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Abstract. Inspired by the role played by zero duality gap in optimization problems, especially in the stopping
strategy of algorithms, we design in this work a similar scheme but addressing non-convex quadratic optimization
problems subject to linear equality constraints having possibly nonzero duality gap. In fact, we get a formula for
determining it at least approximately.
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1. INTRODUCTION

All optimization problem associates a dual problem that, under certain regularity conditions,
provides relevant informations about existence, uniqueness, and also strategies to solve it algo-
rithmically.

The duality gap between the primal and its respective dual problems, which is defined as
the difference of their optimal values, has been widely studied by many authors by appealing
certain conditions (called constraint qualification) ensuring zero duality gap, which basically
implies convexity in the problem, see for example [3]. In fact, from the algorithmic point of
view, one of the most important effects of the zero duality gap is the stopping criterium of the
algorithms in order to solve the primal (and also its dual) problem.

In the general setting, i.e., without assuming any constraint qualification, the duality gap
maybe nonzero and determining it, even approximately, could be very difficult.

Corresponding the optimization problem

α := min
x
[ f (x) : g(x) = 0 ], (Opt)
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where f : Rn→ R and g : Rn→ Rq are two given functions, the marginal (or value) function is
the function h : Rq→ R defined as

h(v) = inf
x
[ f (x)+Φ(x) : g(x)+ v = 0], (Pv)

where Φ : Rn→ R∪{+∞} is a given function, whose main role in the problem is to penalize
or approximate it, making possibly easier than the original problem. For exemple, taking Φ

appropriately, the original problem can be approximated by a (maybe not convex) quadratic
optimization problem.

Corresponding to problem (Pv), we get in this work an explicit expression of the so called gap
function of h, which is the difference of h and its corresponding Fenchel bi-conjugate function
h∗∗, provided f is quadratic and g linear. In fact, by considering f (x) = 〈Ax,x〉+ 〈a,x〉, g(x) =
Bx−b, with A, B, a and b, matrices and vectors of appropriated orders, and Φ(x) = ϕ(Bx−b)
(for a given function ϕ), we shall prove that for any v ∈ Rq,

h(v)−h∗∗(v) = ϕ(v)− [〈A·, ·〉+ϕ(v+B·)]∗∗(0),

which, as can be seen, is independent on b. Then, assuming ϕ to be even satisfying ϕ(0) = 0,
the next explicit expression of the duality gap is deduced:

h(0)−h∗∗(0) =− inf
x
[〈Ax,x〉+ϕ(Bx)].

In another context, J.-P Aubin and I. Ekeland [1] introduced a measure of lack convexity in
order to estimate the duality gap in nonconvex optimization. In fact, for a given real-valued
function f defined on a convex set X , its lack of convexity is defined as

ρ( f ) = sup
{

f
(
∑αixi

)
−∑αi f (xi)

}
over all finite families αi ∈]0,1[, xi ∈ X with ∑αi = 1. Clearly, 0≤ ρ( f )≤ ∞, and ρ( f ) = 0 if
and only if f is convex.

The plan of the paper is as follows. In the next section some relationships on the convex hull
and the Fenchel bi-conjugate for a function are discussed. In the third section some properties
on affine–quadratic functions are also discussed highlighting the characterization of the affine-
quadratic property by means of the parallelogram law. The duality gap of the marginal function
corresponding to a general optimization problem with linear equality constraint is discussed in
the fourth section, an explicit expression of the duality gap function is also deduced. When the
objective function in the problem is the sum of an affine-quadratic function and an arbitrary
function, where the second one playing the role of penalizing or regularizing the problem, is
dealt in the fifth section. We also get in this part an explicit expression of the duality gap
corresponding to the marginal function. As a consequence of this expression we deduce that
zero duality gap implies convexity of the problem. The case where the admissible set is a linear
inequality constraint, is briefly discusses in a corollary. Finally, in section six, we provide a
general primal-dual algorithm where the duality gap (assuming it known) is used as stoping
criterium.

