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Abstract. In this paper, we introduce the doubly nonnegative (dnn) tensor, completely positive (cp) tensor, binary
cp tensor and cp pseudograph. Some necessary and sufficient conditions for a tensor to be binary cp are also
offered. We also present some conditions for a dnn tensor to be cp by its associated pseudograph.
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1. INTRODUCTION

My research experience in the past thirty years mainly concerns the complete positivity of
matrices as well as of tensors, partially overlapped with graph theory. The story began with my
first meeting with Avi Berman in 1995 when I was a PhD student of the University of Science
and Technology of China (abbrev. USTC),which is in Hefei, a city located in the middle of
China. Avi was then visiting USTC (I guess this should be Avi’s first visit to China). Avi gave
a talk and showed us his latest paper on complete positivity[4] where he put forward two basic
problems on complete positivity, i.e.,

(1): When is a given n×n real matrix A completely positive?
(2): How can the cp-rank of A be calculated?

The characterization of completely positive (cp) matrices later turned out to be the title of
my PhD thesis, and a permanent topic of my research after my graduation from USTC. Then I
visited Technion as a post-doctor hosted by Avi from Oct. 2002 to Nov. 2004. The visit yielded
three joint papers with Avi on cp matrices [10, 11, 12].

The cp matrix was investigated since 1960s [13, 20, 18, 9, 40]. It can be applied in many
fields such as computer vision [24, 15], exploratory multiway data clustering [24], inequalities
[13], quadratic forms [20], combinatorial designs [9] and optimizations[8, 14, 2]. They are also
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2 C. XU

applied to statistical models [18]. Kogan and Berman [23] used the graph theory to character
the cp matrices [23] in 1993, and Salce and Zanardo [38] use the cp matrix to investigate the
positivity of least squares solutions. Later in 1990s Berman etc. initialized a systematical study
on cp matrices [9] employing the combinatorial matrix theory, basically utilizing the structure
of the associated graph of a doubly nonnegative (dnn) matrix. Actually Berman and Hershkowtz
showed in 1991 that a dnn matrix A ∈ Rn×n is always cp if its associated graph G contains no
long odd cycle (a long odd cycle is a cycle of length l ≥ 5 with l being an odd number). But
we have no idea about the complete positivity of a dnn matrix whose associated graph contains
a long odd cycle. In 2004 the author presented a sufficient and necessary condition for a square
matrix to be cp without any restriction. An interesting result following this characterization was
presented in 2014 by So and Xu [39] where a sufficient condition is offered for a dnn matrix to
be cp with its cprank equals its rank. However, it is hard for us to put the condition described
in [40] into a practical algorithm to determine the complete positivity of a dnn matrix since
it is expressed in the language of cone theory. In 2005 we introduced the concept (0,1)− cp
matrices, uniform cp matrices and minimal (0,1)− cp matrices [10, 11, 12]. The applications
of cp matrices have been found in pattern recognitions [24, 15] and polynomial optimizations
[2, 8, 29] since 2006.

In 2005 Berman and Xu published a joint paper in Linear Algebra and its Applicaitons [11,
12] where they initialized the concept of (0,1)-cp matrix, uniform cp matrix and minimal (0,1)-
cp matrix. The applications of completely positive matrices in pattern recognitions [24, 15] and
polynomial optimizations [2, 8, 29] were just addressed in recent twenty years.

Also in 2005 Hazan,Polak and Shashua [19, 36, 37] investigated the third-order tensors and
studied the nonnegative symmetric tensor possessing a nonnegative symmetric rank-1 decom-
position in the name of multi-way array by where an algorithm was presented to establish a cp
decomposition. They the cp factorization of a 3-order cp tensor to image analysis and multi-
way clustering. Meanwhile, Qi and Lim independently initialized the eigenvalues of high order
tensors in [31, 25]. The high order cp tensors were formally defined by Qi later in [32].

