the zero matrix is obvious. In such cases, the notation 0 is used for the zero matrix.
6. In is the n-dimensional identity matrix.
7. col(x,y), where x ∈ En, y ∈ Em, denotes the column block-vector of the dimension n+m
with the upper block x and the lower block y.
8. The inequality A ≤ B, where A and B are quadratic symmetric matrices of the same dimen-
sion, means that the matrix B−A is positive semi-definite.

2. PROBLEM FORMULATION AND MAIN DEFINITIONS

Consider the following multi-model Ito differential stochastic system:

dwk(t) =
[
Ak(t)wk(t)+Bk(t)u(t)

]
dt +

m

∑
i=1

σi,k(t)dηi(t), wk(0) = w̃0, t ∈ [0, t f ],

k ∈ {1,2, ...,K}, K > 1,

(2.1)

where wk(t), (k ∈ {1,2, ...,K}) is a state in the multi-model system and wk(t) ∈ En, (k =
1,2, ...,K); u(t) is a control in the multi-model system and u(t) ∈ Er, (r ≤ n); t f > 0 is a
given time instant; η(t) = col

(
η1(t), ...,ηm(t)

)
, t ≥ 0, (η(0) = 0) is the m-dimensional stan-

dard Wiener process defined on the filtered probability space {Ω,F ,P} [2]; Ak(t) and Bk(t),
t ∈ [0, t f ], (k = 1,2, ...,K) are given matrix-valued continuous functions of corresponding di-
mensions; σi,k(t), t ∈ [0, t f ], (i = 1, ...,m; k = 1,2, ...,K) are given vector-valued continuous
functions of corresponding dimensions; w̃0 ∈ En is a given vector.

Let us consider the following functional:

F (u,k)
4
= E

[
wT

k (t f )H̃ wk(t f )+
∫ t f

0
wT

k (t)D̃(t)wk(t)dt
]
, k ∈ {1,2, ...,K}, (2.2)

where H̃ is a constant symmetric positive semi-definite n× n-matrix; for any t ∈ [0, t f ], D̃(t)
is a symmetric positive semi-definite n×n-matrix.

We also consider the vectors

w
4
= col(w1,w2, ...,wK) ∈ EKn, w0 4= col(w̃0, w̃0, ..., w̃0) ∈ EKn. (2.3)
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Based on [40], (Chapter 5, Sections 5.1-5.2), let us consider the set Γ of all vector-valued
functionals γ

(
χ(t), t

)
= col

(
γ1
(
χ(t), t

)
, ...,γr

(
χ(t), t

))
, each entry γi

(
χ(t), t

)
, (i = 1, ...,r) of

which is a functional given and measurable with respect to the Borel σ -algebra on the set
∆ = {

(
χ(t), t

)
: t ∈ [0, t f ], χ(t) ∈C[0, t f ;EKn]}.

Definition 2.1. The control u = γ(w(t), t), t ∈ [0, t f ] is called admissible in the multi-model
system (2.1) if:
(i) γ(·, ·) ∈ Γ;
(ii) for any w0 ∈ EKn of the form in (2.3), the initial-value problem (2.1) with k = 1,2, ...,K and
u(t) = γ

(
w(t), t

)
has the unique (with the probability 1) continuous solution w(t), t ∈ [0, t f ];

(iii) for the solution w(t) = col
(
w1(t), ...,wK(t)

)
of (2.1) and any k ∈ {1, ...,K}, the functional

F (u,k) exists, i.e.,

0≤ E
[

wT
k (t f )H̃ wk(t f )+

∫ t f

0
wT

k (t)D̃(t)wk(t)dt
]
<+∞;

(iv)

0≤ E
[∫ T

0
γ

T(t,w(t))γ(w(t), t)dt
]
<+∞.

In what follows, the set of all admissible controls in the multi-model system (2.1) is denoted by
U .

Remark 2.2. Due to [40], (Chapter 5, Sections 5.1-5.2), a linear vector-valued functional of
the form u(t,w(t)) = P(t)w(t) with the matrix-valued gain P(t), continuous for t ∈ [0, t f ],
belongs to the set U . In what follows, we call such a gain P(t) admissible in a linear control
of the aforementioned form (or simply admissible).

Consider the following set (the simplex) in the space EK:

Ωλ

4
=

{
λ = col(λ1,λ2, ...,λK) ∈ EK : λ1 ≥ 0, λ2 ≥ 0, ...,λK ≥ 0,

K

∑
k=1

λk = 1

}
. (2.4)

Based on the functional F (u,k) and the set Ωλ , we construct the performance index evalu-
ating the control process of the multi-model system (2.1)

J (u,λ )
4
= λ

T F (u)→ max
λ∈Ωλ

inf
u∈U

, (2.5)

where
F (u)

4
= col

(
F (u,1),F (u,2), ...,F (u,K)

)
. (2.6)

Remark 2.3. Since the control u(·) is not present explicitly in the functional F (u,k) (and,
therefore, in the functional J (u,λ )), the first-order optimality conditions fail to yield a solution
(an optimal control u(·) and the corresponding vector λ ) to the problem (2.1),(2.5). Thus, this
problem is a singular optimal control problem.

Remark 2.4. Since for any k ∈ {1,2, ...,K}, any u
(
w(t), t

)
∈U and any w0 ∈ EKn of the form

in (2.3), the value of the functional F (u,k) with u(t) = u
(
w(t), t

)
is non-negative, then for

any aforementioned w0 ∈ EKn and any λ ∈ Ωλ , there exists a finite infimum J ∗
λ
(w0) of the

functional J (u,λ ) with respect to u(t) = u
(
w(t), t

)
∈U in the problem (2.1),(2.5). Moreover,
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since for any u
(
w(t), t

)
∈U and any w0 ∈ EKn of the form in (2.3), J (u,λ ) is continuous with

respect to λ ∈Ωλ and the set Ωλ is bounded and closed, then there exists finite value

J ∗(w0)
4
= max

λ∈Ωλ

J ∗
λ
(w0). (2.7)

Consider a sequence of the functions u∗q
(
w(t), t

)
∈U and a sequence of the vectors λ ∗q ∈Ωλ ,

(q = 1,2, ...).

Definition 2.5. The sequence of the pairs
{(

u∗q
(
w(t), t

)
,λ ∗q

)}+∞

q=1
is called a solution of the

optimal control problem (2.1),(2.5) if for any w0 ∈ EKn of the form in (2.3):
(a) there exist finite limq→+∞ J

(
u∗q
(
w(t), t

)
,λ ∗q

)
;

(b) the following equality is valid:

lim
q→+∞

J
(

u∗q
(
w(t), t

)
,λ ∗q

)
= J ∗(w0).

In this case, the value J ∗(w0) is called an optimal value of the functional in the problem
(2.1),(2.5).

The objective of the paper is to obtain the solution of the optimal control problem (2.1),(2.5)
and to derive the expression for the optimal value of the functional in this problem.

3. REGULARIZATION OF THE OPTIMAL CONTROL PROBLEM (2.1),(2.5)

3.1. Multi-Model Stochastic Cheap Control Problem. We are going to derive the solution
of the singular problem (2.1),(2.5) by its regularization. Namely, we approximate the original
singular problem (2.1),(2.5) with a parameter dependent regular optimal control problem. This
new problem has the same multi-model dynamics (2.1) as the original singular problem has.
However, the functional in the new problem has the regular form. Namely, the functional in the
new problem has the form

Jε(u,λ ) = λ
T Fε(u), (3.1)

where

Fε(u)
4
= col

(
Fε(u,1),Fε(u,2), ...,Fε(u,K)

)
,

Fε(u,k)
4
= E

[
wT

k (t f )H̃ wk(t f )+
∫ t f

0

[
wT

k (t)D̃(t)wk(t)+ ε
2uT (t)u(t)]dt

]
,

k ∈ {1,2, ...,K},
(3.2)

ε > 0 is a small parameter.

Remark 3.1. For the new problem (2.1),(3.1)-(3.2), we choose the same set of all admissible
state-feedback controls as it was done for the original problem (2.1),(2.5), i.e., the set U (see
Definition 2.1). Moreover, similarly to the original optimal control problem (2.1),(2.5), the
functional (3.1) in the new problem is minimized by a proper choice of u = u

(
w(t), t

)
∈U and

maximized by a proper choice of λ ∈Ωλ .
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Remark 3.2. Since the parameter ε > 0 is small, the problem (2.1),(3.1)-(3.2) is a cheap control
problem, i.e., an optimal control problem with a control cost much smaller than a state cost in
the functional. Single-model cheap control problems (deterministic and stochastic) have been
studied extensively in the literature (see, e.g., [6, 10, 19, 20, 22, 23, 24, 25, 27, 28, 37, 41, 45, 47,
51, 52, 53, 54, 55, 59, 61, 62] and references therein). However, to the best of our knowledge,
a multi-model cheap control problem was studied only in the work [26] where a deterministic
finite horizon linear-quadratic optimal control problem was considered. It is important to note
that, due to the smallness of the control cost, a cheap control problem can be transformed
to an optimal control problem for a singularly perturbed system. Various results in the topic
of optimal control problems for singularly perturbed single-model systems can be found, for
instance, in [3, 8, 9, 11, 13, 15, 21, 41, 42, 44, 46, 49, 50, 51, 52, 56, 58, 66] and references
therein. However, to the best of our knowledge, an optimal control problem for a singularly
perturbed multi-model system was studied only in the work [26].

3.2. Solvability Conditions of the Optimal Control Problem (2.1),(3.1)-(3.2). Based on the
results of the book [7] (Section 16.3), let us introduce into the consideration the following
block-diagonal Kn×Kn-matrices:

A (t)
4
=


A1(t) On×n ... On×n
On×n A2(t) ... On×n
......... ......... ... ........
On×n On×n ... AK(t)

 , H
4
=


H̃ On×n ... On×n

On×n H̃ ... On×n
......... ......... ... ........

On×n On×n ... H̃

 ,

D(t)
4
=


D̃(t) On×n ... On×n

On×n D̃(t) ... On×n
......... ......... ... ........

On×n On×n ... D̃(t)

 , Λ(λ )
4
=


λ1In On×n ... On×n
On×n λ2In ... On×n
......... ......... ... ........
On×n On×n ... λKIn

 ,

(3.3)

where λk, (k = 1,2, ...,K) are scalar nonnegative parameters satisfying the condition ∑
K
k=1 λk =

1, i.e., the vector λ
4
= col(λ1,λ2, ...,λK) belongs to the set Ωλ .

Along with the above introduced block-diagonal matrices, let us introduce the following
block-form matrix and block-form vectors:

B(t)
4
=


B1(t)
B2(t)
...

BK(t)

 , Θi(t)
4
=


σi,1(t)
σi,2(t)
...

σi,K(t)

 , i = 1, ...,m. (3.4)

Based on the matrices in (3.3) and (3.4), we consider the following terminal-value problem
for the matrix Riccati differential equation:

dM (t)
dt

=−M (t)A (t)−A T (t)M (t)+M (t)S (t,ε)M (t)−Λ(λ )D(t), t ∈ [0, t f ],

M (t f ) = Λ(λ )H ,

(3.5)
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where

S (t,ε) =
1
ε2 B(t)BT (t). (3.6)

Remark 3.3. For any λ ∈ Ωλ and any ε > 0, the terminal-value problem (3.5) has the unique
solution M (t) = M (t,λ ,ε) in the entire interval [0, t f ], and M T (t,λ ,ε) = M (t,λ ,ε).

Theorem 3.4. For a given ε > 0, the solution of the multi-model cheap control problem (2.1),(3.1)-
(3.2) is

(
u = u∗ε

(
w(t), t

)
,λ = λ ∗(ε)

)
, where

u∗ε
(
w(t), t

)
=− 1

ε2 BT (t)M
(
t,λ ∗(ε),ε

)
w(t), w(t) ∈ EKn, t ∈ [0, t f ], (3.7)

λ
∗(ε) = argmaxλ∈Ωλ

I (λ ,ε), (3.8)

I (λ ,ε) =
(
w0)T

M (0,λ ,ε)w0 +
m

∑
i=1

∫ t f

0
Θ

T
i (t)M (t,λ ,ε)Θi(t)dt. (3.9)

The optimal value I ∗ε of the functional in the problem (2.1),(3.1)-(3.2) is

I ∗ε = I
(
λ
∗(ε),ε

)
. (3.10)

Proof. First of all, let us note the following. Using the equation (3.3), the functional (3.1)-
(3.2) can be rewritten as:

Jε(u,λ ) = E
[

wT (t f )Λ(λ )H w(t f )+
∫ t f

0

[
wT (t)Λ(λ )D(t)w(t)+ ε

2uT (t)u(t)
]
dt
]
. (3.11)

Now, for any given λ ∈Ωλ and ε > 0, let us consider the optimal control problem, consisting
of the set of equations (2.1) for all k = 1, ...,K and of the functional (3.11) to be minimized by
a proper choice of the control u(t) = u

(
w(t), t

)
∈U . Due to the particular (undelayed) case of

the results of [39],

uε

(
w(t), t,λ

)
=− 1

ε2 BT (t)M
(
t,λ ,ε

)
w(t), w(t) ∈ EKn, t ∈ [0, t f ], λ ∈Ωλ , ε > 0(3.12)

is the optimal control and I (λ ,ε) is the optimal value of the functional in the aforementioned
problem. Hence

Jε

(
uε

(
w(t), t,λ

)
,λ
)
= I (λ ,ε), λ ∈Ωλ , ε > 0, (3.13)

and

λ
∗(ε) = argmaxλ∈Ωλ

I (λ ,ε) = argmaxλ∈Ωλ
Jε

(
uε

(
w(t), t,λ

)
,λ
)
, ε > 0. (3.14)

The equations (3.7) and (3.12) mean that

u∗ε
(
w(t), t

)
= uε

(
w(t), t,λ ∗(ε)

)
. (3.15)

Thus, the equations (3.13),(3.14) and (3.15) directly imply the statement of the theorem. �
Consider the following single-model controlled Ito differential stochastic system:

dw(t) =
[
A (t)w(t)+B(t)u(t)

]
dt +

m

∑
i=1

Θi(t)dηi, w(0) = w0, t ∈ [0, t f ]. (3.16)
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Let, for any given ε > 0 and k ∈ {1, ...,K}, F ∗
ε (k) be the value of the functional Fε(u,k) (see

the equation (3.2)) calculated along the trajectory w(t) = col(w1(t),w2(t), ...,wK(t)) (wk(t) ∈
En) of the system (3.16) with u(t) = u∗ε

(
w(t), t

)
(see the equation (3.7)).

