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A DYNAMIC THEORY OF THE BALASSA-SAMUELSON EFFECT:
WHY HAS THE JAPANESE ECONOMY STAGNATED FOR OVER 30 YEARS?
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Abstract. The Balassa-Samuelson effect (“BS effect”) has attracted attention as a theory to explain the stagnation
of the Japanese economy over the past 30 years. In particular, it has been used to explain the long-term depreciation
of the real effective exchange rate since 1995. Furthermore, macroeconomic data show that the BS effect explains
well Japan’s long-term economic stagnation. However, the BS effect was originally derived theoretically for small
open economies, not for large economies like Japan. In other words, the BS effect cannot be theoretically applied
to large economies. This is a serious problem in applying the BS effect empirically. In this paper, we embed
Balassa-Samuelson’s original argument into the optimal growth theory framework. That is, we set up an optimal
growth problem for large countries. It is then shown that there exists a stable optimal steady state and that the
BS effect is more directly valid in that optimal steady state. In other words, as a long-run property, the BS effect
is applicable to large as well as small countries, although, contrary to the small open economy case, it does not
depend on the capital shares of the two sectors.
Keywords. Balassa-Samuelson effect; Optimal steady state; capital intensity; Two-sector optimal growth models.
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1. INTRODUCTION

The Balassa-Samuelson effect (BS effect, hereafter) is still an important phenomenon in the
theory of economic development, as Balassa [2] states, “As economic development is accom-
panied by greater inter-country differences in the productivity of tradable goods, differences in
wages and service prices increase, and correspondingly so do differences in purchasing power
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parity and exchange rates.” Formally it can be expressed as the following BS effect equation.
˙̃pN
p̃N

=
(

1−β

1−α

)
ȦT
AT
− ȦN

AN
(1.1)

where ẋ indicates a time derivative dx/dt, p̃N is the relative price of non-tradable goods, where
the price of tradable goods is numéraire, α is the capital share of the tradable goods output, β

is the capital share of the non-tradable output, and Ai is the TFP of the sector i = N,T .1

If α > β and ȦT/AT > ȦN/AN hold, then according to (1.1), it implies ˙̃pN/p̃N > 0. In other
words, the relative price of non-tradable goods increases. If the perfect purchasing parity (PPP)
holds only for tradable goods, it implies that the real exchange rate will appreciate.2 Valentinyi
and Herrendorf [16] report that α = 0.37 and β = 0.32 in the US economy. It implies that
(1− β )/(1−α) ≈ 1.08 > 1. Furthermore, pN grows in such an economy because the TFP
growth rate in the tradable goods sector is expected to be greater than that in the non-tradable
goods sector.

Another important property is as follows.

Wages are determined entirely by the factor productivity of the tradable good sector. (1.2)

Let us call these two properties (1.1) and (1.2) collectively the Balassa-Samuelson property. In
short, the BS property hereafter.

The Japanese economy has stagnated for the past 30 years, especially the real effective ex-
change rate index (2010=100), which has been declining since 1995 as shown in Figure 1.

FIGURE 1. Japan’s real effective exchange rate index
Source: Real effective exchange rate index (2010 = 100) – Japan — Data (worldbank.org).

BS property was often applied to explain Japan’s real exchange rate depreciation and eco-
nomic stagnation problems. In other words, as a result of globalization, major Japanese manu-
facturers in the tradable goods sector moved their main production facilities to China, Thailand,
and other countries, and the remaining production facilities in Japan became less efficient. In ad-
dition, deregulation implemented in the service sector increased productivity in the non-tradable
goods sector. This fact can be confirmed by the Balassa-Samuelson (BS) effect measures re-
ported in the RPROD database.3 Figure 2 exhibits five different BS effect indicators. Since
1995, three of the five series have sharply declined.

1For the standard derivation of the equation (1.1) and (1.2), please refer to Asea et al. [1] and Couharde et al.
[6] for comprehensive explanations.