2. CONVEX HULL AND FENCHEL BI-CONJUGATE

Given a function f :Rn→ R := [−∞,∞], its domain is the set dom( f ) := {x∈Rn : f (x)<∞}.
When dom( f ) 6= /0 and f >−∞ everywhere, f is said to be proper. The function f is said to be
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even if f (−x) = f (x) for all x ∈ Rn; convex if its epigraph epi( f ) := {(x,λ ) ∈ Rn×R : f (x)≤
λ} is convex; and lower semicontinuos (lsc in short) if epi( f ) is closed.

The Fenchel conjugate of f is the lsc convex function f ∗ : Rn → R defined by f ∗(x∗) :=
sup[〈x∗,x〉− f (x) : x ∈ Rn]. We denote by f ∗∗ := ( f ∗)∗ the Fenchel bi-conjugate of f . The
difference f − f ∗∗ is termed the duality gap function corresponding to f . In general,

−∞≤ f ∗∗(x) = sup
x∗

inf
y
[ f (y)+ 〈x∗,x− y〉]≤ f (x) for all x ∈ Rn.

Additional relationships between f and its conjugate/bi-conjugate are listed below, their
proofs can be easily deduced from the definitions.

Proposition 2.1. We get the following properties

i) f ∗ is even if f is so;
ii) If f is convex, then f (0) = inf f (x) =− f ∗(0) whenever f is even.

iii) f ∗∗(0) = inf f (x) =− f ∗(0) whenever f is even.

The convex hull function of f , denoted by co f , is defined as the greatest convex function
majorized by f . One deduce that co f ≤ f and due the Carathéodory’s theorem [6, Proposition
2.3.1],

co f (x) = inf

{
n

∑
i=0

λi f (xi) :
n

∑
i=0

λixi = x, λi ≥ 0,
n

∑
i=0

λi = 1

}
.

To complete the properties given previously in Proposition 2.1, one get

iv) If f is even then co f (0) = f ∗∗(0).

The proof of the next proposition can also be deduced directly by definitions.

Proposition 2.2. We get the following properties

i) dom(co f ) = co(dom( f ));
ii) co f is lsc on ri(co(dom( f )));

iii) If co f (x̄) = −∞ at some x̄ ∈ Rn, then f ∗∗ ≡ −∞ on Rn and coincides with co f on
ri(co(dom( f )));

iv) co f (x)>−∞ for all x ∈ Rn if and only if dom( f ∗) 6= /0 if and only if f ∗∗(x)>−∞ for
all x ∈ Rn if and only if there is an affine function minorizing f on Rn;

v) If co f (x)>−∞ for all x ∈Rn, then f ∗∗ coincides with the greatest lsc convex function,
denoted by co f , majorized by f (or equivalently by co f ). In particular, f ∗∗ and co f
coincide on Rn except maybe on the boundary of co(dom( f )).

The next example shows that both operations biconjugate and convex hull are different.

Example 2.3. Let g : R2→ R∪{+∞} be defined as

g(x1,x2) =

{
|x2|e−|x1x2| if 0≤ x1 ≤ 1,

+∞ otherwise.

Simple calculations get

g∗∗(x1,x2) =

{
0 if 0≤ x1 ≤ 1,
+∞ otherwise



4 J.B. BAILLON, E. OCAÑA

and

cog(x1,x2) =


0 if 0 < x1 ≤ 1,
|x2| if x1 = 0,
+∞ otherwise.

Of course, biconjugate and convex hull coincide over all lsc convex functions, it is the same
over all quadratic functions f (x) = 〈Ax,x〉 corresponding to n× n symmetric matrices A, both
values being −∞ if A is not positive semidefinite.

Unfortunately, equality between both operations, biconjugate and convex hull, is not stable
under addition. More specifically, f ∗∗1 = co f1 and f ∗∗2 = co f2 does not implies ( f1 + f2)

∗∗ =
co( f1 + f2), as shown the next example where one of the functions is convex lsc and the other
quadratic.