As an immediate consequence of Theorem 3.4, we have the following assertion.

Corollary 3.5. For a given ε > 0, the following equality is valid:

K

∑
k=1

λ
∗
k (ε)F

∗
ε (k) = I ∗ε , (3.17)

where col
(
λ ∗1 (ε),λ

∗
2 (ε), ...,λ

∗
K(ε)

)
= λ ∗(ε) given by (3.8); I ∗ε (see the equation (3.10)) is the

optimal value of the functional Jε(u,λ ) in the optimal control problem (2.1),(3.1)-(3.2).

4. ASYMPTOTIC ANALYSIS OF THE SOLVABILITY CONDITIONS TO THE PROBLEM

(2.1),(3.1)-(3.2)

4.1. Transformation of the Terminal-Value Problem (3.5) and the Optimization Problem
(3.8)-(3.9). In what follows, we assume that:
AI. For any k ∈ {1,2, ...,K} and any t ∈ [0, t f ], the matrix Bk(t) has the column rank r.

AII. For any k ∈ {1,2, ...,K} and any t ∈ [0, t f ], det
(
BT

k (t)D̃(t)Bk(t)
)
6= 0.

AIII. For any k ∈ {1,2, ...,K}, H̃ Bk(t f ) = 0.
AIV. The matrix-valued functions Ak(t), (k = 1,2, ...,K) are continuously differentiable in the
interval [0, t f ].
AV. The matrix-valued functions Bk(t), (k = 1,2, ...,K) and D̃(t) are twice continuously dif-
ferentiable in the interval [0, t f ].

By Bc(t), t ∈ [0, t f ], we denote a complement matrix-valued function to the matrix-valued
function B(t), t ∈ [0, t f ] defined in (3.4). Thus, for any t ∈ [0, t f ], the dimension of the matrix
Bc(t) is Kn× (Kn− r), and the block-form matrix

(
Bc(t),B(t)

)
is invertible. Due to the

definition of the matrix-valued function B(t), as well as the assumption AV and the results of
the book [29] (Section 3.3), the matrix-valued function Bc(t) can be chosen twice continuously
differentiable in the interval [0, t f ].

By virtue of the results of the work [26] (Lemma 1), we have the following assertion.

Proposition 4.1. Let the assumptions AII and AV be satisfied. Then, there exist numbers 0 <
νmin ≤ νmax such that, for all t ∈ [0, t f ] and all λ ∈Ωλ , the following relation is valid:

νminIr ≤BT (t)ΛD(t)B(t)≤ νmaxIr. (4.1)

Thus, for all t ∈ [0, t f ] and all λ ∈Ωλ , the matrix BT (t)ΛD(t)B(t) is invertible and

1
νmax

Ir ≤
(
BT (t)ΛD(t)B(t)

)−1 ≤ 1
νmin

Ir. (4.2)

Consider the following matrix-valued functions of (t,λ ) ∈ [0, t f ]×Ωλ :

L (t,λ )=Bc(t)−B(t)
(
BT (t)ΛD(t)B(t)

)−1
BT (t)ΛD(t)Bc(t), R(t,λ )=

(
L (t,λ ),B(t)

)
.

(4.3)
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Remark 4.2. Due to Proposition 4.1 and the results of [29] (Section 3.3), we have the following.
For all (t,λ ) ∈ [0, t f ]×Ωλ , the matrix R(t,λ ) is invertible and

∥∥R(t,λ )
∥∥,
∥∥R−1(t,λ )

∥∥ are
bounded. Moreover, the matrix-valued function R(t,λ ) is twice continuously differentiable
with respect to t ∈ [0, t f ] uniformly in λ ∈ Ωλ , and this function is continuous with respect to
λ ∈Ωλ uniformly in t ∈ [0, t f ].

Using the matrix-valued function R(t,λ ) and its properties, we transform the unknown M (t)
in the terminal-value problem (3.5) as follows:

M (t) =
(
RT (t,λ )

)−1M(t)R−1(t,λ ), t ∈ [0, t f ], λ ∈Ωλ , (4.4)

where M(t) is a new unknown matrix-valued function.
By virtue of the results of [29] (Section 3.3) and by use of the equation (3.6), Proposition 4.1

and Remark 4.2, we directly have the following assertion.

Proposition 4.3. Let the assumptions AI-AV be valid. Then, for any ε > 0 and any λ ∈ Ωλ ,
the transformation (4.4) converts the terminal-value problem (3.5) to the new terminal-value
problem

dM(t)
dt

=−A(t,λ )M(t)−M(t)AT (t,λ )+M(t)S(ε)M(t)−D(t,λ ), t ∈ [0, t f ],

M(t f ) = H(λ ),

(4.5)

where
A(t,λ ) = R−1(t,λ )

[
A (t)R(t,λ )−dR(t,λ )/dt

]
, (4.6)

B(t) = R−1(t,λ )B(t) =
(

O(Kn−r)×r
Ir

)
4
= B, (4.7)

S(ε) =
1
ε2 BBT =

(
O(Kn−r)×(Kn−r) O(Kn−r)×r
Or×(Kn−r) (1/ε2)Ir

)
, (4.8)

D(t,λ ) = RT (t,λ )ΛD(t)R(t,λ ) =
(

D1(t,λ ) O(Kn−r)×r
Or×(Kn−r) D2(t,λ )

)
, (4.9)

H(λ ) = RT (t f ,λ )ΛH R(t f ,λ ) =

(
H1(λ ) O(Kn−r)×r
Or×(Kn−r) Or×r

)
, (4.10)

D1(t,λ ) = L T (t,λ )ΛD(t)L (t,λ ), D2(t,λ ) = BT (t)ΛD(t)B(t), (4.11)

H1(λ ) = L T (t f ,λ )ΛH L (t f ,λ ). (4.12)

For all t ∈ [0, t f ] and λ ∈ Ωλ , the matrix D1(t,λ ) is positive semi-definite, while the matrix
D2(t,λ ) is positive definite. For all λ ∈Ωλ , the matrix H1(λ ) is positive semi-definite, and the
matrix-valued function H1(λ ) is continuous. The matrix-valued functions A(t,λ ), D(t,λ ) are
continuously differentiable with respect to t ∈ [0, t f ] uniformly in λ ∈ Ωλ , and these functions
are continuous with respect to λ ∈Ωλ uniformly in t ∈ [0, t f ].

Remark 4.4. Similarly to Remark 3.3, for any λ ∈Ωλ and any ε > 0, the terminal-value prob-
lem (4.5) has the unique solution M(t)=M(t,λ ,ε) in the entire interval [0, t f ], and MT (t,λ ,ε)=
M(t,λ ,ε).
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Corollary 4.5. Let the assumptions AI-AV be valid. Then, for any ε > 0, the transformation
(4.4) convert the optimization problem (3.8)-(3.9) to the equivalent optimization problem

λ
∗ = λ

∗(ε) = argmaxλ∈Ωλ
J(λ ,ε), (4.13)

J(λ ,ε) =
(
z0(λ )

)T M(0,λ ,ε)z0(λ )+
m

∑
i=1

∫ t f

0

(
Φi(t,λ )

)T M(t,λ ,ε)Φi(t,λ )dt, (4.14)

where M(t,λ ,ε) is the solution of the terminal-value problem (4.5);

z0(λ ) = R−1(0,λ )w0, Φi(t,λ ) = R−1(t,λ )Θi(t), t ∈ [0, t f ], λ ∈Ωλ , i = 1, ...,m. (4.15)

Moreover,

J
(
λ
∗(ε),ε

)
= I

(
λ
∗(ε),ε

)
, ε ≥ 0. (4.16)

Proof. The statements of the corollary follow immediately from Theorem 3.4 and Proposition
4.3. �

4.2. Asymptotic Solution of the Terminal-Value Problem (4.5). Due to the block form of
the matrix S(ε) (see the equation (4.8)), the right-hand side of the differential equation in (4.5)
has a singularity with respect to ε at ε = 0. To remove this singularity, we look for the solution
M(t) = M(t,λ ,ε) of the problem (4.5) in the following block form:

M(t,λ ,ε) =

 M1(t,λ ,ε) εM2(t,λ ,ε)

εMT
2 (t,λ ,ε) εM3(t,λ ,ε)

 , (4.17)

where the matrices M1(t,λ ,ε), M2(t,λ ,ε) and M3(t,λ ,ε) are of the dimensions (Kn− r)×
(Kn−r), (Kn−r)×r and r×r, respectively; MT

1 (t,λ ,ε)=M1(t,λ ,ε), MT
3 (t,λ ,ε)=M3(t,λ ,ε).

Similarly to the block form of the matrix M(t,λ ,ε), we also partition the matrix A(t,λ ) into
blocks as:

A(t,λ ) =
(

A1(t,λ ) A2(t,λ )
A3(t,λ ) A4(t,λ )

)
, (4.18)

where the matrices A1(t,λ ), A2(t,λ ), A3(t,λ ) and A4(t,λ ) are of the dimensions (Kn− r)×
(Kn− r), (Kn− r)× r, r× (Kn− r) and r× r, respectively.

Substitution of the block forms of the matrices S(ε), D(t,λ ), H(λ ), M(t,λ ,ε), A(t,λ ,ε) (see
the equations (4.8), (4.9), (4.10), (4.17), (4.18)) into the problem (4.5) yields after a routine
matrix algebra the following equivalent terminal-value problem in the time interval [0, t f ]:

dM1(t,λ ,ε)
dt

=−M1(t,λ ,ε)A1(t,λ )− εM2(t,λ ,ε)A3(t,λ )−AT
1 (t,λ )M1(t,λ ,ε)−

εAT
3 (t,λ )M

T
2 (t,λ ,ε)+M2(t,λ ,ε)MT

2 (t,λ ,ε)−D1(t,λ ), M1(t f ,λ ,ε) = H1(λ ), (4.19)

ε
dM2(t,λ ,ε)

dt
=−M1(t,λ ,ε)A2(t,λ )− εM2(t,λ ,ε)A4(t,λ )− εAT

1 (t,λ )M2(t,λ ,ε)

−εAT
3 (t,λ )M3(t,λ ,ε)+M2(t,λ ,ε)M3(t,λ ,ε), M2(t f ,λ ,ε) = 0, (4.20)

ε
dM3(t,λ ,ε)

dt
=−εMT

2 (t,λ ,ε)A2(t,λ )− εM3(t,λ ,ε)A4(t,λ )− εAT
2 (t,λ )M2(t,λ ,ε)

−εAT
4 (t,λ )M3(t,λ ,ε)+

(
M3(t,λ ,ε)

)2
−D2(t,λ ), M3(t f ,λ ,ε) = 0. (4.21)
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Remark 4.6. Since the terminal-value problem (4.19)-(4.21) is equivalent to the terminal-value
problem (4.5), then (due to Remark 4.4), for any λ ∈ Ωλ and any ε > 0, the problem (4.19)-
(4.21) has the unique solution

{
M1(t,λ ,ε),M2(t,λ ,ε),M3(t,λ ,ε)

}
in the entire interval [0, t f ].

Also, it should be noted that, for any λ ∈ Ωλ , the terminal-value problem (4.19)-(4.21) is a
singularly perturbed one for a set of Riccati-type matrix differential equations. In what follows
of this subsection, based on the Boundary Function Method (see, e.g., [64]), we construct and
justify the zero-order asymptotic solution of this problem. We seek this asymptotic solution in
the form

M j0(t,λ ,ε) = Mo
j0(t,λ )+Mb

j0(τ,λ ), j = 1,2,3, τ = (t− t f )/ε, (4.22)

where the terms with the upper index ”o” constitute the so called outer solution, while the
terms with the upper index ”b” are the boundary correction terms in a left-hand neighbourhood
of t = t f ; τ ≤ 0 is a new independent variable, called the stretched time. For any t ∈ [0, t f ),
τ→−∞ as ε→+0. Equations and conditions for obtaining the outer solution and the boundary
correction terms are derived by substituting the representation (4.22) into the terminal-value
problem (4.19)-(4.21) instead of M j(t,λ ,ε), ( j = 1,2,3), and equating the coefficients for the
same power of ε on both sides of the resulting equations, separately the coefficients depending
on t and on τ .

4.2.1. Obtaining the Boundary Correction Mb
10(τ). For this boundary layer correction, we have

the equation
dMb

10(τ,λ )

dτ
= 0, τ ≤ 0, λ ∈Ωλ . (4.23)

By virtue of the Boundary Function Method, we require that the boundary layer correction
terms tend to zero for τ tending to −∞. Thus, with respect to Mb

10(τ,λ ), we require that

lim
τ→−∞

Mb
10(τ,λ ) = 0. (4.24)

Moreover, we require that the limit (4.24) is uniform with respect to λ ∈Ωλ .
From the equations (4.23)-(4.24), we directly have

Mb
10(τ,λ )≡ 0, τ ≤ 0, λ ∈Ωλ . (4.25)

4.2.2. Obtaining the Outer Solution Terms. The equations and conditions for these terms are
the following for all t ∈ [0, t f ] and λ ∈Ωλ :

dMo
10(t,λ )
dt

=−Mo
10(t,λ )A1(t,λ )−AT

1 (t,λ )M
o
10(t,λ )

+Mo
20(t,λ )

(
Mo

20(t,λ )
)T −D1(t,λ ), Mo

10(t f ,λ ) = H1(λ ), (4.26)

−Mo
10(t,λ )A2(t,λ )+Mo

20(t,λ )M
o
30(t,λ ) = 0, (4.27)(

Mo
30(t,λ )

)2−D2(t,λ ) = 0, (4.28)

Remark 4.7. Let us observe that in the system (4.26)-(4.28), the unknown matrix-valued func-
tions Mo

20(t,λ ) and Mo
30(t,λ ) are not subject to any terminal conditions. This occurs because in

(4.26)-(4.28) these unknowns are subject to the algebraic (but not differential) equations.
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Solving the algebraic equation (4.28) and taking into account the positive definiteness of the
matrix D2(t,λ ), we obtain

Mo
30(t,λ ) =

(
D2(t,λ )

)1/2
, t ∈ [0, t f ], λ ∈Ωλ , (4.29)

where the superscript ”1/2” denotes the unique symmetric positive definite square root of cor-
responding symmetric positive definite matrix.