2For a discussion of deteriorating terms of trade, see Majumdar et al. [14].
3In detail on the RPROD data base, see C. Couharde et al. [6].
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FIGURE 2. Japan’s BS effect measures
Source: CEPII - RPROD.

The rate of TFP growth in the tradable goods sector, as indicated by relative GDP per capita
or per worker in Figure 2 above, has declined sharply since 1995, while the relative prices of
non-tradable goods, as indicated by the CPI/PPI ratio and the three- and six- sector deflators in
Figure 2, especially the three-sector deflator, has declined substantially as expected by the BS
property (1.1) described above. As a result, the real effective exchange rate declined as shown
in Figure 1.

Japan’s per capita wages have also stagnated due to BS characteristics (1.2), and as Figure 3
below shows, per capita wages have remained nearly constant during the 1991-2020 reporting
period.

As a result, the BS property would seem to fully explain the stagnation of the Japanese
economy and the depreciation of the real effective exchange rate. However, there is a major
theoretical problem with applying the BS property to a large country like Japan. This is because
the BS property was originally proven for small developing countries that are given interest
rates in the world market. Therefore, it is important to show that the BS property holds for large
countries. This issue is addressed in the framework of optimal growth theory.

FIGURE 3. Real per-capita wages (1991:100)
Source: htt ps : //www5.cao.go. jp/ j− j/wp/wp− je22/h06hz020105.html.

To our knowledge, the BS property has never been formally tested in the framework of two-
sector optimal growth theory. Consider two cases. One is the case of a large country that can
control interest rates internally, and the other is the case of a small country that cannot set
interest rates but can provide access to world capital markets. In a small country, Takahashi
and Venditti [15] proved that the exact same equation as the BS effect equation (1.1) holds.
In contrast, this paper proves that the following different BS effect equation (1.3) holds as a
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property of the long-run optimal steady state in a large country.

˙̃pN
p̃N

= ȦT
AT
− ȦN

AN
(1.3)

This is in contrast to the equation for the BS effect for small countries shown in (1.1). Since
(1.3) does not depend on the capital intensity ratio term as in equation (1.1), the BS effect shows
a more direct relationship with the difference in TFP growth rates. It is important to note that
this difference is due to different optimal steady-state conditions, as will be shown below.

The remainder of this paper is organized as follows. Section 2 provides and analyzes the
model: Section 2.1 presents a two-sector model comprising tradable and non-tradable goods.
Then, in Sections 2.2 and 2.3, we analyze the uniqueness and saddle point stability of the opti-
mal steady state. In Section 3, we discuss the Balassa-Samuelson property in the optimal steady
state based on the discussion in Section 2. In Section 4, we provide concluding comments. All
the proofs are gathered in a final Appendix.

2. THE MODEL

This section first describes the production structure and the preferences of our 2-sector model.
Then we discuss the intertemporal equilibrium and the steady state. Finally we derive the
characteristic polynomial associated with linearization around the steady state.

2.1. The 2-sector economy. We consider an economy producing a non-tradable (N) good ỹN ,
and a tradable (T) good ỹT . Each good is assumed to be produced by using capital k j and labor
l j, j = N,T in different proportions via Cobb-Douglas production functions:

ỹN = ANkβ

N l1−β

N ,

ỹT = AT kα
T l1−α

T ,
(2.1)

where Ai denotes the total factor productivity of sector i = N,T . Total labor is given by 1 =
lN + lT , and total stock of capital is given by k = kN + kT . Let us then denote yN = ỹN/AN and
yT = ỹT/AT . We can then rewrite (2.1) as

yN = kβ

N l1−β

N ,

yT = kα
T l1−α

T .
(2.2)

A firm in each industry maximizes its profit under productivity-normalized output prices pN
and pT , rental rate of capital r, and wage rate w. Choosing the tradable good as the numéraire,
i.e. pT = 1, we define from the technologies (2.2) the following Lagrangian