The extension of cp matrices to cp tensors was originated in 2012 when the 10th International
Conference on Matrix and its Applications in China (ICMAC) was held in Guiyang, China. Avi
was invited as the keynote speaker where he introduced his latest research on cp matrices. Dur-
ing the meeting I also met Professor Liqun Qi who was then chair and professor of Department
of Applied Mathematics at the Hong Kong Polytechnic University (HK PolyU) and joined the
Hangzhou Dianzi University in 2019. Prof. Qi initialized in 2005 the spectral theory of high
order tensors as well as the study on structure tensors. After the meeting, I invited Prof. Qi to
visit my university, Suzhou University of Science and Technology (SUST), where we began to
talk about the possibility of the generalization of the completely positive matrices to completely
positive tensors. I was then invited by Prof. Qi to visit HK Polytechnic University several times
from 2013 to 2018. Our frequent communications and cooperations realized our dream: we
successfully generalized the cp matrix to cp tensor, and we also extended the concept of cp
graph to cp pseudograph, which can be regarded as a kind of multi-hypergraph allowing the
repetitions of vertices in some hyper-edges.

For convenience, we denote [m . . .n] := {m,m+1, . . . ,n} for any integers m,n satisfying 0≤
m ≤ n and [n] := [1 . . .n], and |S| for the cardinality of set (or multiset) S, Zn

+ for the set of
nonnegative integral vectors of dimension n, and Fn (resp. Fn×n) the set of all (0,1) vectors of
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dimension n (matrices of order n×n) with F := {0,1}. We also use Rn to denote the set of real
n-dimensional vectors and Rn

+ the set of all nonnegative vectors in Rn. By supp(x) we mean
the support of a vector x, i.e., the index set of nonzero coordinates of x. Following [33], we
write

S(m,n) := {τ = (i1, i2, . . . , im) : i1, i2, . . . , im ∈ [n]}
for any positive integer m,n. An element σ ∈ S(m,n) is sometimes identified with an m-tuple
or m-multiset or an m-permutation chosen from set [n] with displacement allowed.

A tensor can be regarded as a multi-way array, and a scalar, a vector, and a matrix are re-
spectively a tensor of order 0, 1, and 2. It is recognized that William Hamilton coined the
term 200 years ago to describe a mathematical object with some transformation properties. Al-
bert Einstein brought tensors into the spotlight by developing the general relativity entirely in
the language of tensors. Nowadays many popular machine learning algorithms e.g. Google’s
TensorFlow are doubling down on tensors.

We use Tm;n to denote the set of all mth order n-dimensional real tensors . A tensor A ∈Tm;n
is called symmetric if each of its entries does not alter under any permutation of its subscripts.
Denote Sm;n the set of all mth order n-dimensional symmetric tensors , Fm;n the set of all mth
order n dimensional (0,1) tensors, and SFm;n the set of all symmetric tensors in Fm;n.

Let α ∈ S(m,n). The base of α , denoted B(α), is the set consisting of all distinct elements
in α . For any α,β ∈ S(m,n). We say α is equivalent to β , denoted α ∼ β if B(α) = B(β ). A
tensor A is called strong symmetric if Aα = Aβ whenever α ∼ β ,∀α,β ∈ S(m,n). We denote
by ST m;n the set of all mth order n dimensional strong symmetric tensors.

In the next section we introduce the completely positive (cp) matrices before we move onto
cp tensors and cp pseudographs. We will also introduce our recent developments on cp tensors
and cp pseudographs.

2. CP TENSORS AND BINARY CP TENSORS

A doubly nonnegative (dnn) matrix is both entrywise nonnegative and positive semidefinite
(psd). We denote the set of all dnn matrices of order n by DNNn. A matrix A ∈ DNNn is called
completely positive (cp) if there exists a nonnegative matrix W ∈Rn×d for some positive integer
d such that

A =WW>, (2.1)

where the smallest possible number d, or denoted by cprank(A), is called the cprank of A. A
is called binary cpif W is a (0,1)-matrix. The binary cprank of A is accordingly defined when
W is a (0,1) matrix. (2.1) is called a cp decomposition of A. It is obvious that cpn ⊆ DNNn for
all n, and it is shown that cpn = DNNn for n ≤ 4[18, 13]. The inclusion cpn ⊂ DNNn becomes
proper when n≥ 5[20]. For more detail on cp matrices, we refer to [9].