Remark 4.8. Due to Proposition 4.3,
∥∥Mo

30(t,λ )
∥∥ is bounded for all (t,λ )∈ [0, t f ]×Ωλ . More-

over, due to Proposition 4.3 and the Implicit Function Theorem [60], the matrix-valued func-
tion Mo

30(t,λ ) is continuously differentiable with respect to t ∈ [0, t f ] uniformly in λ ∈Ωλ , and∥∥dMo
30(t,λ )/dt

∥∥ is bounded for all (t,λ ) ∈ [0, t f ]×Ωλ . In addition, since D2(t,λ ) is contin-
uous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ], then Mo

30(t,λ ) also is continuous with
respect to λ ∈Ωλ uniformly in t ∈ [0, t f ].

Solving the equation (4.27) with respect to Mo
20(t,λ ) and using (4.29), we have

Mo
20(t,λ ) = Mo

10(t,λ )A2(t,λ )
(
D2(t,λ )

)−1/2
, t ∈ [0, t f ], λ ∈Ωλ , (4.30)

where the superscript ”− 1/2” denotes the inverse matrix for the unique symmetric positive
definite square root of corresponding symmetric positive definite matrix.

Substituting (4.30) into (4.26), we obtain after a routine rearrangement the following terminal-
value problem with respect to Mo

10(t,λ ) for all λ ∈Ωλ :

dMo
10(t,λ )
dt

=−Mo
10(t,λ )A1(t,λ )−AT

1 (t,λ )M
o
10(t,λ )

+Mo
10(t,λ )S

o
1(t,λ )M

o
10(t,λ )−D1(t,λ ), t ∈ [0, t f ], Mo

10(t f ,λ ) = H1(λ ), (4.31)

where

So
1(t,λ ) = A2(t,λ )D−1

2 (t,λ )AT
2 (t,λ ). (4.32)

Remark 4.9. Remember that, for all t ∈ [0, t f ] and all λ ∈Ωλ , the matrices D1(t,λ ), H1(λ ) are
positive semi-definite and the matrix D2(t,λ ) is positive definite (see Proposition 4.3). There-
fore, for all λ ∈ Ωλ , the terminal-value problem (4.31) has the unique solution Mo

10(t,λ ) in
the entire interval [0, t f ]. Moreover, due to Proposition 4.3,

∥∥Mo
10(t,λ )

∥∥ and
∥∥dMo

10(t,λ )/dt
∥∥

are bounded for all (t,λ ) ∈ [0, t f ]×Ωλ . Therefore, due to Remark 4.8 and the equations
(4.29),(4.30),

∥∥Mo
20(t,λ )

∥∥ and
∥∥dMo

20(t,λ )/dt
∥∥ are bounded for all (t,λ ) ∈ [0, t f ]×Ωλ . In

addition, since A1(t,λ ), So
1(t,λ ), D1(t,λ ) are continuous with respect to λ ∈ Ωλ uniformly

in t ∈ [0, t f ] and H1(λ ) is continuous with respect to λ ∈ Ωλ then, by virtue of the results of
[35] (Chapter 5), Mo

10(t,λ ) also is continuous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ].
Therefore, due to the equations (4.29),(4.30), Remark 4.8 and the continuity of A2(t,λ ) with
respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ], Mo

20(t,λ ) also is continuous with respect to λ ∈ Ωλ

uniformly in t ∈ [0, t f ].
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4.2.3. Obtaining the Boundary Correction Terms Mb
20(τ,λ ) and Mb

30(τ,λ ). These terms are
obtained as the solution of the terminal-value problem

dMb
20(τ,λ )

dτ
= Mo

20(t f ,λ )Mb
30(τ,λ )+Mb

20(τ,λ )M
o
30(t f ,λ )+Mb

20(τ,λ )M
b
30(τ,λ ),

dMb
30(τ,λ )

dτ
= Mo

30(t f ,λ )Mb
30(τ,λ )+Mb

30(τ,λ )M
o
30(t f ,λ )+

(
Mb

30(τ,λ ))
2,

Mb
20(0,λ ) =−Mo

20(t f ,λ ), Mb
30(0,λ ) =−Mo

30(t f ,λ ),

(4.33)

where τ ≤ 0, λ ∈Ωλ .
Substitution of the expressions for Mo

30(t,λ ) and Mo
20(t,λ ) (see the equations (4.29) and

(4.30)) into the terminal-value problem (4.33) and use of the terminal condition for Mo
10(t,λ )

(see the equation (4.31)) transform the problem (4.33) into the following terminal-value prob-
lem:

dMb
20(τ,λ )

dτ
= Mb

20(τ,λ )
[(

D2(t f ,λ )
)1/2

+Mb
30(τ,λ )

]
+H1(λ )A2(t f ,λ )

(
D2(t f ,λ )

)−1/2Mb
30(τ,λ ),

Mb
20(0,λ ) =−H1(λ )A2(t f ,λ )

(
D2(t f ,λ )

)−1/2
, τ ≤ 0, λ ∈Ωλ ,

(4.34)

dMb
30(τ,λ )

dτ
=
(
D2(t f ,λ )

)1/2Mb
30(τ,λ )+Mb

30(τ,λ )
(
D2(t f ,λ )

)1/2
+
(
Mb

30(τ,λ )
)2
,

Mb
30(0,λ ) =−

(
D2(t f ,λ )

)1/2
, τ ≤ 0, λ ∈Ωλ .

(4.35)

Based on the results of [29] (Section 4.5), we obtain the solution of the terminal-value prob-
lem (4.34)-(4.35) in the form

Mb
20(τ,λ ) =−2H1(λ )A2(t f ,λ )

(
D2(t f ,λ )

)−1/2 exp
(

2
(
D2(t f ,λ )

)1/2
τ

)[
Ir

+exp
(

2
(
D2(t f ,λ )

)1/2
τ

)]−1
, τ ≤ 0, λ ∈Ωλ , (4.36)

Mb
30(τ,λ ) =−2

(
D2(t f ,λ )

)1/2 exp
(

2
(
D2(t f ,λ )

)1/2
τ

)[
Ir

+exp
(

2
(
D2(t f ,λ )

)1/2
τ

)]−1
, τ ≤ 0, λ ∈Ωλ . (4.37)

Due to Proposition 4.1 (see the inequalities in (4.1)) and Proposition 4.3 (see the expression
for D2(t,λ ) in (4.11)), the matrix-valued functions Mb

20(τ,λ ) and Mb
30(τ,λ ) are exponentially

decaying for τ →−∞ uniformly with respect to λ ∈Ωλ , i.e., they satisfy the inequalities∥∥Mb
20(τ,λ )

∥∥≤ aexp(βτ),
∥∥Mb

30(τ,λ )
∥∥≤ aexp(βτ), τ ≤ 0, λ ∈Ωλ , (4.38)

where a > 0 and β > 0 are some constants independent of λ ∈Ωλ .
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4.2.4. Justification of the Asymptotic Solution to the Terminal-Value Problem (4.19)-(4.21).
Quite similarly to the results of [26] (Theorem 1), we have the following assertion.

Lemma 4.10. Let the assumptions AI-AV be fulfilled. Then, there exists a number ε0 > 0 inde-
pendent of λ ∈Ωλ such that, for all ε ∈ (0,ε0], the entries of the solution to the terminal-value
problem (4.19)-(4.21)

{
M1(t,λ ,ε),M2(t,λ ,ε),M3(t,λ ,ε)

}
satisfy the inequalities∥∥M1(t,λ ,ε)−Mo

10(t,λ )
∥∥≤ cε,

∥∥M j(t,λ ,ε)−M j0(t,λ ,ε)
∥∥≤ cε,

j = 2,3, t ∈ [0, t f ], λ ∈Ωλ ,

(4.39)

where M j0(t,λ ,ε), ( j = 2,3) are given in (4.22); c > 0 is some constant independent of ε and
λ ∈Ωλ .

4.3. Asymptotic Behaviour of the Solution to the Optimization Problem (4.13)-(4.14). Along
with the optimization problem (4.13)-(4.14), we consider the following optimization problem:

λ
∗
0 = argmaxλ∈Ωλ

J0(λ ), (4.40)

J0(λ ) =
(
x0(λ )

)T Mo
10(0,λ )x

0(λ )+
m

∑
i=1

∫ t f

0
Φ

T
i,x(t,λ )M

o
10(t,λ )Φi,x(t,λ )dt, (4.41)

where x0(λ ) and Φi,x(t,λ ) are the upper blocks of the same dimension Kn− r of the vectors
z0(λ ) and Φi(t,λ ), respectively.

In contrast with the optimization problem (4.13)-(4.14), the optimization problem (4.40)-
(4.41) is independent of ε .

In what follows, we assume that:
AVI. The optimization problem (4.40)-(4.41) has the unique solution λ ∗0 .

Using Remarks 4.2, 4.8, 4.9, as well as the inequalities in (4.38) and Lemma 4.10, we obtain
(similarly to Lemma 2 and Theorem 3 of the work [26]) the following assertion.

Lemma 4.11. Let the assumptions AI-AVI be fulfilled. Then, the function J0(λ ) is continuous
with respect to λ ∈ Ωλ and, for any ε ∈ (0,ε0], the function J(λ ,ε) also is continuous with
respect to λ ∈Ωλ . Moreover, the following two limit equalities are valid:

lim
ε→+0

J(λ ,ε) = J0(λ ) uniformly in λ ∈Ωλ , (4.42)

lim
ε→+0

λ
∗(ε) = λ

∗
0 , (4.43)

where λ ∗(ε), ε ∈ (0,ε0] is the solution of the optimization problem (4.13)-(4.14).

As a direct consequence of Lemma 4.11, we have the following assertion.

Corollary 4.12. Let the assumptions AI-AVI be fulfilled. Then, for the solution λ ∗(ε), ε ∈ (0,ε0]
of the optimization problem (4.13)-(4.14), there exists a function g∗(ε)> 0, ε ∈ (0,ε0], such that
limε→+0 g∗(ε) = 0 and∣∣J(λ ∗(ε),ε)− J0

(
λ
∗
0
)∣∣≤ g∗(ε), ε ∈ (0,ε0]. (4.44)
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4.4. Asymptotic Behaviour of the Value F ∗
ε (k). Remember that F ∗

ε (k), (ε > 0, k∈{1, ...,K})
is the value of the functional Fε(u,k) (see the equation (3.2)) calculated along the trajectory
w(t) = col(w1(t),w2(t), ...,wK(t)) (wk(t)∈ En) of the system (3.16) with u(t) = u∗ε

(
w(t), t

)
(see

the equations (3.7) and (3.8)-(3.9)).
Let us rewrite the functional (3.2) in the terms of the vector w(t), i.e.,

Fε(u,k)
4
= E

[
wT (t f )H̃kw(t f )+

∫ t f

0

[
wT (t)D̃k(t)w(t)+ ε

2uT (t)u(t)]dt
]
,

k ∈ {1,2, ...,K},
(4.45)

where H̃k and D̃k(t) are block-diagonal matrices of the dimension Kn×Kn with the k-th blocks
H̃ and D̃(t), respectively, on the main diagonal, while the other blocks of this diagonal are zero
matrices of the dimension n×n. Thus,

H̃k = diag
(

On×n, ...,On×n︸ ︷︷ ︸
k−1

,H̃ ,On×n, ...,On×n︸ ︷︷ ︸
K−k

)
, k ∈ {1, ...,K}, (4.46)

D̃k(t) = diag
(

On×n, ...,On×n︸ ︷︷ ︸
k−1

,D̃(t),On×n, ...,On×n︸ ︷︷ ︸
K−k

)
, k ∈ {1, ...,K}. (4.47)

We study the asymptotic behaviour of the value F ∗
ε (k) by two stages. At the first stage,

we analyze the asymptotic behaviour of the value F̃ε(k,λ ) of the functional (4.45) calculated
along the trajectory w(t) of the system (3.16) with u(t)= uε

(
w(t), t,λ

)
(see the equation (3.12)).

Remember that uε

(
w(t), t,λ ∗(ε)

)
= u∗ε

(
w(t), t

)
(see the equation (3.15)).