L = kα
T l1−α

T + pN

[
kβ

N l1−β

N − yN

]
+ r [k− kN− kT ]+w [1− lN− lT ]

with pN , r and w the price of the non-tradable good, the interest rate and the wage rate, all in
terms of the price of tradable good. The first-order conditions give

r = αkα−1
T l1−α

T = pNβkβ−1
N l1−β

N

w = (1−α)kα
T l−α

T = pN(1−β )kβ

N l−β

N

(2.3)
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and we thus derive the following input coefficients:

a00(w, pN) =
lN
yN

= pN(1−β )
w , a10(r, pN) =

kN
yN

= pNβ

r ,

a01(w) = lT
yT

= 1−α

w , a11(r) = kT
yT

= α

r .
(2.4)

Each coefficient ai j represents the amount of “good” i, that is, labor or intermediate capital
good, that it takes to produce one unit of good j - in other words, the non-tradable or tradable
good output. Denoting p = (pN ,1)′ and ω = (w,r)′, we can then define the following matrix of
input coefficients

A (ω, p) =
(

a00(w, pN) a01(w)
a10(r, pN) a11(r)

)
,

which can basically be obtained from input-output tables available in national accounting data.
Using the results of Benhabib and Nishimura [3], and as stated in Lemma 2.1 and Lemma

2.2, the factor-price frontier and the factor market-clearing equations depend on this matrix.

Lemma 2.1. p = A ′(ω, p)ω and d p = A ′(ω, p)dω .

Lemma 2.2. Denote x = (1,k)′ and y = (yN ,yT )
′. Then A (ω, p)y = x and

A (w, p)dy+


(

∂a00
∂w yN + ∂a01

∂w yT

)
dw+ ∂a01

∂ pN
yNd pN(

∂a10
∂ r yN + ∂a11

∂ r yT

)
dr+ ∂a11

∂ pN
yNd pN

= dx.

We derive that, at equilibrium, wage rate and rental rate are functions of the non-tradable
output price only, that is, w = w(pN) and r = r(pN), while the outputs are functions both of the
capital stock and the non-tradable output price, y j = y j(k, pN), j = N,T .

As can be expected in multi-sector optimal growth models, there is a duality between the
Rybczinski and Stolper-Samuelson effects, i.e.

∂yN
∂k = ∂ r

∂ pN
. (2.5)

2.2. Intertemporal equilibrium and steady state. The economy is populated by a large num-
ber of identical infinitely-lived agents. Without loss of generality, we assume that the total pop-
ulation is constant and normalized to one. At each period, a representative agent inelastically
supplies one unit of labor. Furthermore, utility is derived from consuming the non-tradable
good c̃N and the tradable good c̃T according to the following Cobb-Douglas specification:

u(cN ,cT ) = cθ
Nc1−θ

T

with cN = c̃N/AN , cT = c̃T/AT and θ ∈ (0,1]. Parameter θ measures the share of the non-
tradable good cN within total utility. The agent’s preferences imply properties of interest re-
garding the (pure) elasticities of intertemporal substitution in consumption goods cN and cT ,
ε00 and ε11, and the (cross-) elasticities of intertemporal substitution between the two goods,
ε01 and ε10:

ε00 =− u1
u11cN

= 1
1−θ

, ε01 =− u1
u12cT

=− 1
1−θ

,

ε10 =− u2
u21cN

=− 1
θ
, ε11 =− u2

u22cT
= 1

θ
.

(2.6)

Profit maximization in both sectors described in Section 2.1 yields the demands for capital
and labor as functions of the capital stock and the production levels of the non-tradable good,
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namely l j = l j(k,yN) and k j = k j(k,yN), j = N,T . Considering that at the equilibrium cN = yN ,
the optimal amount of the non-tradable good is then defined by:4

yT = kT (k,yN)
α lT (k,yN)

1−α = T (k,cN).