A nonnegative symmetric matrix A ∈ Rn×n
+ is associated with a (undirected) graph G(A)

whose vertex set is V := [n] and the edge set is

E :=
{
{i, j} : i, j ∈V,ai j 6= 0

}
.

A matrix A ∈ Rn×n
+ is called a realization of graph G if G = G(A). A is called a dnn (resp. cp,

psd etc.) realization of G if A is a dnn (resp. cp and psd, etc.) matrix, and also G(A) = G. A
graph G is called a cp graph if each of its dnn realizations is a cp matrix. Kogan and Berman[23]
show that a graph G is cp if and only if G contains no long odd cycle (a cycle with length an
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odd number greater than 3.). We call a graph with this property a cp graph. Thus a graph of
size n≤ 4 is always a cp graph, and any dnn realization of a cp graph must be cp.

The problem of determining the complete positivity of a given dnn matrix of order large
than four still remains open [8, 14, 38, 9], and we employ the associated graphs to classify the
matrices in DNN5 into eight groups and tackled most of them successfully[43]. Also in [11] we
establish some practical sufficient conditions by Schur complement of matrices for a dnn matrix
to be cp.

In 2006 Shuasha and Hazen[36] present an algorithm for nonnegative tensor factorizations
(NTFs) and use it to image analysis. A formal definition for high order cp tensor is introduced
by Qi in [32]. A tensor A is called a (0,1)-tensor if each entry of A is either 1 or 0. A
is an essential (0,1)-tensor if each off-diagonal entry of A is either 1 or 0. Given a tensor
A = (Aσ ) ∈ Tm;n. A tensor pattern ˜A = (Ãσ ) associated with tensor A is a (0,1)-tensor
satisfying

Ãσ = 1⇔ Aσ 6= 0, ∀σ ∈ S(m,n)
An mth order n-dimensional real tensor A = (Aσ ) ∈Tm;n is called a reducible tensor if there is
a proper subset I ⊂ [1 . . .n] such that

ai1...im = 0, ∀i1 ∈I , ∀i2, . . . , im /∈I . (2.2)

A is called irreducible if it is not reducible.
We notice that Freidland et al. give an alternative definition of irreducible tensor[17], where

a tensor A ∈ Tm;n is associated with an m-partite graph G(A ) = (V,E) whose vertex set is
partitioned into the disjoint union V = ∪m

j=1Vj with Vj = [m j], j ∈ [d], and edge e := {ik, il} ∈ E
(e ∈Vk×Vl,k 6= l) if and only if Ai1i2...im > 0 for some m−2 indices {i1, . . . , im}\{ik, il}. Then
tensor A is called irreducible if graph G(A ) is connected.

Let A ,B ∈ Tm;n. We say that A is permutational similar to B, denoted A ∼p B, if there
exists a permutation matrix P ∈ Rn×n such that

B = A ×1 P×2 P×3 · · ·×m P,

where ˜A := A ×k P = (ãi1...im) ∈Tm;n is defined as

ãi1...ik−1ikik+1...im =
n

∑
j=1

ai1...ik−1 jik+1...im pik j

An mth order n-dimensional symmetric tensor A corresponds to an m-degree homogeneous
polynomial

fA (x)≡ ∑
j=1

Ai1...imxi1 . . .xim (2.3)

A is called a completely positive or a cp tensor if fA (x) can be written as

fA (x) =
K

∑
j=1

(β>j x)m (2.4)

with β j ∈ Rn
+. Write B = [β1, . . . ,βK], then (2.4) is equivalent to

A =
K

∑
j=1

β
m
j , β j ∈ Rn

+ (2.5)
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where the smallest possible number K is called the cp-rank of A , and is denoted cprank(A ).
A tensor A ∈ Tm;n is called a binary cptensor if A has a decomposition (2.5) with β j ∈ Fn,
and the corresponding smallest number K is called the binary cprank of A , which is denoted
cprankb(A ). We call a binary cptensor A an r-uniform for some r ∈ [n] provided that A has
a decomposition (2.5) with

∣∣supp(α j)
∣∣ = r for all j ∈ [K]. A cp(binary cp) tensor is called

minimal cp (minimal binary cp) if it becomes non-cp (non-binary cp) when any of its diagonal
elements is decreased. The minimal cp tensor and uniform cp tensor are generalizations of the
matrix case. For more detail on tensors, we refer the reader to [34, 35].