At the second stage, based on this asymptotic analysis and on Lemma 4.11, we obtain the
asymptotic behaviour of the value F ∗

ε (k). Let us start with the first stage of this study. Based
on the particular (undelayed) case of the work [39], we obtain that

F̃ε(k,λ ) =
(
w0)T

M̃k(0,λ ,ε)w0 +
m

∑
i=1

∫ t f

0
Θ

T
i (t)M̃k(t,λ ,ε)Θi(t)dt, k = 1, ...,K, (4.48)

where, for all λ ∈ Ωλ , ε > 0, and k ∈ {1, ...,K}, M̃k(t,λ ,ε), t ∈ [0, t f ] is the unique solu-
tion of the following terminal-value problem for linear differential equation with respect to the
unknown Kn×Kn-matrix-valued function M̃k(t):

dM̃k(t)
dt

=−M̃k(t)Ã (t,λ ,ε)− Ã T (t,λ ,ε)M̃k(t)− D̃k(t)−M (t,λ ,ε)S (t,ε)M (t,λ ,ε),

t ∈ [0, t f ], M̃k(t f ) = H̃k,

(4.49)

Ã (t,λ ,ε) = A (t)−S (t,ε)M (t,λ ,ε), (4.50)

M (t,λ ,ε) is the solution of the terminal-value problem (3.5) mentioned in Remark 3.3.
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Let us partition the Kn×Kn-matrix-valued function R(t,λ ) into K blocks as follows:

R(t,λ ) =


R1(t,λ )
R2(t,λ )

...
RK(t,λ )

 , t ∈ [0, t f ], λ ∈Ωλ , (4.51)

where each of the blocks is of the dimension n×Kn.
Using the equations (3.4),(4.3),(4.51), we can represent Rk(t,λ ) in the form

Rk(t,λ ) =
(
Lk(t,λ ),Bk(t)

)
, k = 1,2, ...,K, t ∈ [0, t f ], (4.52)

where Lk(t,λ ) is the k-th block from the above of the dimension n× (Kn− r) in the matrix
L (t,λ ), i.e., this block is obtained from the following block-form representation of the matrix
L (t,λ ):

L (t,λ ) =


L1(t,λ )
L2(t,λ )

...
LK(t,λ )

 , t ∈ [0, t f ], λ ∈Ωλ , (4.53)

and each of the blocks is of the dimension n× (Kn− r).
Using the matrix-valued function R(t,λ ) and its block-form representation (4.52), as well

as the block-form representation (4.53) of the matrix-valued function L (t,λ ), we transform
(similarly to (4.4)) the unknown M̃k(t) in the terminal-value problem (4.49) as follows:

M̃k(t) =
(
RT (t,λ )

)−1M̃k(t)R−1(t,λ ), t ∈ [0, t f ], λ ∈Ωλ , (4.54)

where M̃k(t) is a new unknown matrix-valued function.
Based on Proposition 4.3, the transformation (4.54), along with the equations (4.4),(4.51)-

(4.53) and the assumption AIII, converts the terminal-value problem (4.49) to the new terminal-
value problem

dM̃k(t)
dt

=−M̃k(t)Ã(t,λ ,ε)− ÃT (t,λ ,ε)M̃k(t)− D̃k(t,λ )−M(t,λ ,ε)S(ε)M(t,λ ,ε),

t ∈ [0, t f ], M̃k(t f ) = H̃k(λ ),

(4.55)

where M(t,λ ,ε), t ∈ [0, t f ] is the solution of the terminal-value problem (4.5),

Ã(t,λ ,ε) = R−1(t,λ )
[
Ã (t,λ ,ε)R(t,λ )−dR(t,λ )/dt

]
= R−1(t,λ )

[(
A (t)−S (t,ε)M (t,λ ,ε)

)
R(t,λ )−dR(t,λ )/dt

]
= R−1(t,λ )

[
A (t)R(t,λ )−dR(t,λ )/dt

]
−R−1(t,λ )S (t,ε)M (t,λ ,ε)R(t,λ )

= A(t,λ )−R−1(t,λ )S (t,ε)
(
RT (t,λ )

)−1M(t,λ ,ε) = A(t,λ )−S(ε)M(t,λ ,ε),

(4.56)

D̃k(t,λ ) = RT
k (t,λ )D̃(t)Rk(t,λ ), (4.57)
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H̃k(λ ) = RT
k (t f ,λ )H̃ Rk(t f ,λ ) =

(
L T

k (t f ,λ )
BT

k (t f )

)
H̃
(
Lk(t f ,λ ) , Bk(t f )

)
=

(
L T

k (t f ,λ )H̃ Lk(t f ,λ ) L T
k (t f ,λ )H̃ Bk(t f )

BT
k (t f )H̃ Lk(t f ,λ ) BT

k (t f )H̃ Bk(t f )

)
=

(
H̃k,1(λ ) O(Kn−r)×r
Or×(Kn−r) Or×r

)
,

H̃k,1(λ ) = L T
k (t f ,λ )H̃ Lk(t f ,λ ).

(4.58)

Using the transformation (4.54) and the equation (4.15), we can rewrite the equation (4.48)
as follows:

F̃ε(k,λ ) =
(
z0(λ )

)T M̃k(0,λ ,ε)z0(λ )+
m

∑
i=1

∫ t f

0
Φ

T
i (t,λ )M̃k(t,λ ,ε)Φi(t,λ )dt, k = 1, ...,K,

(4.59)
where, for all λ ∈ Ωλ and ε > 0, M̃k(t,λ ,ε), t ∈ [0, t f ] is the unique solution of the terminal-
value problem (4.55).

Let us analyze the asymptotic behaviour (for ε → +0) of the value F̃ε(k,λ ) given by the
equation (4.59). For this purpose, first, we are going to construct the zero-order asymptotic
solution to the terminal-value problem (4.55).

4.4.1. Zero-Order Asymptotic Solution to the Terminal-Value Problem (4.55). Similarly to the
block form (4.17) of the solution to the terminal-value problem (4.5), we look for the solution
to the problem (4.55) in the following block form:

M̃k(t,λ ,ε) =

 M̃k,1(t,λ ,ε) εM̃k,2(t,λ ,ε)

εM̃T
k,2(t,λ ,ε) εM̃k,3(t,λ ,ε)

 , (4.60)

where the matrices M̃k,1(t,λ ,ε), M̃k,2(t,λ ,ε) and M̃k,3(t,λ ,ε) are of the dimensions (Kn−
r)× (Kn− r), (Kn− r)× r and r× r, respectively; M̃T

k,1(t,λ ,ε) = M̃k,1(t,λ ,ε), M̃T
k,3(t,λ ,ε) =

M̃k,3(t,λ ,ε).
Taking into account the symmetry of the matrix D̃k(t,λ ), let us partition it into blocks as:

D̃k(t,λ ) =

 D̃k,1(t,λ ) D̃k,2(t,λ )

D̃T
k,2(t,λ ) D̃k,3(t,λ )

 , (4.61)

where the matrices D̃k,1(t,λ ), D̃k,2(t,λ ) and D̃k,3(t,λ ) are of the dimensions (Kn− r)× (Kn−
r), (Kn− r)× r and r× r, respectively; D̃T

k,1(t,λ ) = D̃k,1(t,λ ), D̃T
k,3(t,λ ) = D̃k,3(t,λ ).

Substitution of the block forms of the matrices S(ε), M(t,λ ,ε), A(t,λ ), H̃k(λ ), M̃(t,λ ,ε),
D̃k(t,λ ) (see the equations (4.8),(4.17),(4.18),(4.58),(4.60),(4.61)) into the problem (4.55) yields
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after a routine matrix algebra the following equivalent terminal-value problem in the time inter-
val [0, t f ]:

dM̃k,1(t,λ ,ε)
dt

=−M̃k,1(t,λ ,ε)A1(t,λ )− εM̃k,2(t,λ ,ε)A3(t,λ )−AT
1 (t,λ )M̃k,1(t,λ ,ε)

−εAT
3 (t,λ )M̃

T
k,2(t,λ ,ε)+ M̃k,2(t,λ ,ε)MT

2 (t,λ ,ε)+M2(t,λ ,ε)M̃T
k,2(t,λ ,ε)

−D̃k,1(t,λ )−M2(t,λ ,ε)MT
2 (t,λ ,ε), M̃k,1(t f ,λ ,ε) = H̃k,1(λ ), (4.62)

ε
dM̃k,2(t,λ ,ε)

dt
=−M̃k,1(t,λ ,ε)A2(t,λ )− εM̃k,2(t,λ ,ε)A4(t,λ )− εAT

1 (t,λ )M̃k,2(t,λ ,ε)

−εAT
3 (t,λ )M̃k,3(t,λ ,ε)+ M̃k,2(t,λ ,ε)M3(t,λ ,ε)+M2(t,λ ,ε)M̃k,3(t,λ ,ε)

−D̃k,2(t,λ )−M2(t,λ ,ε)M3(t,λ ,ε), M̃k,2(t f ,λ ,ε) = 0,(4.63)

ε
dM̃k,3(t,λ ,ε)

dt
=−εM̃T

k,2(t,λ ,ε)A2(t,λ )− εM̃k,3(t,λ ,ε)A4(t,λ )− εAT
2 (t,λ )M̃k,2(t,λ ,ε)

−εAT
4 (t,λ )M̃k,3(t,λ ,ε)+ M̃k,3(t,λ ,ε)M3(t,λ ,ε)+M3(t,λ ,ε)M̃k,3(t,λ ,ε)

−D̃k,3(t,λ )−
(
M3(t,λ ,ε)

)2
, M̃k,3(t f ,λ ,ε) = 0.(4.64)

The problem (4.62)-(4.64) is a singularly perturbed linear terminal-value problem. In what
follows of this subsection, based on the Boundary Function Method (see, e.g., [64]), we con-
struct and justify the zero-order asymptotic solution of this problem. We seek this asymptotic
solution in the form

M̃k, j0(t,λ ,ε) = M̃o
k, j0(t,λ )+ M̃b

k, j0(τ,λ ), j = 1,2,3, τ = (t− t f )/ε, (4.65)

where (like in (4.22)) the terms with the upper index ”o” constitute the outer solution, while the
terms with the upper index ”b” are the boundary correction terms in a left-hand neighbourhood
of t = t f ; τ ≤ 0 is a new independent variable, called the stretched time. For any t ∈ [0, t f ),
τ →−∞ as ε →+0. Similarly to Section 4.2, equations and conditions for obtaining the outer
solution and the boundary correction terms are derived by substituting the representations (4.65)
and (4.22) into the terminal-value problem (4.62)-(4.64) instead of M̃k, j(t,λ ,ε) and M j(t,λ ,ε),
( j = 1,2,3), respectively, and equating the coefficients for the same power of ε on both sides
of the resulting equations, separately the coefficients depending on t and on τ .

We start with the obtaining the boundary correction M̃b
k,10(τ). For this boundary correction,

we have the equation
dM̃b

k,10(τ,λ )

dτ
= 0, τ ≤ 0, λ ∈Ωλ . (4.66)

By virtue of the Boundary Function Method, we require (like in Section 4.2) that the boundary
layer correction terms tend to zero for τ tending to −∞, i.e., for Mb

k,10(τ,λ ) we require that

lim
τ→−∞

M̃b
k,10(τ,λ ) = 0. (4.67)

Moreover, we require that the limit (4.67) is uniform with respect to λ ∈Ωλ .
From the equations (4.66)-(4.67), we directly have

M̃b
k,10(τ,λ )≡ 0, τ ≤ 0, λ ∈Ωλ . (4.68)
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Proceed to obtaining the outer solution terms. The equations and conditions for these terms
are the following for all t ∈ [0, t f ] and λ ∈Ωλ :

dM̃o
k,10(t,λ )

dt
=−M̃o

k,10(t,λ )A1(t,λ )−AT
1 (t,λ )M̃

o
k,10(t,λ )

+M̃o
k,20(t,λ )

(
Mo

20(t,λ )
)T

+Mo
20(t,λ )

(
M̃o

k,20(t,λ )
)T

−D̃k,1(t,λ )−Mo
20(t,λ )

(
Mo

20(t,λ )
)T

, M̃o
k,10(t f ,λ ) = H̃k,1(λ ), (4.69)

−M̃o
k,10(t,λ )A2(t,λ )+ M̃o

k,20(t,λ )M
o
30(t,λ )+Mo

20(t,λ )M̃
o
k,30(t,λ )

−D̃k,2(t,λ )−Mo
20(t,λ )M

o
30(t,λ ) = 0, (4.70)

M̃o
k,30(t,λ )M

o
30(t,λ )+Mo

30(t,λ )M̃
o
k,30(t,λ )− D̃k,3(t,λ )−

(
Mo

30(t,λ )
)2

= 0. (4.71)

Remark 4.13. Similarly to Remark 4.7, the unknown matrix-valued functions M̃o
k,20(t,λ ) and

M̃o
k,30(t,λ ) are not subject to any terminal conditions in the system (4.69)-(4.71) because in this

system M̃o
k,20(t,λ ) and M̃o

k,30(t,λ ) are subject to the algebraic (but not differential) equations.

Solving the Lyapunov algebraic equation (4.71) and taking into account the symmetry and
positive definiteness of the matrix Mo

30(t,λ ) =
(
D2(t,λ )

)1/2, we obtain by virtue of [16]

M̃o
k,30(t,λ ) =

∫ +∞

0
exp
(
−
(
D2(t,λ )

)1/2
σ

)[
D̃k,3(t,λ )+D2(t,λ )

]
exp
(
−
(
D2(t,λ )

)1/2
σ

)
dσ ,

(4.72)
where t ∈ [0, t f ], λ ∈Ωλ .

Remark 4.14. Due to Proposition 4.3, Remark 4.8 and the theorem on continuity of an improper
integral with respect to a parameter [12, 60], the matrix-valued function M̃o

k,30(t,λ ) is contin-
uously differentiable with respect to t ∈ [0, t f ] uniformly in λ ∈ Ωλ , and

∥∥dMo
k,30(t,λ )/dt

∥∥ is
bounded for all (t,λ ) ∈ [0, t f ]×Ωλ . Moreover, since D2(t,λ ) is continuous with respect to
λ ∈Ωλ uniformly in t ∈ [0, t f ], then M̃o

k,30(t,λ ) also is continuous with respect to λ ∈Ωλ uni-
formly in t ∈ [0, t f ]. In addition, since the matrix D̃k,3(t,λ ) is positive semi-definite and the
matrix D2(t,λ ) is positive definite for all (t,λ ) ∈ [0, t f ]×Ωλ , then the matrix M̃o

k,30(t,λ ) is
positive definite for all these (t,λ ).