From the envelope theorem, we get: r = Tk(k,cN) and pT = −TcN (k,cN). The intertemporal
optimization problem of the representative agent is then given by:

max
{cN(t),cT (t),k(t)}

∫ +∞

0
cN(t)θ cT (t)1−θ e−δ tdt

s.t. k̇(t) = T (k(t),cN(t))−gk(t)− cT (t)
k(0) given,

(2.7)

where δ ≥ 0 is the discount rate and g > 0 is the depreciation rate of the capital stock. We can
write the modified Hamiltonian in current value as:

H = cN(t)θ cT (t)1−θ +q(t) [T (k,cN(t))−gk(t)− cT (t)] .

The necessary conditions, which describe the solution to problem (2.7), are therefore given by
the following equations:

q(t) =
θcN(t)θ−1cT (t)1−θ

pN(t)
(2.8)

q(t) = (1−θ)cN(t)θ cT (t)−θ (2.9)

k̇(t) = T (k(t),cN(t))−gk(t)− cT (t) (2.10)

q̇(t) = (δ +g−Tk(k(t),cN(t)))q(t) = (δ +g− r(t))q(t). (2.11)

Taking equations (2.8) to (2.11), we are now in a position to characterize an equilibrium path
{k(t), pN(t),}t≥0 and to prove the existence of a unique steady state. Indeed, as shown in
Section 2.1, we have r = r(pN) and cN = yN = kN(k,cN)

β lN(k,cN)
1−β which gives cN = cN(k),

and thus yT = T (k,cN(k)) = yT (k). Using (2.8), (2.9), we derive:

cT (t) = cT (k(t), pN(t)) = cN(k(t))
pN(t)(1−θ)

θ
. (2.12)

Straightforward computations then yield:
∂cT
∂k = pN(1−θ)

θ

∂cN
∂k and ∂cT

∂ pN
= pN(1−θ)

θ

∂cN
∂ pN
− cN

pN
. (2.13)

Considering (2.8)-(2.11) and (2.13), the motion equations write:

k̇ = yT (k)−gk− cT (k, pN)

ṗN = pN(t)
θ

[
δ +g− r(pN)

]
.

(2.14)

Any solution {k(t), pN(t)}t≥0 that also satisfies the transversality condition:5

lim
t→+∞

e−δ tq(t)k(t) = 0

4It can be easily shown that the social production function T (k,cN) is increasing in k, decreasing in cN and
concave with a cross derivative driven by the Stolper-Samuelson Theorem and the capital intensity difference across
the two sectors (see Jones and Mitra [7] for a version of the Stolper-Samuelson Theorem in higher dimensions).

5See Michel [13] and Kamihigashi [8] for some proof of the necessity of the transversality condition.
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with q(t) as given by (2.8), is called an equilibrium path. A steady state is defined by a vector
(c∗N ,k

∗, p∗N) solution of

yT (k) = gk+ cT = gk+ cN(k)
pN(1−θ)

θ

r(pN) = δ +g.
(2.15)

We get the following result:6

Proposition 2.3. There exists a unique steady state (c∗N ,k
∗, p∗N ,) > 0 solution of the system of

nonlinear equations (2.15) with c∗N = cN(k∗) and c∗T = cN(k∗)
p∗N(1−θ)

θ
.

Proof. See Appendix 5.1

2.3. Characteristic polynomial. Linearizing the dynamical system around (c∗N ,k
∗, p∗N) gives

a 2×2 Jacobian matrix J which is provided in Appendix 5.2. Let us denote T the trace and
Dθ the determinant of J . Proposition 2.4 displays some properties of the eigenvalues of J
and the expression of the characteristic polynomial.