We recall that a hypergraph G(V,E) is a generalization of a graph in the sense that each edge
(also called a hyper-edge) e ∈ E can be any nonempty subset of V (while an edge of a graph is
a 2-set of V ). A multi-hypergraph is a kind of hypergraph G(V,E ) each of whose edges can be
a multi-subset of its vertex set V , that is, each edge e ∈ E allows repetitions of some vertices
within it. We call this kind of graph a pseudograph. A pseudograph G(V,E ) is called an m×n
pseudograph if |V |= n and each edge of e is an m-multiset of V . Note that the size of G is |E |.

A pseudograph G = (V,E ) with V = [n] is associated with an mth order tensor A in the
following way. Let e = {i1, i2, . . . , im} ∈ S(m,n). Then

e ∈ E ⇐⇒ Ai1i2...im 6= 0.

A (0,1) tensor A associated with G is called the adjacency tensor of G . G is called a cp
pseudograph if its adjacency tensor A is a cp tensor. We show in [45] that each nonnega-
tive integral diagonal tensor is binary cpwith its binary cprank being the sum of its diagonal
elements. Some other special binary cptensors are also investigated there.

3. GRAMIAN TENSORS AND CP TENSORS

For our purpose, we denote for any σ = (i1, . . . , im) ∈ S(m,n) (m ∈ [n])

γσ ≡ {αi1,αi2, . . . ,αim} ,
and define γσ as the vector ασ :=αi1�. . .�αim ∈Rr whose kth coordinate equals ai1kai2k . . .aimk
for k ∈ [r] where α j = (a1 j, . . . ,an j)

>. The m-inner product of γσ , denoted Λσ = (αi1 , . . . ,αim),
is the sum of all coordinates of αsi, i.e.,

Λσ =
n

∑
i=1

(
m

∏
j=1

ai j) (3.1)

(3.1) is called the m-inner product of α when α = αi1 = . . .= αim . An m-norm of a vector α is
accordingly defined as

‖α ‖m:= (α, . . . ,α)1/m

where (α, . . . ,α) is the m-inner product of α . A tensor A ∈Tm;n is called an m-order Gramian
tensor generated by vectors

{
α j
}n

j=1 ⊂ Rd if it satisfies

Ai1i2...im = (αi1, . . . ,αim), ∀τ := (i1, i2, . . . , im) ∈ S(m,n) (3.2)

Denote B := [α1, . . . ,αn]. Then B is called the associated matrix of A . For a matrix B ∈ Rd×n

and a positive integer m, we can generate an m-order Gramian tensor by B, and denote it by
A = Gram(m)(B). An 2-order Gramian tensor A of B is a Gramian matrix A = B>B. More-
over, a cp matrix is a Gramian matrix of a nonnegative matrix.
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Example 3.1. Let D = (Di1i2...im) be a diagonal tensor of m-order n-dimension, i.e.,

Dσ = λσ̄ δσ , ∀σ = (i1, i2, . . . , im) ∈ S(m,n)

where σ̄ = (i1 + i2 + . . .+ im)/m,λ j ≥ 0 for each j ∈ [1 . . .n] and δi1i2...im is the Kronecker
number. Denote D= diag(d1,d2, . . . ,dn) with d j = λ

1/m
j for j∈ [1 . . .n]. Then D = Gram(m)(D).

Then D is a completely positive tensor since D is a nonnegative matrix. Note that cprank(D)
is exactly the number of nonzero λ js.