Solving the equation (4.70) with respect to M̃o
k,20(t,λ ), we obtain

M̃o
k,20(t,λ ) =

[
M̃o

k,10(t,λ )A2(t,λ )−Mo
20(t,λ )M̃

o
k,30(t,λ )+ D̃k,2(t,λ )

](
Mo

30(t,λ )
)−1

+Mo
20(t,λ ), t ∈ [0, t f ], λ ∈Ωλ . (4.73)
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Substituting (4.73) into (4.69) and taking into account the equations (4.29),(4.30),(4.32),(4.71),
we obtain after a routine rearrangement the following terminal-value problem for the linear dif-
ferential equation with respect to M̃o

k,10(t,λ ):

dM̃o
k,10(t,λ )

dt
=−M̃o

k,10(t,λ )
(
A1(t,λ )−So

1(t,λ )M
o
10(t,λ )

)
−
(
A1(t,λ )−So

1(t,λ )M
o
10(t,λ )

)T M̃o
k,10(t,λ )

−
(

IKn−r , −Mo
10(t,λ )A2(t,λ )D−1

2 (t,λ )
)

D̃k(t,λ )
(

IKn−r

−D−1
2 (t,λ )AT

2 (t,λ )M
o
10(t,λ )

)
,

t ∈ [0, t f ], M̃o
k,10(t f ,λ ) = H̃k,1(λ ),

(4.74)

where Mo
10(t,λ ) is the solution of the terminal-value problem (4.31); λ ∈Ωλ .

Remark 4.15. Since the differential equation in (4.74) is linear and, for any λ ∈Ωλ , the coeffi-
cients of this equation are continuous functions with respect to t ∈ [0, t f ], then the terminal-value
problem (4.74) has the unique solution M̃o

k,10(t,λ ) in the entire interval [0, t f ] for any λ ∈ Ωλ .
Moreover,

∥∥M̃o
k,10(t,λ )

∥∥ and
∥∥dM̃o

k,10(t,λ )/dt
∥∥ are bounded for all (t,λ ) ∈ [0, t f ]×Ωλ . There-

fore, due to Remark 4.14 and the equation (4.73),
∥∥M̃o

k,20(t,λ )
∥∥ and

∥∥dM̃o
k,20(t,λ )/dt

∥∥ are
bounded for all (t,λ ) ∈ [0, t f ]×Ωλ . In addition, since the coefficients of the differential equa-
tion in (4.74) are continuous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ] and H̃k,1(λ ) is
continuous with respect to λ ∈Ωλ then, by virtue of the results of [35] (Chapter 5), M̃o

k,10(t,λ )
also is continuous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ]. Therefore, due to Remark
4.14 and the equation (4.73), M̃o

k,20(t,λ ) also is continuous with respect to λ ∈ Ωλ uniformly
in t ∈ [0, t f ].

Now let us proceed to the obtaining the boundary correction terms M̃b
k,20(τ,λ ) and M̃b

k,30(τ,λ ).
Using the system of the differential equations in (4.33), we obtain the terminal-value problem
for M̃b

k,20(τ,λ ) and M̃b
k,30(τ,λ )

dM̃b
k,20(τ,λ )

dτ
= M̃b

k,20(τ,λ )
(
Mo

30(t f ,λ )+Mb
30(τ,λ )

)
+
(
Mo

20(t f ,λ )+Mb
20(τ,λ )

)
M̃b

k,30(τ,λ )+ M̃o
k,20(t f ,λ )Mb

30(τ,λ )+Mb
20(τ,λ )M̃

o
k,30(t f ,λ )

−
dMb

20(τ,λ )

dτ
, τ ≤ 0, M̃b

k,20(0,λ ) =−M̃o
k,20(t f ,λ ),

(4.75)

dM̃b
k,30(τ,λ )

dτ
= M̃b

k,30(τ,λ )
(
Mo

30(t f ,λ )+Mb
30(τ,λ )

)
+
(
Mo

30(t f ,λ )+Mb
30(τ,λ )

)
M̃b

k,30(τ,λ )+ M̃o
k,30(t f ,λ )Mb

30(τ,λ )+Mb
30(τ,λ )M̃

o
k,30(t f ,λ )

−
dMb

30(τ,λ )

dτ
, τ ≤ 0, M̃b

k,30(0,λ ) =−M̃o
k,30(t f ,λ ).

(4.76)
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Since the differential equations in (4.75) and (4.76) are linear with continuous in τ ∈ (−∞,0]
coefficients for all λ ∈ Ωλ , then the terminal-value problem (4.75)-(4.76) has the unique solu-
tion

{
M̃b

k,20(τ,λ ),M̃
b
k,30(τ,λ )

}
in the entire interval (−∞,0] for all λ ∈ Ωλ . In what follows,

we are going to estimate this solution.
First of all let us observe that, due to the equation (4.33), the inequalities in (4.38) and Re-

marks 4.8, 4.9, the following inequalities are valid:∥∥∥∥∥dMb
20(τ,λ )

dτ

∥∥∥∥∥≤ a1 exp(βτ),

∥∥∥∥∥dMb
30(τ,λ )

dτ

∥∥∥∥∥≤ a1 exp(βτ), τ ≤ 0, λ ∈Ωλ , (4.77)

where a1 > 0 is some constant independent of λ ∈Ωλ ; the positive constant β is introduced in
(4.38).

Let us estimate, first, the component M̃b
k,30(τ,λ ) of the solution to the problem (4.75)-(4.76).

By virtue of the results of [1], the solution to the problem (4.76) can be represented in the
form

M̃b
k,30(τ,λ ) =−Ψ

T (0,τ,λ )M̃o
k,30(t f ,λ )Ψ(0,τ,λ )

+
∫

τ

0
Ψ

T (σ ,τ,λ )

[
M̃o

k,30(t f ,λ )Mb
30(σ ,λ )+Mb

30(σ ,λ )M̃o
k,30(t f ,λ )

−
dMb

30(σ ,λ )

dσ

]
Ψ(σ ,τ,λ )dσ , τ ∈ (−∞,0], λ ∈Ωλ , (4.78)

where, for any given τ ∈ (−∞,0] and λ ∈ Ωλ , the r× r-matrix-valued function Ψ(σ ,τ,λ ) is
the unique solution of the problem

dΨ(σ ,τ,λ )

dσ
=−

(
Mo

30(t f ,λ )+Mb
30(τ,λ )

)
Ψ(σ ,τ,λ ), σ ∈ [τ,0], Φ(τ,τ,λ ) = Ir. (4.79)

Based on the results of [19] (Lemma 4.2) and taking into account Proposition 4.3, the equa-
tion (4.29), the inequalities in (4.38) and Remarks 4.8, 4.9, we have immediately the following
estimate of Ψ(σ ,τ,λ ) for all −∞≤ τ ≤ σ ≤ 0 and all λ ∈Ωλ :∥∥Ψ(σ ,τ,λ )

∥∥≤ a2 exp
(
−0.5β (σ − τ)

)
, (4.80)

where a2 > 0 is some constant independent of λ ∈Ωλ ; the positive constant β is introduced in
(4.38).

Now, using the second inequalities in (4.38) and in (4.77), as well as the inequality (4.80),
we directly obtain the estimate of M̃b

k,30(τ,λ ) given in (4.89)∥∥M̃b
k,30(τ,λ )

∥∥≤ b1 exp(0.5βτ), τ ∈ (−∞,0], λ ∈Ωλ , (4.81)

where b1 > 0 is some constant independent of λ ∈Ωλ .
Similarly to (4.81), taking into account this inequality, we estimate the component M̃b

k,20(τ,λ )
of the solution to the terminal-value problem (4.75)-(4.76)∥∥M̃b

k,20(τ,λ )
∥∥≤ b2 exp(0.25βτ), τ ∈ (−∞,0], λ ∈Ωλ , (4.82)

where b2 > 0 is some constant independent of λ ∈Ωλ .
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Lemma 4.16. Let the assumptions AI-AV be fulfilled. Then, there exists a number ε̃0 > 0 inde-
pendent of λ ∈Ωλ such that, for all ε ∈ (0, ε̃0], the entries of the solution to the terminal-value
problem (4.62)-(4.64)

{
M̃k,1(t,λ ,ε),M̃k,2(t,λ ,ε),M̃k,3(t,λ ,ε)

}
satisfy the inequalities∥∥M̃k,1(t,λ ,ε)− M̃o

k,10(t,λ )
∥∥≤ c̃ε,

∥∥M̃k, j(t,λ ,ε)− M̃k, j0(t,λ ,ε)
∥∥≤ c̃ε,

j = 2,3, t ∈ [0, t f ], λ ∈Ωλ ,

(4.83)

where M̃k, j0(t,λ ,ε), ( j = 2,3) are given in (4.65); c̃ > 0 is some constant independent of ε and
λ ∈Ωλ .

Proof. Let us make the following transformation of the variables in the problem (4.62)-
(4.64):

M̃k,1(t,λ ,ε) = M̃o
k,10(t,λ )+ ∆̃1(t,λ ,ε), M̃k, j(t,λ ,ε) = M̃k, j0(t,λ ,ε)+ ∆̃ j(t,λ ,ε), j = 2,3,

(4.84)
where ∆̃ j(t,λ ,ε), ( j = 1,2,3) are new unknown matrix-valued functions; ∆̃T

1 (t,λ ,ε)= ∆̃1(t,λ ,ε),
∆̃T

3 (t,λ ,ε) = ∆̃3(t,λ ,ε).
Using the above introduced new unknown matrix-valued functions, we construct the follow-

ing block-form matrix-valued function:

∆̃(t,λ ,ε)
4
=

(
∆̃1(t,λ ,ε) ε∆̃2(t,λ ,ε)
ε∆̃T

2 (t,λ ,ε) ε∆̃3(t,λ ,ε)

)
. (4.85)

Now, let us substitute the representation (4.84) into the problem (4.62)-(4.64). Due to this
substitution and the use of the equations (4.68),(4.69)-(4.71),(4.75)-(4.76), as well as the block
representations of the matrices S(ε), M(t,λ ,ε), A(t,λ ,ε), H̃k(λ ), M̃(t,λ ,ε), D̃k(t,λ ) (see the
equations (4.8),(4.17),(4.18),(4.58),(4.60),(4.61)), we obtain after a routine matrix algebra the
terminal-value problem for ∆̃(t,λ ,ε)

d∆̃(t,λ ,ε)
dt

=−∆̃(t,λ ,ε)Ã(t,λ ,ε)− ÃT (t,λ ,ε)∆̃(t,λ ,ε)

+Γ̃(t,λ ,ε), t ∈ [0, t f ], ∆̃(t f ,λ ,ε) = 0, (4.86)

where λ ∈Ωλ ; the matrix-valued function Γ̃(t,λ ,ε) has the block form

Γ̃(t,λ ,ε) =
(

Γ̃1(t,λ ,ε) Γ̃2(t,λ ,ε)
Γ̃T

2 (t,λ ,ε) Γ̃3(t,λ ,ε)

)
. (4.87)

The blocks Γ̃ j(t,λ ,ε), ( j = 1,2,3) are expressed in a known form by the matrix-valued func-
tions M j0(t,λ ,ε), M̃k, j0(t,λ ,ε), ( j = 1,2,3). Moreover, using Lemma 4.10 and the estimates
(4.38), (4.81)-(4.82), the following inequalities are obtained for Γ̃ j(t,λ ,ε), ( j = 1,2,3):∥∥Γ̃1(t,λ ,ε)

∥∥≤ b̃1[ε + exp(β̃1τ)],
∥∥Γ̃l(t,λ ,ε)

∥∥≤ b̃1ε
(
1+ exp(β̃1τ)

)
, l = 2,3,

τ = (t− t f )/ε, t ∈ [0, t f ], ε ∈ (0,ε0], λ ∈Ωλ ,

(4.88)

where b̃1 > 0 and β̃1 > 0 are some constants independent of ε and λ ∈Ωλ .
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By virtue of the results of [1], the solution of the problem (4.86) can be represented in the
form

∆̃(t,λ ,ε) =
∫ t

t f

ϒ̃
T (σ , t,λ ,ε)Γ̃(σ ,λ ,ε)ϒ̃(σ , t,λ ,ε)dσ , t ∈ [0, t f ], λ ∈Ωλ , ε ∈ (0,ε0], (4.89)

where, for any given t ∈ [0, t f ], λ ∈ Ωλ and ε ∈ (0,ε0] , the Kn×Kn-matrix-valued function
ϒ̃(σ , t,λ ,ε) is the unique solution of the problem

dϒ̃(σ , t,λ ,ε)
dσ

= Ã(σ ,λ ,ε)ϒ̃(σ , t,λ ,ε), ϒ̃(t, t,λ ,ε) = IKn, σ ∈ [t, t f ].

By ϒ̃1(σ , t,λ ,ε), ϒ̃2(σ , t,λ ,ε), ϒ̃3(σ , t,λ ,ε) and ϒ̃4(σ , t,λ ,ε), we denote the upper left-
hand, upper right-hand, lower left-hand and lower right-hand blocks of the matrix
widetildeϒ(σ , t,λ ,ε) of the dimensions (Kn− r)× (Kn− r), (Kn− r)× r, r× (Kn− r) and
r× r, respectively, i.e.,

ϒ̃(σ , t,λ ,ε) =

(
ϒ̃1(σ , t,λ ,ε) ϒ̃2(σ , t,λ ,ε)
ϒ̃3(σ , t,λ ,ε) ϒ̃4(σ , t,λ ,ε)

)
. (4.90)

Based on the results of [19] (Lemma 4.2) and taking into account Proposition 4.3, Lemma
4.10, the equation (4.29), the inequalities in (4.38) and Remarks 4.8, 4.9, we have immediately
the following estimates of these blocks for all 0≤ t ≤ σ ≤ t f and all λ ∈Ωλ :∥∥ϒ̃l(σ , t,λ ,ε)

∥∥≤ b̃2, l = 1,3,
∥∥ϒ̃2(σ , t,λ ,ε)

∥∥≤ b̃2ε,∥∥ϒ̃4(σ , t,λ ,ε)
∥∥≤ b̃2

[
ε + exp

(
−0.5β (σ − t)/ε

)]
, ε ∈ (0,ε1],

(4.91)

where ε1 > 0 is some sufficiently small number; b̃2 > 0 is some constant independent of ε and
λ ∈Ωλ ; the positive constant β was introduced in (4.38).