Proposition 2.4. If λ is an eigenvalue of the Jacobian matrix J , then δ −λ is also an eigen-
value and thus T = δ . The degree-2 characteristic polynomial is given by:

Pθ (λ ) = λ
2−λδ +Dθ (2.16)

where

Dθ =

(
∂yT
∂k −g− ∂cT

∂k

)
∂ r

∂ pN
θ

. (2.17)

Moreover, the two roots are real and distinct.

Proof. See Appendix 5.2.

The results on the structure of the characteristic roots are in line with the conclusions of Kurz
[10] and Levhari and Liviatan [11]. Based on Proposition 2.4, we can further prove the saddle-
point stability of the stationary steady state as exhibited in Proposition 2.3.

Proposition 2.5. For any α,β ∈ (0,1) and any δ ≥ 0, the unique steady state (c∗N ,k
∗, p∗N) is

saddle-point stable

Proof. See Appendix 5.3.

Contrary to the discrete time formulation where endogenous period-two cycles and chaotic
dynamics can occur when the non-tradable good sector is more capital intensive than the trad-
able good sector (β > α),7 in two-sector continuous time models, the saddle-point property is
always satisfied for any capital intensity difference.

6See Majumdar and Mitra [12] for some results on the existence of a poverty trap under increasing returns.
7See Benhabib and Nishimura [4], Boldrin and Montruccchio [5]. Similar results are obtained in a two-sector

Robinson-Solow-Srinivasan model by Khan and Mitra [9].
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3. THE BALASSA-SAMUELSON EFFECT

We focus in this Section on the Balassa-Samuelson effect. The first question to answer is to
check whether such a property is satisfied along the optimal steady state. Indeed, we have solved
the model through a stationary version of the dynamical equations based on the considerations
of the variables yN = ỹN/AN , yT = ỹT/AT , cN = c̃N/AN and cT = c̃T/AT . We need now to
consider the real variables that are affected by the growth rates of productivities AN and AT .
More precisely we need to consider the price of the non-tradable good p̃N which is linked to the
stationary price pN as follows: pN = p̃NAN/AT . The following Proposition establishes that in
the optimal growth framework, the BS property is modified as formulated by equation (1.3).

Proposition 3.1. At the unique steady state, the Balassa-Samuelson property holds, i.e.
˙̃p∗N
p̃∗N

= ȦT
AT
− ȦN

AN
.

Proof. See Appendix 5.4.

Building on Proposition 2.4 showing the saddle-point property of the steady state, we can
also conclude that the Balassa-Samuelson property holds not only at the optimal steady state
but also along the optimal path.

The BS effect equation derived in Proposition 3.1 indicates a sharp contrast to that of the
BS effect equation (1.1) presented in the Introduction. Note that this equation does not rely
on a capital intensity term as indicated in the equation (1.1). That is, it shows that the rate
of change in non-tradable relative prices is exclusively related to the difference in TFP growth
rates between the two sectors.

It is interesting to consider why the formulas are different for large and small countries. In the
small countries, the interest rate is given in the world market and the wage is determined only in
the tradable goods sector. Thus, the allocation of capital goods between sectors is determined
by the capital intensity of each sector. Under the standard assumption that the capital intensity
of the non-tradable goods sector is lower than that of the tradable goods sector, an increase
in capital will increase the output of the tradable goods sector and decrease that of the non-
tradable goods sector due to the Rybczynski theorem. This change in output affects relative
output prices, which appear as the capital intensity ratio in the BS formula, as shown in (1.1).
In contrast, in the case of large countries, since the interest rate is determined domestically based
on the productivity of the sectors, the capital intensities of the two sectors do not work directly
to determine output prices. Thus, the relative intensity term is removed from the formula in the
large country case, as shown in Proposition 3.1.

Finally, even for the large countries, Property (1.2) still holds from the following first-order
conditions on the wage rate at the optimal steady state,

w̃∗ = (1−α)AT kα
T l−α

T . (3.1)

This relation clearly indicates that only labor productivity in the tradable goods sector deter-
mines the wage rate.