4. COMPLETELY POSITIVE TENSORS AND BINARY CPTENSORS

Let n > 1 be an positive integer and r ∈ [n]. An n×n positive semidefinite (psd) matrix A of
rank r can always be written as a Gramian matrix, i.e., A = Gram(α1, . . . ,αn) for some linearly
independent vectors α1, . . . ,αn ∈ Rr. We denote A = Gram(B) where B = [α1, . . . ,αn] ∈ Rr×n

with rank(B) = r. Thus a square matrix is cp if and only if it is a Gramian matrix of some
nonnegative vectors. It is known that the complete positivity of a square matrix is equivalent to
the double nonnegativity for any n ∈ [4]. However, this is not true for n≥ 5.

Given a nonnegative symmetric matrix A = (ai j) ∈ Rn×n
+ . If there exist some nonnegative

vectors β1,β2, . . . ,βm ∈ Rn
+ such that

A = β1β
>
1 +β2β

>
2 + . . .+βmβ

>
m , (4.1)

A is called a completely positive(cp) matrix. (4.1) is equivalent to A = BB>, where B =
[β1,β2, . . . ,βm] is entrywise nonnegative. The cprank of A is defined as the smallest m for
(4.1) to hold and is denoted by cprank(A).

A completely positive (cp) tensor is an entrywise nonnegative and symmetric tensor which
can be factorized into the sum of some symmetric rank-one tensors [22, 32] where each rank-
one tensor is entrywise nonnegative. The determination of a completely positive tensor is a
NP-hard question. There are some special cases when feasible algorithms exists [33]. Two
kinds of positive(nonnegative) tensors closely related to cp tensors are doubly nonnegative or
dnn tensors [26] and copositive tensors [32], which are respectively analog to the dnn matrices
and copositive matrices.

In [27], a cp tensor A ∈ Tm,n is associated with a hypergraph G(V,E) where |V | = n and
σ := (i1, . . . , im) ∈ E if and only if B |(σ)|= m. The definition of pseudograph makes possible
the correspondence of any symmetric tensor with a graph(pseudograph), as a cp matrix with
a graph. Here a pseudograph is defined as a graph whose edge-set allows multi-subsets of its
vertex set [44].

Let α1, . . . ,αm ∈ Rn
+. By the Hölder inequality, we have [44]

(α1, . . . ,αm)
m ≤

m

∏
j=1

(

m︷ ︸︸ ︷
α j, . . . ,α j) (4.2)

The equality in (4.2) holds if rank({α1, . . . ,αm}) = 1.

Theorem 4.1. Let A ∈Tm;n with m an even number. Then
(1): A ∈DNNn if and only if A is a Gramian tensor, i.e.,A = Gram(m)(α1, . . . ,αn), where

α j ∈ RK for some positive integer.
(2): A is cp if and only if A = Gram(m)(α1, . . . ,αn), where α j ∈ RK

+ for some positive
integer.
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The following theorem offers a necessary and sufficient condition for a m-order 2-dimensional
tensor to be binary cp.

Theorem 4.2. Let A ∈ Sm;2 whose entries are nonnegative integers. Then A is binary cpiff
each off-diagonal element is dominated by the corresponding diagonal element, i.e.,

Ai1i2...im ≤ Aikik...ik , ∀k ∈ [m] (4.3)

Furthermore, we have

cprankb(A ) = A11...1 +A22...2−A11...12 (4.4)

The proof of Theorem 4.1 and that of Theorem 4.2 can be found in [44].

Theorem 4.3. Let A ∈ Sm;2 be nonnegative. Then A is cp if for each σ ∈ S(m;n)

Aσ ≤min{Aii...i|i ∈ B(σ)} (4.5)

Furthermore, cprank(A )≤ 3, and cprank(A ) = 3 if and only if each diagonal element Aii...i
is larger than any of off-diagonal elements.

(4.5) is not necessary for a tensor to be cp. This can be illustrated by the following example.