Using the block representations of the matrices ∆̃(t,λ ,ε), Γ̃(t,λ ,ε), ϒ(σ , t,λ ,ε) (see the
equations (4.85),(4.87),(4.90)), as well as using the inequalities (4.88),(4.91) and their unifor-
mity with respect to λ ∈Ωλ and ε ∈

(
0,min{ε0,ε1}

]
, we obtain the following inequalities:

‖∆̃ j(t,λ ,ε)‖ ≤ c̃ε, j = 1,2,3, t ∈ [0, t f ], λ ∈Ωλ , ε ∈ (0, ε̃0], (4.92)

where ε̃0 = min{ε0,ε1}; c̃ > 0 is some constant independent of λ , ε and j.
Using the equation (4.84) and the inequalities in (4.92), we directly obtain the inequalities in

(4.83). This completes the proof of the lemma. �

4.4.2. Asymptotic Behaviour of the value F̃ε(k,λ ). Let us partition vectors z0(λ ) and Φi(t,λ ),
(i = 1, ...,m) into blocks as:

z0(λ ) = col(x0(λ ),y0(λ )),

Φi(t,λ ) = col
(
Φi,x(t,λ ),Φi,y(t,λ )

)
, i = 1, ...,m, t ∈ [0, t f ], λ ∈Ωλ ,

(4.93)

where x0(λ ) ∈ EKn−r, y0(λ ) ∈ Er, Φi,x(t,λ ) ∈ EKn−r, Φi,y(t,λ ) ∈ Er.
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Substituting the block representations of the matrix M̃k(t,λ ,ε) and of the vectors z0(λ ) and
Φi(t,λ ), (i= 1, ...,m) (see the equations (4.60) and (4.93)) into the expression for F̃ε(k,λ ) (see
the equation (4.59)), we obtain

F̃ε(k,λ ) =
(
(x0(λ ))T ,(y0(λ ))T) M̃k,1(0,λ ,ε) εM̃k,2(0,λ ,ε)

εM̃T
k,2(0,λ ,ε) εM̃k,3(0,λ ,ε)

( x0(λ )
y0(λ )

)

+
m

∑
i=1

∫ t f

0

(
Φ

T
i,x(t,λ ),Φ

T
i,y(t,λ )

) M̃k,1(t,λ ,ε) εM̃k,2(t,λ ,ε)

εM̃T
k,2(t,λ ,ε) εM̃k,3(t,λ ,ε)

( Φi,x(t,λ )
Φi,y(t,λ )

)
dt,

(4.94)

where λ ∈Ωλ , ε > 0.
Let us introduce into the consideration the value

F̃0(k,λ )
4
=
(
x0(λ )

)T M̃o
k,10(0,λ )x

0(λ )+
m

∑
i=1

∫ t f

0
Φ

T
i,x(t,λ )M̃

o
k,10(t,λ )Φi,x(t,λ )dt, λ ∈Ωλ .

(4.95)
Now, using the equations (4.94) and (4.95), as well as Lemma 4.16, the inequalities (4.81)-

(4.82) and the boundedness of the vectors z0, Φi(t,λ ) for all λ ∈ Ωλ , t ∈ [0, t f ], (i = 1, ...m),
we directly obtain the inequality∣∣F̃ε(k,λ )− F̃0(k,λ )

∣∣≤ c̃1ε, k = 1, ...,K, λ ∈Ωλ , ε ∈ (0, ε̃0], (4.96)

where c̃1 > 0 is some constant independent of λ and ε .

4.4.3. Calculation of limε→+0 F ∗
ε (k). First of all let us remember the following. The equation

(4.59) presents the expression for the value F̃ε(k,λ ) of the functional (4.45), calculated along
the trajectory w(t) = col(w1(t),w2(t), ...,wK(t)), (wk(t) ∈ En) of the system (3.16) with u(t) =
uε

(
w(t), t,λ

)
given by the equations (3.12). From the other hand, F ∗

ε (k) is the value of the
functional (3.2) calculated along the trajectory w(t) of the system (3.16) with u(t) = u∗ε

(
w(t), t

)
(see the equations (3.7) and (3.8)). Also, let us note that, due to the equations (4.46) and (4.47),
the functionals (4.45) and (3.2) coincide with each other. Therefore, we have that

F ∗
ε (k) = F̃ε

(
k,λ ∗(ε)

)
, k = 1, ...,K, ε > 0, (4.97)

where λ ∗(ε) is the solution of the optimization problem (3.8)-(3.9) and, due to Corollary 4.5,
of the optimization problem (4.13)-(4.14).

Using the equality (4.97), the limit equality (4.43), the inequality (4.96), and taking into
account the continuity of F̃0(k,λ ), (k = 1, ...,K) with respect to λ ∈Ωλ , we have immediately
the following limit equality

lim
ε→+0

F ∗
ε (k) = F̃0(k,λ ∗0 ), k = 1, ...,K. (4.98)

As a direct consequence of Corollary 3.5 and the equation (4.98), we obtain the limit equality

lim
ε→+0

I ∗ε =
K

∑
k=1

λ
∗
0,kF̃0(k,λ ∗0 ), col(λ ∗0,1,λ

∗
0,2, ...,λ

∗
0,K) = λ

∗
0 . (4.99)
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Remember that I ∗ε (see the equation (3.10)) is the optimal value of the functional Jε(u,λ ) in
the optimal control problem (2.1),(3.1)-(3.2).

5. ASYMPTOTICALLY SUBOPTIMAL SOLUTION OF THE PROBLEM (2.1),(3.1)-(3.2)

5.1. Formal Construction of the Control Component in the Suboptimal Solution. Due to
the equation (4.4), the solution M

(
t,λ ∗(ε),ε

)
, t ∈ [0, t f ] of the terminal-value problem (3.5)

with λ = λ ∗(ε) has the form

M
(
t,λ ∗(ε),ε

)
=
(
RT(t,λ ∗(ε)))−1

M
(
t,λ ∗(ε),ε

)
R−1(t,λ ∗(ε)), t ∈ [0, t f ], ε > 0, (5.1)

where M
(
t,λ ∗(ε),ε

)
is the solution of the terminal-value problem (4.5) with λ = λ ∗(ε).

Substituting (5.1) into the expression (3.7) for the control component u∗ε
(
w(t), t

)
of the solu-

tion to the problem (2.1),(3.1)-(3.2) and taking into account the equations (4.7),(4.17), we can
rewrite this control in the form

u∗ε
(
w(t), t

)
=−1

ε

(
MT

2
(
t,λ ∗(ε),ε

)
, M3

(
t,λ ∗(ε),ε

))
R−1(t,λ ∗(ε))w(t),

w(t) ∈ EKn, t ∈ [0, t f ], ε > 0,

(5.2)

where M2
(
t,λ ∗(ε),ε

)
and M3

(
t,λ ∗(ε),ε

)
are the corresponding components of the solution to

the terminal-value problem (4.19)-(4.21) with λ = λ ∗(ε).
Replacing in the right-hand side of (5.2) λ ∗(ε) with λ ∗0 , as well as M2

(
t,λ ∗(ε),ε

)
with

Mo
20(t,λ

∗
0 ) and M3

(
t,λ ∗(ε),ε

)
with Mo

30(t,λ
∗
0 ), we obtain the following state-feedback control:

ûε

(
w(t), t

) 4
=−1

ε

((
Mo

20(t,λ
∗
0 )
)T

, Mo
30(t,λ

∗
0 )
)
R−1(t,λ ∗0 )w(t),

w(t) ∈ EKn, t ∈ [0, t f ], ε > 0.

(5.3)

By virtue of Remark 2.2, for all ε > 0, ûε

(
w(t), t

)
∈U , i.e., this control is admissible in the

problem (2.1),(3.1)-(3.2). In what follows of this section, we are going to show that the pair(
ûε

(
w(t), t

)
,λ ∗0

)
provides the value Ĵε of the functional in the problem (2.1),(3.1)-(3.2) to be

arbitrary close to the optimal value of this functional for all sufficiently small ε > 0.
Let F̂ε(k), (k = 1, ...,K) be the value of the functional Fε(u,k) (see the equation (3.2)),

calculated along the trajectory w(t) = col(w1(t),w2(t), ...,wK(t)), (wk(t) ∈ En) of the system
(3.16) with u(t) = ûε

(
w(t), t

)
given by the equation (5.3). Then,

Ĵε =
K

∑
k=1

λ
∗
0,kF̂ε(k), ε > 0, (5.4)

where λ ∗0,k, (k = 1,2, ...,K) are the same as in (4.99).
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5.2. Asymptotic Analysis of the Value F̂ε(k). Consider the matrix-valued functions

Mo
0(t,ε)

4
=

(
Mo

10(t,λ
∗
0 ) εMo

20(t,λ
∗
0 )

ε
(
Mo

20(t,λ
∗
0 )
)T

εMo
30(t,λ

∗
0 )

)
, t ∈ [0, t f ], ε > 0,

M o
0 (t,ε)

4
=
(
RT (t,λ ∗0 )

)−1Mo
0(t,ε)R

−1(t,λ ∗0 ), t ∈ [0, t f ], ε > 0.

(5.5)

Using these matrix-valued functions, we can rewrite the control (5.3) in the form

ûε

(
w(t), t,λ ∗0

)
=− 1

ε2 BT (t)M o
0 (t,ε)w(t), w(t) ∈ EKn, t ∈ [0, t f ], ε > 0. (5.6)

Now, similarly to the equations (4.48)-(4.50), we obtain that

F̂ε(k) =
(
w0)T

M̂k(0,ε)w0 +
m

∑
i=1

∫ t f

0
Θ

T
i (t)M̂k(t,ε)Θi(t)dt, k = 1, ...,K, (5.7)

where, for all ε > 0 and k∈ {1, ...,K}, M̂k(t,ε), t ∈ [0, t f ] is the unique solution of the following
terminal-value problem for linear differential equation with respect to the unknown Kn×Kn-
matrix-valued function M̂k(t):

dM̂k(t)
dt

=−M̂k(t)Â (t,ε)− Â T (t,ε)M̂k(t)− D̃k(t)−M o
0 (t,ε)S (t,ε)M o

0 (t,ε),

t ∈ [0, t f ], M̂k(t f ) = H̃k,

(5.8)

Â (t,ε) = A (t)−S (t,ε)M o
0 (t,ε), (5.9)

H̃k and D̃k(t) are given by (4.46) and (4.47), respectively.
Let us transform (similarly to (4.54)) the unknown M̂k(t) in the terminal-value problem (5.8)

as follows:
M̂k(t) =

(
RT (t,λ ∗0 )

)−1M̂k(t)R−1(t,λ ∗0 ), t ∈ [0, t f ], (5.10)

where M̂k(t) is a new unknown matrix-valued function.
Due to this transformation, we obtain (similarly to (4.55)-(4.58)) the terminal-value problem

for the unknown matrix-valued function M̂k(t)

dM̂k(t)
dt

=−M̂k(t)Â(t,ε)− ÂT (t,ε)M̂k(t)− D̂k(t)−Mo
0(t,ε)S(ε)M

o
0(t,ε),

t ∈ [0, t f ], M̂k(t f ) = Ĥk,

(5.11)

where Mo
0(t,ε) is given in (5.5),

Â(t,ε) = A(t,λ ∗0 )−S(ε)Mo
0(t,ε),

(5.12)

D̂k(t) = RT
k (t,λ

∗
0 )D̃(t)Rk(t,λ ∗0 ), (5.13)

Ĥk(λ ) =

(
Ĥk,1 O(Kn−r)×r
Or×(Kn−r) Or×r

)
, Ĥk,1 = L T

k (t f ,λ
∗
0 )H̃ Lk(t f ,λ

∗
0 ). (5.14)
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Using the transformation (5.10) and the equation (4.15), we can rewrite the equation (5.7) as
follows:

F̂ε(k)=
(
z0(λ ∗0 )

)T M̂k(0,ε)z0(λ ∗0 )+
m

∑
i=1

∫ t f

0
Φ

T
i (t,λ

∗
0 )M̂k(t,ε)Φi(t,λ ∗0 )dt, k= 1, ...,K, (5.15)

where, for all ε > 0, M̂k(t,ε), t ∈ [0, t f ] is the unique solution of the terminal-value problem
(5.11).

Further asymptotic analysis of the value F̂ε(k) is based on the zero-order asymptotic solution
to the problem (5.11).

5.2.1. Zero-Order Asymptotic Solution to the Terminal-Value Problem (5.11). Similarly to the
block form (4.60) of the solution to the terminal-value problem (4.55), we look for the solution
to the problem (5.11) in the following block form:

M̂k(t,ε) =

 M̂k,1(t,ε) εM̂k,2(t,ε)

εM̂T
k,2(t,ε) εM̂k,3(t,ε)

 , (5.16)

where the matrices M̂k,1(t,ε), M̂k,2(t,ε) and M̂k,3(t,ε) are of the dimensions (Kn− r)× (Kn−
r), (Kn− r)× r and r× r, respectively; M̂T

k,1(t,ε) = M̂k,1(t,ε), M̂T
k,3(t,ε) = M̂k,3(t,ε).

Taking into account the symmetry of the matrix D̂k(t), we partition it into blocks as:

D̂k(t) =

 D̂k,1(t) D̂k,2(t)

D̂T
k,2(t) D̂k,3(t)

 , (5.17)

where the matrices D̂k,1(t), D̂k,2(t) and D̂k,3(t) are of the dimensions (Kn− r)× (Kn− r),
(Kn− r)× r and r× r, respectively; D̂T

k,1(t) = D̂k,1(t), D̂T
k,3(t) = D̂k,3(t).