Example 2.4. Let g be as the previous example and let f be the function defined on R2 as
f (x1,x2) = g(x1,x2)−α(x2

1 + x2
2) for some negative real parameter α . Clearly, f is lsc and for

|α| sufficiently large, is also convex.

The next proposition [5, Lemma 1.5.3] (see also [6, Corollary 3.47]), shows that under a
coerciveness property both operations biconjugate and convex hull coincide.

Proposition 2.5. If f is lsc minorized by an affine function and satisfying the following coer-
civity property

lim
‖x‖→∞

f (x)
‖x‖

= ∞,

then f ∗∗ = co f everywhere.

3. AFFINE–QUADRATIC FUNCTIONS

A function f : Rn → R is said to be affine–quadratic if it is of the form f (x) = 〈Ax,x〉+
〈a,x〉+α on some affine linear subspace; and +∞ or −∞ otherwise, where A is an n×n sym-
metric matrix, a ∈ Rn and α ∈ R.

It is clear that the sum of two affine–quadratic functions is affine–quadratic; and if f is affine–
quadratic, then for any y ∈ Rn the function fy defined as fy(x) = f (x+ y) for all x ∈ Rn, is
affine–quadratic.

This property is also stable under other operations as listed below.

Lemma 3.1. Let f :Rn→R be a linear–quadratic function. Then for a linear subspace E ⊂Rn,
the function fE defined on Rn as

fE(x) := min
y∈E

f (y+ x) for all x ∈ Rn,

is affine–quadratic. In particular,
i) if B is an m×n matrix, then the function fB defined on Rm by

fB(x) := min
By=x

f (y) ∀x ∈ Rm,

is affine–quadratic.
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ii) if f1 and f2 are linear–quadratics defined on Rn, then the inf–convolution f1] f2 defined
on Rn as

( f1] f2)(x) := inf
x1+x2=x

[ f1(x1)+ f2(x2)] ∀x ∈ Rn,

is affine–quadratic.

Proof. By considering E = img(C) for some matrix C, the function fE can be set as

fE(x) = 〈Ax,x〉+ 〈a,x〉+α +g(x),

where
g(x) = min

z
[〈ACz,Cz〉+ 〈2Ax+a,Cz〉].

So, g(x) (or equivalently fE(x)) is finite if and only if the matrix D :=CtAC is positive semidef-
inite and there exists z such that 2Dz+Ct(2Ax+a) = 0. One deduce that g(x) = 0 if and only
if Dz = 0, which, without loss of generality, we can assume that D is invertible. It follows that
z =−1

2D−1Ct(2Ax+a) and hence

g(x) =−〈ACD−1CtAx,x〉−〈ACD−1Cta,x〉− 1
4
〈CD−1Cta,a〉.

The result follows. �
The quadratic property can be characterized by means the parallelogram law as shows the

following proposition.

Proposition 3.2. Let f : Rn→ R be a continuous function satisfying

f (x+ y)+ f (x− y) = 2[ f (x)+ f (y)] ∀x,y ∈ Rn. (3.1)

Then there exists an n×n symmetric matrix A such that

f (x) = 〈Ax,x〉 ∀x ∈ Rn.

Proof. Taking x = y = 0 in (3.1) one get f (0) = 0 and hence

f (2x) = 4 f (x) ∀x ∈ Rn. (3.2)

Let ϕ : Rn×Rn→ R be defined as

ϕ(x,y) =
1
2
[ f (x+ y)− f (x)− f (y)] ∀(x,y) ∈ Rn×Rn. (3.3)

It is symmetric and from (3.2),

ϕ(x,x) = f (x) ∀x ∈ Rn. (3.4)

So, in order to prove the result it is enough to show that ϕ is bilinear. We first note that for any
x,y ∈ Rn,