Example 4.4. Consider m = 2 and let

A =

(
1 2
2 5

)
It is easy to check that A is a completely positive tensor (of order-2 dimension-2) since A = BB>

if we take

B =

(
1 0
2 1

)
However, the inequality (4.5) in Theorem 4.3 is not satisfied since a12 = 2 > 1 = min{1,5}.

A slice of a tensor A ∈ Tm;n is a tensor of order m− 1 obtained by fixing one of the sub-
scripts. Given a nonempty subset I := {s1,s2, . . . ,sr} of [1 . . .n], a principal subtensor A [I ]
of A induced by I is an m-order r-dimensional tensor B = (Ai1i2...im) whose indices iks are
all constrained in I . A zero block is a principal subtensor whose entries are all zero. An irre-
ducible tensor has no zero slice nor any zero block.

It is pointed out in [44] that all the slices and the induced principal subtensors of a cp (binary
cp) tensor are also cp (binary cp). By this we present a necessary condition, which is weaker
than (4.5), for a tensor to be cp.

Theorem 4.5. Let A ∈ Sm;n be a cp tensor. For any τ ∈ S(m,n) with B(τ) = {i, j}, we have

A2
τ ≤ Aii...iA j j... j (4.6)

Proof. Let τ := (i1, i2, . . . , im) ∈ S(m,n) with B(τ) = {i, j} ⊆ [1 . . .n]. If i = j, then inequality
(4.6) is obvious. Thus in the following we may assume that 1≤ i < j ≤ n, and take I = {i, j}.
Then the induced subtensor A [I ] is a 2-dimensional completely positive tensor. We are now
confined to A1 := A [I ]. Since A ∈ Sm;2 is completely positive, there exist some nonnegative
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vectors α1,α2 ∈ RN
+ (N = cprank(A1)) such that A1 = Gram(α1,α2). It follows that Aτ =

(αi1,αi2, . . . ,αim) where B(τ) = I . By formula (4.2) we get

Am
i1i2...im ≤

m

∏
k=1

Aikik...ik (4.7)

where ik takes value in I = {i, j}. Denote τi = (i, i, . . . , i, j),τ j = (i, j, . . . , j, j). Then we have
Aτ = Aτi = Aτ j since B(τ) = B(τi) = B(τ j) = {i, j} and A is strong symmetric. By (4.7) we
have

Am
ii...i j ≤ Am−1

ii...iiA j j... j j (4.8)

and
Am

i j... j j ≤ Aii...iiAm−1
j j... j j (4.9)

Since Aτ1 = Aii...i j = Ai j... j j = Aτ2 , we have by (4.8) and (4.9)

A2m
τ = Am

τ1
Am

τ2
≤ (Aii...iiA j j... j j)

m

which implies (4.6) . �

It is not clear yet whether (4.6) is also sufficient for an 2-dimensional nonnegative strong
symmetric tensor to be cp.

5. COMPLETELY POSITIVE PSEUDOGRAPH

Let A ∈ Sm;n be a k-uniform binary cptensor and let G be its associated pseudograph. We
write A = [α1, . . . ,αr] ∈ Fn×r, where each αi corresponds to a maximal edge of G . Then A is
the m-power of A in the sense of Khatri-Rao product or m-KR power of A[22] (� is columnwise
Kronecker product), i.e.,

A�m =

m︷ ︸︸ ︷
A�·· ·�A .

A = A�m has r k-uniform components αm
j . A is sometimes written as A = ∑A�m where

∑A�m :=
r

∑
j=1

α
m
j

and A ∈ Rn×r
+ is an k-uniform {0,1} matrix. The number k is called the support of A and

denoted by supp(A ).

Theorem 5.1. Let A = ∑(A�m) ∈ Tm;n be m-uniform (2 ≤ m ≤ n) and binary cpwith A =
[α1, . . . ,αr]. Let G = (V,E ) be the pseudogrpah associated with A . Then

(1) If A is a (0,1) tensor, then n = mr and cprank(A )≤ cprankb(A )≤ n
m .

(2) If A is an essential (0,1) tensor, then cprank(A )≤ cprankb(A )≤ d n
k−1e.