4. CONCLUDING COMMENTS

The BS effect in large countries provided in Proposition 3.1 is shown to be in contrast to
the equation for the BS effect in small countries as indicated in (1.1). For large countries such
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as Japan and the United States, the BS effect was found not to depend on the capital intensity
ratio of the non-tradable and tradable sectors, but only on the difference in TFP growth rates of
the sectors. Thus, the results more directly support the stagnation theory of Japan based on the
properties of the BS effect described in the introduction.
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5.1. Proof of Proposition 2.3. Using the steady state equation r = δ + g, we obtain by the
first-order conditions (2.3) that

ω10 = r
w = β

1−β

lN
kN

= α

1−α

lT
kT

r = β pN

(
lN
kN

)1−β

= β pN

(
1−β

β
ω10

)1−β

= δ +g.
(5.1)

We then derive

ω10 =
β

1−β

(
δ+g
β pN

) 1
1−β

. (5.2)

Considering again the first-order conditions (2.3), we obtain

α

(
lT
kT

)1−α

= β pN

(
lN
kN

)1−β

⇔ α
(1−α

α
ω10
)1−α

= β pN

(
1−β

β
ω10

)1−β

. (5.3)

Thus

p∗N = δ+g
β

(
α

δ+g

) 1−β

1−α
[

β (1−α)
α(1−β )

]1−β

. (5.4)

Consider now Lemma 2.2. Solving A (ω, p)y = x with respect to k and using yT = gk+cT with
cT = (1−θ)pNcN/θ , we see that

k = a10+
(1−θ)pN cN

θ
(a11a00−a10a01)

a00(1−ga11)+ga10a01
(5.5)

with
a00 =

(1−β )pNω10
δ+g , a10 =

pNβ

δ+g ,

a01 =
(1−α)ω10

δ+g , a11 =
α

δ+g .
(5.6)

Solving A (ω, p)y = x with respect to yN via cN = yN gives

cN =
1−a01

(
gk+ (1−θ)pN cN

θ

)
a00

. (5.7)

Using (5.5) into (5.7), we find

c∗N = 1−ga11

a00(1−ga11)+ga10a01+
(1−θ)p∗N a01

θ

with p∗N as given by (5.4). We then derive c∗T and k∗.

5.2. Proof of Proposition 2.4. Linearizing the dynamical system around (c∗N ,k
∗, p∗N) gives the

Jacobian matrix J :

J =

 ∂yT
∂k −g− ∂cT

∂k
∂yT
∂ pN
− ∂cT

∂ pN

0 1
θ

pN
∂ r

∂ pN

≡ ( J1 J2
J3 J4

)
(5.8)

with ∂yN
∂k = ∂ r

∂ pN
.

Since optimization program (2.7) has an Hamiltonian structure, and as initially proved by
Kurz [10] and Levhari and Liviatan [11], if λ is a characteristic root, then δ − λ is also a
characteristic root. This is confirmed by showing that T = δ . Note that, from Lemma 2.1, we
can also derive the sectoral demands for capital and labor as functions of the capital stock and
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the production of the non-tradable good, namely l j = l j(k,yN), k j = k j(k,yN), j = N,T , with
cN = yN . The optimal amount of the tradable good can be also expressed as:

yT = T (k,yN) = kT (k,yN)
α lT (k,yN)

1−α .

From the envelope theorem, we get r = Tk(k,yN) and pN =−TyN (k,yN). From Lemmas 2.1 and
2.2, we obtain the following derivatives:

∂ r
∂ pN

= ∂yN
∂k = ∂cN

∂k =− a01
a11a00−a10a01

, ∂yT
∂k = a00

a11a00−a10a01
.