ϕ(2x,y) =
1
2
[ f (2x+ y)− f (2x)− f (y)]

and hence by using (3.2), one has

ϕ(2x,y) = f (x+ y)− f (x)− f (y) = 2ϕ(x,y). (3.5)

For any x1,x2,y in Rn, one has

ϕ(x1 + x2,y) =
1
2

[
f (x1 +

1
2

y+ x2 +
1
2

y)− f (x1 + x2)− f (y)
]
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which is equivalent to

ϕ(x1 + x2,y) = f
(

x1 +
y
2

)
+ f

(
x2 +

y
2

)
− 1

2
[ f (x1 + x2)+ f (x1− x2)+ f (y)]

or again to

ϕ(x1 + x2,y) = f
(

x1 +
y
2

)
+ f

(
x2 +

y
2

)
− f (x1)− f (x2)−2 f

(y
2

)
.

So, by using (3.5), one gets

ϕ(x1 + x2,y) = ϕ(x1,y)+ϕ(x2,y).

ϕ being continuous and symmetric, one deduces that it is bilinear. �

Proposition 3.3. Let f : Rn→ R be a continuous function. It is affine–quadratic if and only if

f (y+ x)+ f (y− x)+2 f (0) = 2 f (y)+ f (x)+ f (−x) ∀x,y ∈ Rn (3.6)

Proof. It is clear that f verifies (3.6) if it is affine–quadratic. To prove the convere, let fs be
defined as

fs(x) =
1
2
( f (x)+ f (−x))− f (0).

Then,
fs(y+ x)+ fs(y− x) = 2 fs(y)+2 fs(x),

and hence, in view of Proposition 3.2, there exists an n×n symmetric matrix A such that fs(x) =
〈Ax,x〉. Now, let fi be the function defined by

fi(x) =
1
2
( f (x)− f (−x)).

It follows that f = fs + fi + f (0) and from (3.6),

fi(y+ x)+ fi(y− x) = 2 fi(y) ∀x,y ∈ Rn,

which implies that
fi(y1 + y2) = fi(y1)+ fi(y2) ∀y1,y2 ∈ Rn.

fi beings continuous, it is linear and hence there exists a ∈ Rn such that fi(x) = 〈a,x〉 for all
x ∈ Rn. One deduce that

f (x) = 〈Ax,x〉+ 〈a,x〉+ f (0) ∀x ∈ Rn.

The proof follows. �

4. THE DUALITY GAP FUNCTION

For a given proper function r : Rn→ R∪{+∞}, let h be the function defined on Rm by

h(u) := inf[r(x) : Bx−b = u ],

where B is an m×n matrix of maximal rank and b ∈ Rm. Then, for each u∗ ∈ Rm one has

h∗(u∗) =−〈b,u∗〉+ r∗(Btu∗), (4.1)
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and hence for each u ∈ Rm,

h∗∗(u) = sup
u∗

[〈u+b,u∗〉− r∗(Btu∗) ]

= sup
u∗

inf
x
[r∗∗(x)+ 〈u∗,u+b−Bx〉 ]

≤ inf
x

sup
u∗

[r∗∗(x)+ 〈u∗,u+b−Bx〉 ]

= inf
x
[r∗∗(x) : Bx−b = u ].

4.1. Relationship between h∗∗ and coh.
We denote by ĥ the convex function defined on Rm by

ĥ(u) = inf
x
[r∗∗(x) : Bx−b = u ]. (4.2)

Clearly, h∗∗ ≤ ĥ and also ĥ≤ h because r∗∗ ≤ r. So,

h∗∗(u)≤ ĥ(u)≤ coh(u) ∀u ∈ Rm,

and hence, assuming h∗∗(u) = coh(u) (see the discussions given en Section 2), one gets

h∗∗(u) = inf
x
[r∗∗(x) : Bx−b = u ].

In general the following identity is deduced.

Proposition 4.1. For each u ∈ Rm, it holds

coh(u) = inf[cor(x) : Bx−b = u ].