Let G = G (A ) be a pseudograph associated with an essential (0,1) tensor A ∈ Sm;n, with
decomposition (2.5) where each α j is a (0,1) n-dimensional vector. Denote A ∗ as the pattern
of A , i.e., a∗σ = 1 if aσ 6= 0 for any σ ∈ S(m,n). Then A is permutation similar to a direct sum
of some irreducible tensors [44], say,

A ∼p A1⊕A2⊕ . . .⊕Ar

where A j ∈ SFm,ni with n1 + . . .+nr+1 = n.
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Here each Ai corresponds to a complete block. For any nonnegative tensor A ∈ Tm;n, a
pseudograph G is r-uniform if each of its maximal edges e satisfies |e| = r. G is said to have
Property R if Dα ⊆ E for any α ∈ E where

Dα = {σ ∈ E : B(σ)⊆ B(α)} (5.1)

Property R implies that G is uniquely determined by the set of its maximal edges.
Now we consider any nonnegative tensor A ∈ Tm;n. If A is binary cp, then A has a de-

composition (2.5) where α j ∈ Fn for each j ∈ [r]. An edge σ = {i1, . . . , im} ∈ S(m,n) is called
a maximal edge of a pseudograph G = (V,E ) if G has no edge ε such that B(σ) ⊂ B(ε). We
call a pseudograph G an r-uniform pseudograph if all its maximal edges have cardinality r. A
pseudograph G = (V,E ) is said to have Property R if Dα ⊆ E for any α ∈ E where

Dα = {σ ∈ E : B(σ)⊆ B(α)} (5.2)

Property R, first introduced in [44], implies that G is uniquely determined by the set of its
maximal edges.

A pseudograph G is called a cp pseudograph if its adjacency tensor A (G ) is binary cp. For
any m-uniform pseudograph G of size n, the largest number of the maximum normal edges is(n

m

)
among its nm (multi-)edges. We note that the ratio

R(m,n) =

(n
m

)
nm ,

i.e., the number of all m-edges v.s. the number of all possible edges, converges to Rm := 1
m!

when n→ ∞. Now if we consider the ratio of the number of normal m-edges to the number of
(multi-)edges, i.e.,

R(m,n) :=

(n
m

)
nm .

R(m,n) converges to Rm := 1
m! when n→ ∞. This implies that a pseudograph is much more

complicated than a hypergraph.

Corollary 5.2. Let G =(V,E ) be an m-order pseudograph with V = [n]. If G possesses property
R and has a unique nonempty maximal edge,then G is a cp pseudograph .

The indicator of an edge α of G is defined as vector

Iα := (w1, . . . ,wn)
> ∈ Zn

+

where wi denotes the frequency of vertex i in α . An n×N pseudograph G is uniquely deter-
mined by an n×N nonnegative integral matrix

W =W (G ) := [u1, . . . ,uN ]

where u j ∈ Zn
+ is the indicator of α j ∈ E . W is called the adjacency matrix of G . Now we form

matrix A associated with W by
A =WW> (5.3)

A can be written equivalently as

A =
N

∑
j=1

u2
j =

N

∑
j=1

u ju>j



10 C. XU

which is a binary cpmatrix when each u j is a (0,1) vector ([11]). A is called an k-uniform cp
matrix if |supp(W )|= k, and A is called an k-uniform n×m tensor of rank R if A has a binary
cpdecomposition (2.5).

Now we denote

Cα := {β ∈ E : β ∼ α} , and Dα := {β ∈ E : β ≺ α}
for any edge α ∈ E . Let ΓG :=

{
α j| j = 1,2, . . . ,r

}
be the set of the maximal edges of G .