Substitution of the block forms of the matrices S(ε), A(t,λ ), Mo
0(t,ε), Ĥk, M̂k(t,ε), D̂k(t)

(see the equations (4.8),(4.18),(5.5),(5.14),(5.16),(5.17)) into the problem (5.11) yields after
a routine matrix algebra the following equivalent terminal-value problem in the time interval
[0, t f ]:

dM̂k,1(t,ε)
dt

=−M̂k,1(t,ε)A1(t,λ ∗0 )− εM̂k,2(t,ε)A3(t,λ ∗0 )−AT
1 (t,λ

∗
0 )M̂k,1(t,ε)

−εAT
3 (t,λ

∗
0 )M̂

T
k,2(t,ε)+ M̂k,2(t,ε)

(
Mo

20(t,λ
∗
0 )
)T

+Mo
20(t,λ

∗
0 )M̂

T
k,2(t,ε)

−D̂k,1(t)−Mo
20(t,λ

∗
0 )
(
Mo

20(t,λ
∗
0 )
)T

, M̂k,1(t f ,ε) = Ĥk,1, (5.18)

ε
dM̂k,2(t,ε)

dt
=−M̂k,1(t,ε)A2(t,λ o

0 )− εM̂k,2(t,ε)A4(t,λ o
0 )− εAT

1 (t,λ
o
0 )M̂k,2(t,ε)

−εAT
3 (t,λ

o
0 )M̂k,3(t,ε)+ M̂k,2(t,ε)Mo

30(t,λ
o
0 )+Mo

20(t,λ
o
0 )M̂k,3(t,ε)

−D̂k,2(t)−Mo
20(t,λ

o
0 )M

o
30(t,ε), M̂k,2(t f ,ε) = 0, (5.19)
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ε
dM̂k,3(t,ε)

dt
=−εM̂T

k,2(t,ε)A2(t,λ ∗0 )− εM̂k,3(t,ε)A4(t,λ ∗0 )− εAT
2 (t,λ

∗
0 )M̂k,2(t,ε)

−εAT
4 (t,λ

∗
0 )M̂k,3(t,ε)+ M̂k,3(t,ε)Mo

30(t,λ
∗
0 )+Mo

30(t,λ
∗
0 )M̂k,3(t,ε)

−D̂k,3(t)−
(
Mo

30(t,λ
∗
0 )
)2
, M̂k,3(t f ,ε) = 0. (5.20)

Like the problem (4.62)-(4.64), the problem (5.18)-(5.20) also is a singularly perturbed linear
terminal-value problem. In what follows of this subsection, similarly to Subsection 4.4.1, we
construct and justify the zero-order asymptotic solution of this problem. We seek this asymp-
totic solution in the form

M̂k, j0(t,ε) = M̂o
k, j0(t)+ M̂b

k, j0(τ), j = 1,2,3, τ = (t− t f )/ε, (5.21)

where (like in (4.65)) the terms with the upper index ”o” constitute the outer solution, while the
terms with the upper index ”b” are the boundary correction terms in a left-hand neighbourhood
of t = t f ; τ ≤ 0 is a new independent variable, called the stretched time. For any t ∈ [0, t f ), τ→
−∞ as ε →+0. Similarly to Subsection 4.4.1, equations and conditions for obtaining the outer
solution and the boundary correction terms are derived by substituting the representation (5.21)
into the terminal-value problem (5.18)-(5.20) instead of M̂k, j(t,ε), ( j = 1,2,3) and equating
the coefficients for the same power of ε on both sides of the resulting equations, separately the
coefficients depending on t and on τ .

Thus, similarly to (4.68), we have

M̂b
k,10(τ)≡ 0, τ ≤ 0. (5.22)

Furthermore, similarly to (4.69)-(4.71), we obtain the equations and conditions for the outer
solution terms for all t ∈ [0, t f ]

dM̂o
k,10(t)

dt
=−M̂o

k,10(t)A1(t,λ ∗0 )−AT
1 (t,λ

∗
0 )M̂

o
k,10(t)

+M̂o
k,20(t)

(
Mo

20(t,λ
∗
0 )
)T

+Mo
20(t,λ

∗
0 )
(
M̂o

k,20(t,λ
∗
0 )
)T

−D̂k,1(t)−Mo
20(t,λ

∗
0 )
(
Mo

20(t,λ
∗
0 )
)T

, M̂o
k,10(t f ) = Ĥk,1, (5.23)

−M̂o
k,10(t)A2(t,λ ∗0 )+ M̂o

k,20(t)M
o
30(t,λ

∗
0 )+Mo

20(t,λ
∗
0 )M̂

o
k,30(t)

−D̂k,2(t)−Mo
20(t,λ

∗
0 )M

o
30(t,λ

∗
0 ) = 0, (5.24)

M̂o
k,30(t)M

o
30(t,λ

∗
0 )+Mo

30(t,λ
∗
0 )M̂

o
k,30(t)− D̂k,3(t)−

(
Mo

30(t,λ
∗
0 )
)2

= 0. (5.25)

Comparing the system (5.23)-(5.25) with the system (4.69)-(4.71) and taking into account
that D̂k(t) = D̃k(t,λ ∗0 ), Ĥk,1 = H̃k,1(λ

∗
0 ), we directly obtain the following equalities:

M̂o
k, j0(t) = M̃o

k, j0(t,λ
∗
0 ), j = 1,2,3, t ∈ [0, t f ]. (5.26)
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Now proceed to the obtaining the boundary correction terms M̂b
k,20(τ) and M̂b

k,30(τ). Similarly
to (4.75)-(4.76), we obtain the terminal-value problem for M̂b

k,20(τ) and M̂b
k,30(τ)

dM̂b
k,20(τ)

dτ
= M̂b

k,20(τ)M
o
30(t f ,λ

∗
0 )+Mo

20(t f ,λ
∗
0 )M̂

b
k,30(τ), τ ≤ 0,

M̂b
k,20(0) =−M̂o

k,20(t f ),

(5.27)

dM̂b
k,30(τ)

dτ
= M̂b

k,30(τ)M
o
30(t f ,λ

∗
0 )+Mo

30(t f ,λ
∗
0 )M̂

b
k,30(τ), τ ≤ 0,

M̂b
k,30(0) =−M̂o

k,30(t f ).

(5.28)

Since, due to the equation (4.29), the matrix Mo
30(t f ,λ

∗
0 ) is positive definite, then (similarly

to (4.81)-(4.82)) we have the estimates of M̂b
k,30(τ) and M̂b

k,20(τ)∥∥M̂b
k, j0(τ)

∥∥≤ b̂exp(β̂ τ), j = 2,3, τ ≤ 0, (5.29)

where b̂ > 0 and β̂ > 0 are some constants.
Thus, we have completed the formal construction of the zero-order asymptotic solution to the

terminal-value problem (5.18)-(5.20). The following assertion justifies this asymptotic solution.

Lemma 5.1. Let the assumptions AI-AV be fulfilled. Then, there exists a number ε̂0 > 0
such that, for all ε ∈ (0, ε̂0], the entries of the solution

{
M̂k,1(t,ε),M̂k,2(t,ε),M̂k,3(t,ε)

}
to

the terminal-value problem (5.18)-(5.20) satisfy the inequalities∥∥M̂k,1(t,ε)− M̂o
k,10(t)

∥∥≤ ĉε,
∥∥M̂k, j(t,ε)− M̂k, j0(t,ε)

∥∥≤ ĉε,

j = 2,3, t ∈ [0, t f ],

(5.30)

where M̂k, j0(t,ε), ( j = 2,3) are given in (5.21); ĉ > 0 is some constant independent of ε .

Proof. The lemma is proven quite similarly to Lemma 4.16. �

5.2.2. Asymptotic Estimate of the Value F̂ε(k). Substituting (4.93),(5.16) into the equation
(5.15), and using Lemma 5.1, the equation (5.26) and the inequalities in (5.29), we directly
obtain the following estimate of the value F̂ε(k)∣∣F̂ε(k)− F̃0(k,λ ∗0 )

∣∣≤ ĉ1ε, k = 1, ...,K, ε ∈ (0, ε̂0], (5.31)

where F̃0(k,λ ) is given by the equation (4.95); ĉ1 > 0 is some constant independent of ε .

5.2.3. Calculation of limε→+0 Ĵε . Using the equations (4.99),(5.4) and the inequalities in
(5.31), we obtain immediately the limit equality

lim
ε→+0

Ĵε =
K

∑
k=1

λ
∗
0,kF̃0(k,λ ∗0 ) = lim

ε→+0
I ∗ε . (5.32)

Remember that I ∗ε (see the equation (3.10)) is the optimal value of the functional Jε(u,λ )
in the optimal control problem (2.1),(3.1)-(3.2), while Ĵε is the value of the functional in the
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problem (2.1),(3.1)-(3.2) generated by the pair
(

ûε

(
w(t), t

)
,λ ∗0

)
, where ûε

(
w(t), t

)
is given by

(5.3). Thus, the equality (5.32) means that the pair
(

ûε

(
w(t), t

)
,λ ∗0

)
indeed provides the value

Ĵε of the functional in the problem (2.1),(3.1)-(3.2) to be arbitrary close to the optimal value
of this functional for all sufficiently small ε > 0.

Remark 5.2. In addition to the equality (5.32), let us note the following. Using this equality,
as well as the equations (3.10),(4.16),(4.41) and the inequality (4.44), we directly obtain

K

∑
k=1

λ
∗
0,kF̃0(k,λ ∗0 ) = J0(λ

∗
0 ). (5.33)

6. SOLUTION OF THE OPTIMAL CONTROL PROBLEM (2.1),(2.5)

Theorem 6.1. Let the assumptions AI-AVI be fulfilled. Then, the following equality is valid:

J ∗
λ
(w0)

∣∣
λ=λ ∗0

= J0
(
λ
∗
0
)
, (6.1)

where J ∗
λ
(w0)

∣∣
λ=λ ∗0

is the infimum of the functional J
(
u,λ ∗0

)
with respect to u(t)= u

(
w(t), t

)
∈

U in the problem (2.1),(2.5) (see Remark 2.4); the function J0(λ ) is defined in the equation
(4.41); the vector λ ∗0 is defined by the equation (4.40).

Proof (by contradiction). Assume that the equality (6.1) is wrong, i.e., we assume that
J ∗

λ
(w0)

∣∣
λ=λ ∗0

6= J0
(
λ ∗0
)
. Let us show that this assumption implies the inequality

J ∗
λ
(w0)

∣∣
λ=λ ∗0

< J0
(
λ
∗
0
)
. (6.2)

Using the equations (2.2)-(2.5),(3.1)-(3.2),(5.3)-(5.4) and Remark 2.4, we directly obtain the
following chain of the inequalities and the equality:

J ∗
λ
(w0)

∣∣
λ=λ ∗0

≤J
(
ûε(·),λ ∗0

)
≤Jε

(
ûε(·),λ ∗0

)
= Ĵε , ε > 0. (6.3)

Thus, for all ε > 0, J ∗
λ
(w0)

∣∣
λ=λ ∗0

≤ Ĵε . The latter, along with the equations (5.32)-(5.33),

directly yields that J ∗
λ
(w0)

∣∣
λ=λ ∗0

≤ J0
(
λ ∗0
)
. This inequality and the above assumed inequality

J ∗
λ
(w0)

∣∣
λ=λ ∗0

6= J0
(
λ ∗0
)

mean the fulfillment of (6.2).

Since (6.2) is valid and J ∗
λ
(w0)

∣∣
λ=λ ∗0

is the infimum of the functional J (u,λ ∗0 ) with respect

to u(t) = u
(
w(t), t

)
∈U in the problem (2.1),(2.5), then there exists a control ũ(·) ∈U such that

J ∗
λ
(w0)

∣∣
λ=λ ∗0

< J
(
ũ(·),λ ∗0

)
< J0

(
λ
∗
0
)
. (6.4)

Taking into account that u∗ε(·) given by (3.7) is the control component of the solution
(
u∗ε(·),λ ∗(ε)

)
to the problem (2.1),(3.1)-(3.2), we directly have

I ∗ε =I
(
λ
∗(ε),ε

)
=Jε

(
u∗ε(·),λ ∗(ε)

)
≤Jε

(
ũ(·),λ ∗(ε)

)
=J

(
ũ(·),λ ∗(ε)

)
+ ãε

2, ε > 0,
(6.5)

where

0≤ ã = E
[∫ t f

0
ũT(w̃(t), t)ũ(w̃(t), t)dt

]
<+∞,
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w̃(t)
4
= col

(
w̃1(t), w̃2(t), ..., w̃K(t)

)
, t ∈ [0, t f ] is the trajectory of the initial-value problem (2.1)

with k = 1,2, ...,K generated by u(t) = ũ(·) ∈U .
Thus,

I ∗ε ≤J
(
ũ(·),λ ∗(ε)

)
+ ãε

2, ε > 0. (6.6)

Furthermore, using the equations (2.5)-(2.6),(4.43), we obtain the limit equality

lim
ε→+0

J
(
ũ(·),λ ∗(ε)

)
= J

(
ũ(·),λ ∗0

)
. (6.7)

Now, the inequality (6.6), along with the equalities (5.32)-(5.33),(6.7), directly yields the
following inequality: J0

(
λ ∗0
)
≤J

(
ũ(·),λ ∗0

)
, which contradicts the right-hand side inequality

in (6.4). This contradiction means that the above assumed inequality J ∗
λ
(w0)

∣∣
λ=λ ∗0

6= J0
(
λ ∗0
)

is wrong. Therefore, the equality (6.1) is correct. Thus, the theorem is proven. �

Corollary 6.2. Let the assumptions AI-AVI be fulfilled. Then, the following equality is valid:

J ∗(w0) = J0
(
λ
∗
0
)
, (6.8)

where J ∗(w0) is given by the equation (2.7).