Proof. Take ε > 0. There exist finitely many u j ∈ Rm and t j ≥ 0 with ∑ t j = 1 such that
∑ t ju j = u and

∑ t jh(u j)< coh(u)+ ε.

For each j, there exists x j satisfying Bx j−b = u j such that

r(x j)< h(u j)+ ε.

Set x = ∑ t jx j. One has Bx−b = u and

cor(x)≤∑ t jr(x j)≤∑ t jh(u j)+ ε ≤ coh(u)+2ε

and hence
inf[cor(x) : Bx−b = u ]≤ coh(u).

To show the reverse inequality, take u ∈ Rm and let x ∈ Rn be such that Bx− b = u and let
finitely many of x j ∈ Rn and t j ≥ 0 such that ∑ t j = 1 and ∑ t jx j = x. Denoting u j := Bx j− b
one has ∑ t ju j = u and hence

coh(u)≤∑ t jh(u j).

On the other hand, for each j one has h(u j)≤ r(x j) and, from the previous inequality,

coh(u)≤∑u jr(x j).

One deduce that coh(u)≤ cor(x) for all x ∈ Rn such that Bx−b = u, and hence

coh(u)≤ inf[cor(x) : Bx−b = u ].

The result is stablished. �
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The linear–quadratic case: We now assume that r(x) = 〈Ax,x〉+ 〈a,x〉+ϕ(Bx−b) for some
symmetric matrix A, vector a and function ϕ , then

h(u) = Q(u)+ϕ(u), (4.3)

where
Q(u) = inf[〈Ax,x〉+ 〈a,x〉 : Bx−b = u ].

Due the Frank–Wolfe theorem [4], Q(u)>−∞ if and only if there exists x̄ satisfying Bx̄−b = u
such that

Q(u) = 〈Ax̄, x̄〉+ 〈a, x̄〉,
which is also equivalent to

〈Ay,y〉+ 〈2Ax̄+a,y〉 ≥ 0 for all y ∈ ker(B).

One deduce the following finiteness characterization. It also appears (u = 0) in [2], Corollary
4.3.

Proposition 4.2. Q(u)>−∞ if and only if

• A is positive semidefinite on ker(B), and
• a ∈ img(A)+ img(Bt).

Notice that this characterization does not depend on u.

Under this finiteness condition, Q is of real value because B is of maximal rank.

Since ϕ is more or less chosen, we can take it appropriately in order to get coh = h∗∗ (see
again the discussions given in Section 2), for example we can choose in (4.3), ϕ(u) = ‖u‖3

3, see
Proposition 2.5.

The next two bounds are deduced for any function r.

Proposition 4.3. It hold that

inf[r(x)− r∗∗(x) : Bx−b = u ]≤ h(u)−h∗∗(u)

and
h(u)− ĥ(u)≤ sup[r(x)− r∗∗(x) : Bx−b = u ].

Proof. Take u ∈ Rm. One get h∗∗(u) ≤ r∗∗(x) for any x such that Bx− b = u and hence
r(x)− r∗∗(x)≤ r(x)−h∗∗(u), which implies

inf[r(x)− r∗∗(x) : Bx−b = u ]≤ h(u)−h∗∗(u).

The definition of ĥ in (4.2) and the elementary inequality,

inf f − infg≤ sup( f −g),

for any functions f and g, the second bound also holds. �
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Remark 4.1. If coh = h∗∗, the two bounds in the previous proposition can be set as

inf[r(x)− r∗∗(x) : Bx−b = u ] ≤ h(u)−h∗∗(u)

≤ sup[r(x)− r∗∗(x) : Bx−b = u ].

In general, in view of Proposition 4.1, one get

inf[r(x)− cor(x) : Bx−b = u ] ≤ h(u)− coh(u)

≤ sup[r(x)− cor(x) : Bx−b = u ].