Using the input coefficients (2.4) yields at the steady state

∂ r
∂ pN

= ∂yN
∂k = ∂cN

∂k = (δ+g)(1−α)
pN(β−α) , ∂yT

∂k = − (δ+g)(1−β )
β−α

. (5.9)

Moreover, using cT = (1−θ)pNcN/θ , we have

∂cT
∂k = 1−θ

θ
pN

∂cN
∂k . (5.10)

From the Jacobian matrix (5.8), we then derive

T = δ + ∂yT
∂k − (δ +g)+ pN

∂cN
∂k ,

and we conclude from (5.9) ∂yT
∂k − (δ + g)+ pN

∂cN
∂k = 0. It follows therefore that T = δ . We

finally conclude that, because of the triangular structure of the Jacobian matrix, the two charac-
teristic roots are real and distincts.

5.3. Proof of Proposition 2.5. We have already proved that the Trace of the Jacobian matrix
satisfies T = δ . Let us now compute the Determinant. Using (5.9), we have

1
θ

pN
∂ r

∂ pN
= (δ+g)(1−α)

β−α
,

∂yT
∂k −g− ∂cT

∂k = 1
θ

(δ+g)(1−α)
α−β

+δ .
(5.11)

We then derive

Dθ = 1
θ

(δ+g)(1−α)
β−α

[
1
θ

(δ+g)(1−α)
α−β

+δ

]
= − 1

θ 2
(δ+g)(1−α)

(β−α)2 [(δ +g)(1−α)+θδ (α−β )] .
(5.12)

It follows that if α > β , then Dθ < 0 for any δ . When β > α , Dθ < 0 if and only if

(δ +g)(1−α)+θδ (α−β ) = δh(θ)+g(1−α)> 0 (5.13)

with h(θ) = 1− α(1− θ)− θβ . Straightforward calculations show that if β > α , h(0) =
1−α > h(1) = 1−β > 0 with h′(θ) = α−β < 0 for all θ ∈ [0,1]. It follows that h(θ)> 0 for
all θ ∈ [0,1] and Dθ < 0. The steady state is therefore a saddle-point for any capital-intensity
difference between the tradable and non-tradable sectors and for any δ ≥ 0.
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5.4. Proof of Proposition 3.1. Choosing again the tradable good as the numéraire, i.e., p̃T = 1,
we define from the technologies (2.1) the following Lagrangian

L̃ = AT kα
T l1−α

T + p̃N

[
ANkβ

N l1−β

N − ỹN

]
+ r̃ [k− kN− kT ]+ w̃ [1− lN− lT ]

with p̃N , r̃ and w̃ the price of the tradable good, the interest rate and the wage rate, all in terms
of the price of tradable good. The first-order conditions give

r̃ = β p̃NANkβ−1
N l1−β

N = αAT kα−1
T l1−α

T ,

w̃ = (1−β )p̃NANkβ

N l−β

N = (1−α)AT kα
T l−α

T .
(5.14)

Compared to the expression of the Lagrangian L , we clearly have the following relationships:

pN = p̃NAN
AT

, r = r̃
AT

and w = w̃
AT

with L = L̃ /AT . Proceeding as in the proof of Proposition 2.3, we have

ω̃10 = r̃
w̃ = β

1−β

lN
kN

= α

1−α

lT
kT
,

r̃ = β p̃NAN

(
1−β

β
ω̃10

)1−β

= rAT = (δ +g)AT .
(5.15)

which gives

ω̃10 =
β

1−β

(
AT (δ+g)
β p̃NAN

) 1
1−β (5.16)

Considering the first-order conditions (5.14), we have

β p̃NAN

(
lN
kN

)1−β

= AT α

(
lT
kT

)1−α

⇔

β p̃NAN

(
1−β

β
ω̃10

)1−β

= AT α
(1−α

α
ω̃10
)1−α

.

(5.17)

Hence, we have

p̃∗N = AT (δ+g)
βAN

[
β (1−α)
α(1−β )

(
α

δ+g

) 1
1−α

]1−β

and we then derive
˙̃p∗T
p̃∗T

= ȦN
AN
− ȦT

AT
.