Proof First of all, let us note that

J ∗(w0)≥J ∗
λ
(w0)

∣∣
λ=λ ∗0

= J0
(
λ
∗
0
)
. (6.9)

Using the equations (2.2)-(2.5),(3.1)-(3.2),(3.12), Remark 2.4, Theorem 3.4 and its proof, we
directly obtain the following chain of the inequalities and the equality:

J ∗
λ
(w0)≤J

(
uε

(
w(t), t,λ

)
,λ
)
≤Jε

(
uε

(
w(t), t,λ

)
,λ
)
= I (λ ,ε), λ ∈Ωλ , ε > 0,

(6.10)
yielding

J ∗(w0) = max
λ∈Ωλ

J ∗
λ
(w0)≤ max

λ∈Ωλ

I (λ ,ε) = I
(
λ
∗(ε),ε

)
= I ∗ε , ε > 0. (6.11)

Using (6.11) and the equations (5.32)-(5.33), we directly have

J ∗(w0)≤ lim
ε→+0

I ∗ε = J0
(
λ
∗
0 ). (6.12)

Now, the equations (6.9) and (6.12) yield immediately the equality (6.8), which completes
the proof of the corollary. �

Consider the sequence of numbers {εq}+∞

q=1 satisfying the conditions

0 < εq ≤min{ε̃0, ε̂0}, q = 1,2, ...; lim
q→+∞

εq = 0. (6.13)

Using this sequence, consider the sequence of state-feedback controls in the optimal control
problem (2.1),(2.5)

{ûq
(
w(t), t

)
}+∞

q=1
4
=
{

ûεq

(
w(t), t,λ ∗0

)}+∞

q=1, (6.14)

where ûε

(
w(t), t,λ ∗0

)
is defined in (5.3).
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Theorem 6.3. Let the assumptions AI-AVI be fulfilled. Then, the sequence of the pairs{(
ûq
(
w(t), t

)
,λ ∗0

)}+∞

q=1
is the solution the optimal control problem (2.1),(2.5), i.e.,

lim
q→+∞

J
(

ûq
(
w(t), t

)
,λ ∗0

)
= J ∗(w0). (6.15)

Proof. Due to the equations (2.2)-(2.5),(3.1)-(3.2),(5.4), Remark 2.4, Theorem 6.1 and Corol-
lary 6.2, we have the following chain of the equalities and the inequalities:

J ∗(w0) = J ∗
λ
(w0)

∣∣
λ=λ ∗0

≤J
(

ûq
(
w(t), t

)
,λ ∗0

)
≤Jεq

(
ûq
(
w(t), t

)
,λ ∗0

)
= Ĵεq. (6.16)

Using the equations (5.32)-(5.33),(6.13) and Corollary 6.2, we obtain the following:

J ∗(w0) = J0
(
λ
∗
0
)
= lim

q→+∞
Ĵεq .

The latter, along with (6.16) yields immediately the equality (6.15). Thus, the theorem is proven.
�

7. ILLUSTRATIVE EXAMPLE

Consider the following two-model Ito differential stochastic system:

dw1,k(t) = ρkw2,k(t)dt +dη(t), w1,k(0) = 1, t ∈ [0,4], k ∈ {1,2},
dw2,k(t) = u(t)dt +2dη , w2,k(0) = 2, t ∈ [0,4], k ∈ {1,2},

(7.1)

where w1,k(t), w2,k(t), u(t) are scalar functions; η(t), t ≥ 0, (η(0) = 0) is the scalar standard
Wiener process defined on the filtered probability space {Ω,F ,P} [2]; ρ1 = 2, ρ2 = 1.

Comparing the system (7.1) with the system (2.1), one can conclude that (7.1) is a particular
case of (2.1) where n = 2, r = 1, m = 1, t f = 4, K = 2,

A1 =

(
0 2
0 0

)
, A2 =

(
0 1
0 0

)
, B1 = B2 =

(
0
1

)
,

σ1,1 = σ1,2 =

(
1
2

)
, w̃0 =

(
1
2

)
.

(7.2)

In this example, we choose the functional F (u,k) as:

F (u,k) = E
[

w2
1,k(4)+

∫ 4

0
w2

2,k(t)dt
]
, k ∈ {1,2}. (7.3)

Comparison of the functional (7.3) and the functional (2.2) yields that (7.3) is a particular
case of (2.2) where

H̃ =

(
1 0
0 0

)
, D̃ =

(
0 0
0 1

)
. (7.4)

Using the functional (7.3) and the set

Ωλ

4
=
{

λ = col(λ1,λ2) ∈ E2 : λ1 ≥ 0, λ2 ≥ 0, λ1 +λ2 = 1
}
, (7.5)
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we construct the performance index evaluating the control process of the two-model system
(7.1)

J (u,λ )
4
= λ1F (u,1)+λ2F (u,2)→ max

λ∈Ωλ

inf
u∈U

, (7.6)

where the set U is a particular case of such a set presented in Definition 2.1.

Remark 7.1. The two-model singular optimal control problem (7.1),(7.6) is a particular case
of the multi-model singular optimal control problem (2.1),(2.5). The solution of the problem
(7.1),(7.6) will allow us to clearly illustrate the theoretical results of the previous sections, while
avoiding too complicated analytical/numerical calculations. Such an illustration allows not to
overload the paper and, therefore, to keep its readability. Also, let us note that the two-model
system (7.1) and the functional (7.3) are stochastic versions of the two-model deterministic
system and the corresponding functional considered in the illustrative example of the work
[26].

Proceed to the construction of the solution to the optimal control problem (7.1),(7.6). Due
to Theorem 6.3, first, we should check up the fulfilment of the assumptions AI-AVI in this
problem. Based on the equations (7.2),(7.4), we have immediately that the assumptions AI-AV
are fulfilled. The fulfilment of the assumption AVI will be verified in the sequel of this section.
Based on Theorem 6.3 and the equations (5.3),(6.14), one can conclude the following. To
construct the aforementioned solution, the matrix-valued functions R(t,λ ), Po

20(t,λ ), Po
30(t,λ )

should be obtained. We start with the obtaining R(t,λ ). Due to the equations (3.4),(4.3),(7.2),
this matrix depends on the complement matrix Bc to the matrix B = col(0,1,0,1). Similarly
to [26], we choose the matrix Bc as follows:

Bc =


1 0 0
0 1 0
0 0 1
0 0 0

 .

Then, using this matrix, as well as the equations (3.3),(3.4),(4.3) and the data of the example
(7.2),(7.4), we obtain the following matrices:

L (t,λ )≡L (λ ) =


1 0 0
0 λ2 0
0 0 1
0 −λ1 0

 , R(t,λ )≡R(λ ) =


1 0 0 0
0 λ2 0 1
0 0 1 0
0 −λ1 0 1

 , (7.7)

where λ1 and λ2 are the respective entries of the vector λ ∈Ωλ .
Due to the results of Subsection 4.2.2, to obtain the matrices Mo

20(t,λ ), Mo
30(t,λ ), first, we

should obtain the matrices A1(t,λ ), A2(t,λ ), D1(t,λ ), D2(t,λ ), H1(λ ), So
1(λ ). Using the equa-

tions (3.3),(4.6),(4.11), (4.12),(4.18),(4.32), as well as the data of the example (7.2),(7.4) and
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the above calculated matrices L (t,λ ), R(t,λ ), we obtain after a routine matrix algebra

A1(t,λ )≡ A1(λ ) =

 0 2λ2 0
0 0 0
0 −λ1 0

 , A2(t,λ )≡ A2(λ ) =

 2
0
1

 ,

D1(t,λ )≡ D1(λ ) =

 0 0 0
0 λ1λ2 0
0 0 0

 , D2(t,λ )≡ D2 = 1,

H1(λ ) =

 λ1 0 0
0 0 0
0 0 λ2

 , So
1(λ )≡ So

1 =

 4 0 2
0 0 0
2 0 1

 .

(7.8)

Using the equations (4.29),(4.30),(7.8) and the symmetry of the matrix Mo
10(t,λ ), we directly

have

Mo
30(t,λ )≡Mo

30 = 1,

Mo
20(t,λ ) =

 2Mo
10,11(t,λ )+Mo

10,13(t,λ )
2Mo

10,12(t,λ )+Mo
10,23(t,λ )

2Mo
10,13(t,λ )+Mo

10,33(t,λ )

 ,

(7.9)

where Mo
10,i j(t,λ ), (i = 1,2,3; j = 1,2,3) is the entry of the matrix Mo

10(t,λ ) placed in its i-th
row and j-th column.

Solving the terminal-value problem (4.31) with t f = 4 and the data from (7.8), we obtain

2Mo
10,11(t,λ )+Mo

10,13(t,λ ) =
2λ1

(4λ1 +λ2)(4− t)+1
,

2Mo
10,12(t,λ )+Mo

10,23(t,λ ) =
3λ1λ2(4− t)

(4λ1 +λ2)(4− t)+1
,

2Mo
10,13(t,λ )+Mo

10,33(t,λ ) =
λ2

(4λ1 +λ2)(4− t)+1
.

(7.10)

Furthermore, for the sake of further calculations, we need the entries Mo
10,11(t,λ ), Mo

10,13(t,λ ),
Mo

10,33(t,λ ), which are the following:

Mo
10,11(t,λ ) =

λ1λ2(4− t)+λ1

(4λ1 +λ2)(4− t)+1
,

Mo
10,13(t,λ ) =−

2λ1λ2(4− t)
(4λ1 +λ2)(4− t)+1

,

Mo
10,33(t,λ ) =

4λ1λ2(4− t)+λ2

(4λ1 +λ2)(4− t)+1
.

(7.11)

Now, we should obtain the solution λ ∗0 of the optimization problem (4.40)-(4.41). The max-
imized function J0(λ ) of this problem depends on the vector x0(λ ) and on the vector-valued
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function Φ1,x(t,λ ). From the equations (2.3),(3.4),(4.15),(4.93), as well as the data of the ex-
ample (7.2) and the equation (7.7), we obtain the vectors x0(λ ) and Φ1,x(t,λ )

x0(λ )≡ x0 = col(1,0,1), Φ1,x(t,λ )≡Φ1,x = col(1,0,1). (7.12)

Based on the equation (4.41) and using the equation (7.12), we obtain (after a routine calcu-
lations) the function J0(λ ) in the form

J0(λ ) =
4λ1λ2 +1

4(4λ1 +λ2)+1
+

4λ1λ2

4λ1 +λ2
+

4λ1 +λ2−λ1λ2

(4λ1 +λ2)2 ln
(
4(4λ1 +λ2)+1

)
, (7.13)

where the vector λ ∈Ωλ (see the equation (7.5)).
This function has the unique maximum point λ ∗0 ∈Ωλ , meaning the fulfilment of the assump-

tion AVI in this example. This maximum point is λ ∗0 = col(λ ∗0,1,λ
∗
0,2) = (0.037,0.963). The

corresponding maximal value J0
(
λ ∗0
)

of the function J0(λ ) is 1.814. By virtue of Definition 2.5
and Corollary 6.2, the optimal value of the functional in the two-model singular optimal control
problem (7.1),(7.6) is J ∗(w0) = 1.814.

Using Theorem 6.3, as well as the equations (5.3),(6.14),(7.9) and the vector λ ∗0 = col(0.037,0.963),
we obtain the control entry in the solution to the two-model stochastic singular optimal control
problem (7.1),(7.6)

{ûq
(
w(t), t

)
}+∞

q=1 =

{
− 1

εq

[
0.074w1,1(t)

1.111(4− t)+1
+

(
0.107(4− t)

1.111(4− t)+1
+0.037

)
w2,1(t)

+
0.963w1,2(t)

1.111(4− t)+1
+

(
0.107(t−4)

1.111(4− t)+1
+0.963

)
w2.2(t)

]}+∞

q=1
,

where the sequence of numbers {εq}+∞

q=1 is given by (6.13).

Thus, the sequence of the pairs
{(

ûq
(
w(t), t

)
,λ ∗0

)}+∞

q=1
is the solution of the two-model

stochastic singular optimal control problem (7.1),(7.6), and

max
λ∈Ωλ

inf
u∈U

(
λ1F (u,1)+λ2F (u,2)

)
= 1.814.

8. CONCLUDING REMARKS

CRI. In this paper, the finite horizon multi-model stochastic linear-quadratic optimal control
problem was considered. The functional of this problem does not contain the control function
which means that the considered optimal control problem is singular. The definition of the so-
lution to this problem was proposed.
CRII. The original control problem is solved by the regularization approach. Namely, this prob-
lem is transformed approximately to an auxiliary regular optimal control problem. The latter
has the same multi-model system of dynamics and a similar functional augmented by a finite
horizon integral of the square of the Euclidean norm of the vector-valued control with a small
positive weight (a small parameter). Thus, the auxiliary problem is a finite horizon multi-model
stochastic linear-quadratic optimal control problem with a cheap control.
CRIII. The solution of this multi-model stochastic cheap control problem was reduced to the
consecutive solution of the following two problems. The first problem is the terminal-value
problem for the extended matrix Riccati differential equation. This problem depends not only
on the aforementioned small parameter, but also on an auxiliary vector-valued parameter. The
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dimension of the latter equals to the number of the models in the multi-model system, and this
vector-valued parameter belongs to the proper bounded and closed set in the corresponding Eu-
clidean space. The second problem is the nonlinear optimization problem. The cost function of
this problem depends on the small parameter, and this cost function is maximized with respect
to the vector-valued parameter.
CRIV. An asymptotic analysis of each of the aforementioned two problems was carried out.
Namely, for the first problem, zero-order asymptotic solutions is formally constructed and jus-
tified. It was shown that this asymptotic solution is valid uniformly with respect to the vector-
valued parameter. For the second problem, the continuity of its solution with respect to the
small parameter as the latter tends to zero was shown.
CRV. Based on this asymptotic analysis, the expression of the optimal value of the functional in
the original singular optimal control problem was derived. The solution to the original problem
also was obtained.
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