4.2. Explicit expression of the duality gap function.
For f ,Φ : Rn→R∪{+∞} and y ∈Rn given, let ry : Rn→R∪{+∞} be the function defined

by
ry(x) := f (x+ y)+Φ(x)

and its corresponding gap function

gy := ry− (ry)
∗∗.

Theorem 4.4. Assume that f is affine–quadratic corresponding to a symmetric matrix A. If for
some (and hence for any) y ∈ Rn, the assumptions of Proposition 2.5 are fulfilled for ry, then

gy(x) = Φ(x)− [〈A·, ·〉+Φ(x+ ·)]∗∗(0) for all x ∈ Rn.

Proof. Take ε > 0. There exist finite families x j ∈ Rn and t j ≥ 0 with ∑ t j = 1 such that
∑ t jx j = x and

∑ t j[ f (x j + y)+Φ(x j)] = ∑ t jry(x j)< r∗∗y (x)+ ε.

For each j, set x′j = x j− x. Then ∑ t jx′j = 0 and so

∑ t j[ f (x j + y)+Φ(x j)] = f (x+ y)+Φ(x)−Φ(x)+∑ t j[〈Ax′j,x
′
j〉+Φ(x+ x′j)].

Hence,
ry(x)−Φ(x)+ [〈A·, ·〉+Φ(x+ ·)]∗∗(0)≤ r∗∗y (x).

To show the reverse inequality, let x′j and t j ≥ 0 be finite families such that ∑ t j = 1 and
∑ t jx′j = 0. Take x ∈ Rn and, for each j, x j = x′j + x. One get,

r∗∗y (x) ≤ ∑ t jry(x j)

= ∑ t j[ f (x′j + x+ y)+Φ(x′j + x)]

= ry(x)−Φ(x)+∑ t j[〈Ax′j,x
′
j〉+Φ(x′j + x)]

One deduce that
r∗∗y (x)≤ ry(x)−Φ(x)+ [〈A·, ·〉+Φ(x+ ·)]∗∗(0).

The result is stablished. �
So, in view of Proposition 2.1, the next explicit expression is deduced.

Corollary 4.5. If Φ is even, then for any y ∈ Rn,

gy(0) = Φ(0)− inf
x
[〈Ax,x〉+Φ(x)]. (4.4)
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Example 4.6. Let us consider the case where Φ is the indicator function of the unit ball C =
{x ∈ Rn : ‖x‖∞ ≤ 1} and A = (ai j) symmetric whose entries are nonnegative. Then

inf
x
[〈Ax,x〉+Φ(x)] =−

n

∑
i, j=1

ai j,

and hence gy(0) = ∑i, j ai j for any y ∈ Rn.

Proposition 4.7. If for any even function Φ satisfying Φ(0) = 0 one has

ry(0)− cory(0) = cΦ for all y ∈ Rn,

where cΦ is a constant only depending on Φ, then f is affine–quadratic.

Proof. Take a ∈ Rn and for ξ ∈ R consider Φ defined as

Φ(x) =


0 if x = 0,
ξ if x =±a,
+∞ otherwise.

One has
co( f (y+ ·)+Φ(·))(0) = min[ f (y),

1
2
( f (y+a)+ f (y−a))+ξ ]

and hence
min[ f (y),

1
2
( f (y+a)+ f (y−a))+ξ ] = f (y)+ cΦ,

which implies, at y = 0,

min[ f (0),
1
2
( f (a)+ f (−a))+ξ ] = f (0)+ cΦ.

So, by taking ξ such that 1
2( f (a)+ f (−a))+ξ < f (0), one get cΦ < 0 and hence

1
2
( f (y+a)+ f (y−a)) = f (y)+ cΦ−ξ ,

1
2
( f (a)+ f (−a)) = f (0)+ cΦ−ξ .

One deduce that

f (y+a)+ f (y−a) = 2 f (y)+ f (a)+ f (−a)−2 f (0) for all y,a ∈ Rn,

which means, in view of Proposition 3.3, that f is affine–quadratic. �

4.3. Boundedness of the duality gap function.
For a family {r j} j∈J of functions defined on Rn with value in R∪{+∞}, let r and r be the

functions defined on Rn as

r(x) = inf
j∈J

r j(x) and r(x) = sup
j∈J

r j(x),

and then for a matrix B and vector b, let h and h be the functions defined on Rm as

h(u) = inf
x
[ r(x) : Bx−b = u] and h(u) = inf

x
[ r(x) : Bx−b = u].

Also, for each j, let h j be the function defined on Rm as

h j(u) = inf
x
[r j(x) : Bx−b = u].
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The following upper bounds are deduced

Proposition 4.8. It holds that

inf
j∈J

(h j− coh j)≤ h− co h and inf
j∈J

(h j−h∗∗j )≤ h− h∗∗ .

In the particular case when r j is defined as

r j(x) = 〈Ax,x〉+ 〈a j,x〉+ϕ(Bx−b),

for some matrix A, vectors a j and function ϕ , the following proposition gets a lower bound.

Proposition 4.9. For each u ∈ Rm, it holds

(h− co h)(u)≤ sup
j∈J

(h j− coh j)(u) = ϕ(u)− co [〈A·, ·〉+ϕ(u+B·)](0).

Proof. Fix j ∈ J. Following the proof of Theorem 4.4 one has for each x,

cor(x)≥ cor j(x) = r j(x)− [ϕ(Bx−b)− co [〈A·, ·〉+ϕ(Bx−b+B·)](0)]

and hence for each x ∈ Rn such that Bx− b = u one has cor(x) ≥ r(x)− [ϕ(u)− co [〈A·, ·〉+
ϕ(u+B·)](0)] and hence by taking the infimum on both side one get the desired result in view
of Proposition 4.1. �

5. THE OPTIMIZATION PROBLEM

We now discuss the duality gap corresponding to the optimization problem

α := min
x
[ f (x) : g(x) = 0 ], (Opt)

where f : Rn → R and g : Rn → Rq are two given functions. Its corresponding Lagrangian
function l defined on Rn×Rq is

l(x,v∗) = f (x)+ 〈g(x),v∗〉, (l p)

and then the associated primal and dual problems are

θ := min
x
[α(x) := max

v∗
l(x,v∗) ] (P)

and
θ := max

v∗
[β (v∗) := min

x
l(x,v∗) ]. (D)

Clearly, θ ≥ θ . The difference θ − θ is called the duality gap between problems (P) and (D).

The corresponding marginal function h defined on Rq is

h(v) = inf
x
[ f (x) : g(x)+ v = 0]. (Pv)

Of course, h(0) = α .

Both primal and dual optimal values can also be put in terms of h.

Lemma 5.1. The following relationships hold

θ = h(0) and θ = h∗∗(0).
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Proof. The first one follows because maxv∗ l(x,v∗) coincides with f (x) whenever g(x) =
0, and is +∞ otherwise. The second one follows from the fact that h∗(v∗) = − infx[ f (x) +
〈g(x),v∗〉] and hence

h∗∗(0) = sup
v∗
−h∗(v∗) = sup

v∗
inf

x
[ f (x)+ 〈g(x),v∗〉 ] = θ .

The aforementioned relationships follow. �

5.1. The quadratic case.
Let us consider now the case f (x) = 〈Ax,x〉+ 〈a,x〉+Φ(x) and g(x) = Bx−b, where A is an

n× n symmetric matrix, B an m× n matrix of maximal rank, a ∈ Rn, b ∈ Rm, and Φ a given
function. Then, the associated optimization problem is

α := min
x
[r(x) := 〈Ax,x〉+ 〈a,x〉+Φ(x) : Bx−b = 0 ] (qE)

and its corresponding marginal function

h(u) := min
x
[r(x) : Bx−b = u ]. (qE u)

Theorem 5.2. If Φ(x) = ϕ(Bx−b) for all x ∈Rn, for some function ϕ : Rm→R∪{+∞}, then

h(u)− coh(u) = ϕ(u)− co [〈A·, ·〉+ϕ(u+B·)](0) for all u ∈ Rm.

Proof. Following the same idea from the proof of Theorem 4.4, one has

r(x)− cor(x) = ϕ(Bx−b)− co [〈A·, ·〉+ϕ(Bx−b+B·)](0)

and hence, for each u ∈ Rm,

inf
x
[r(x)− cor(x) : Bx−b = u] = ϕ(u)− co [〈A·, ·〉+ϕ(u+B·)](0)

= sup
x
[r(x)− cor(x) : Bx−b = u],

which coincides with h(u)− coh(u) in view of Remark 4.1. The result follows. �

Remark 5.1. Notice that the gap h− coh does not depend on b.

Corollary 5.3. If h(u)− coh(u) = 0, then

〈Ax,x〉+ 1
2
[ϕ(u+Bx)+ϕ(u−Bx)]≥ ϕ(u), ∀x ∈ Rn,

and hence q(x) := 〈Ax,x〉+ 〈a,x〉 is convex over Bx = b.

Corollary 5.4. If ϕ is even, then

h(0)− coh(0) = ϕ(0)− inf
x
[〈Ax,x〉+ϕ(Bx)].

We end this section by showing the boundedness of the duality gap function corresponding
to problem (qE) but considering it with inequality constraint. For that, let hb be defined as

hb(u) := min
x
[r(x) : Bx−b = u ],

and then, for a given subset C ⊂ Rm, the function hC defined as

hC(u) = inf
b∈C

hb(u).
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Corollary 5.5. One get

cohC(u)≤ inf
b∈C

cohb(u) = hC(u)−ϕ(u)+ co [〈A·, ·〉+ϕ(u+B·)](0).

In particular, if C = b̄−Rm
+ for some b̄ ∈ Rm, then

coh(u)≤ inf
x
[ f (x) : Bx−u≤ b̄ ]+ co [〈A·, ·〉+ϕ(u+B·)](0),

where

h(u) = ϕ(u)+ inf
x
[ f (x) : Bx−u≤ b̄ ].

Proof. For each b∈C, hC ≤ hb and hence cohC ≤ cohb. The desired relationship is deduced
from Theorem 5.2. �

6. APPLICATION: A PRIMAL-DUAL ALGORITHM

Corresponding to problems (P) and (D) formulated through the lagrangian function defined
in Section 5, the next result establishes an stopping criterium for global minimizers of problem
(P). Its proof can be easily deduced from the definitions.

Proposition 6.1. Let x̄ and v̄∗ be such that α(x̄)− β (v̄∗) = θ − θ =: gap(P). Then x̄ is an
optimal solution of (P) and v̄∗ is an optimal solution of (D). The converse is also true.

The present algorithm provides a general scheme of a primal–dual algorithm in order to solve
problem (P).

A primal–dual algorithm:

(1) Initial step: Take v∗0 ∈ Rq and do k = 0.
(2) Step k: Let xk be an optimal solution of

β (v∗k) = min
x

l(x,v∗k) (Pk)

(a) If α(xk)−β (v∗k) = gap(P), STOP. xk is an optimal solution of (P);
(b) Otherwise, let dk ∈A (v∗k ,xk, · · ·) be an ascending direction of β . Do v∗k+1 = v∗k +

rkdk for an appropriate step size rk > 0, and then k = k+1. Go to 2.

7. CONCLUSION

In this paper, we designed a general scheme of nonzero duality gap corresponding to a qua-
dratic optimization problem subject to linear equality constraints, extending in some sense the
same effect and properties generated by zero duality gap. In that sense, we introduced a gen-
eral function Φ in the involved optimization problem whose effect is to change its structure,
transforming the original problem, for example, into an unconstrained optimization problem.
Another possible effect is to make the original optimization problem into another one with
easier structure.
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