Then
{
Dα j : j = 1,2, . . . ,r

}
forms a partition of E . In [44] we show that a (0,1) mth order

n-dimensional symmetric tensor A is binary cpif and only if P possesses Property R where
P = P(A ). We have shown in [44] that a (0,1) tensor A is binary cpif and only if A can be
written as the direct sum of some all-ones blocks. This is equivalent to

Si∩S j = /0,∀1≤ i < j ≤ r (5.4)

where Sk := supp(uk) and r is the smallest number for (2.5) to hold.
Given an n×N pseudograph G . We let A denote the tensor generated by the Khartry-Rao

product of W ≡W (G ) = [u1, . . . ,uN ], i.e., A =

m︷ ︸︸ ︷
W ◦W ◦ . . .◦W , which is defined as (2.5).

It is shown that a (0,1) mth order n-dimensional symmetric tensor A is binary cpif and only
if P = P(A ) possesses Property R and that a (0,1) tensor is binary cpif and only if it can
be written as the direct sum of some all-ones blocks, which is equivalent to Si ∩ S j = /0 for
all distinct i, j. By permutation similarity, we can establish some equivalent relations among
pseudographs. Let Pi = (Vi,Ei), i = 1,2 be m-uniform pseudographs associated resp. with
tensors A and B. Then A ∼p B if and only if there exists a bijection φ from V1 to V2 such that

{i1, . . . , im} ∈ E1 7→ {φ(i1), . . . ,φ(im)} ∈ E2

i.e., P(B) is the pseudograph obtained from P(A ) by vertex reordering, and thus they are
isomorphic. Let Ai = (a(i)σ ) ∈ Tm,ni, i = 1,2 and n1 + n2 = n. The direct sum of A1 and A2,
denoted A = A1⊕A2 = (ai1...im), is defined by

ai1...im =


a(1)i1...im ifi1, . . . , im ∈ [n1],

a(2)i1...im ifi1, . . . , im ∈ n1 +[n2],

0 otherwise.

Here a+S is defined as the translation of set S, i.e., a+S = {a+ s : s ∈ S}. We are now in a
position to describe the decomposition for tensors in the sense of permutation similarity.

Lemma 5.3. Let A ∈ SFm,n, where m≥ 2,n≥ 1. Then

A ∼p A1⊕A2⊕ . . .⊕Ar⊕Or+1 (5.5)

where Ai ∈ SFm,ni is irreducible, Or+1 is a zero tensor of order m and dimension nr+1, and
n1 + . . .+nr+1 = n.

Lemma 5.3 shows that a tensor A ∈ SFm,n can always be decomposed into the direct sum
of irreducible tensors, possibly with a zero block. The following lemma offers a necessary and
sufficient conditions for an irreducible (0,1) tensor to be binary cp.

Lemma 5.4. Let A ∈ SFm,n be irreducible. Then the following statements are equivalent:
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(1) A is binary cp.
(2) A = J is an all-1 tensor.
(3) The pseudograph G associated with tensor A is a complete block.

From Lemma 5.4, we have the following result.

Theorem 5.5. Let A ∈ SFm,n be associated with pseudograph G(V,E ). Then the following are
equivalent:

(1): A is binary cptensor.
(2): G can be decomposed as the union of some complete blocks Gi of size ni where n1 +
. . .+nq = n.

(3): A can be written in form

A =
r

∑
j=1

um
j (5.6)

where u j ∈ Fn satisfies UTU = diag(n1, . . . ,nq) for U = [u1, . . . ,uq].

Proof. To prove (1)⇔ (2), we first let A ∈ SFm,n be a binary cptensor. Then by Lemma 5.3
A can be written in form (5.5) where each Ai is an irreducible binary cptensor of mth order
ni-dimension (no zero block there since A has no zero block). By Lemma 5.4, Ai is associated
with a pseudograph Pi = (Vi,Ei) where |Vi|= ni for i = 1,2, . . . ,q, n1 +n2 + . . .+nq = n. For
each i ∈ [q], by Lemma 5.4, Pi is the complete block of dimension ni (since Ai is irreducible
and binary cp). Thus (1)⇒ (2) is proved. The proof of (2)⇒ (1) is immediate if we note that
the decomposition (5.6) holds by take supp(ui) =Vi for i = 1,2, . . . ,q.

Now we show (1)⇔ (3). First we assume that A ∈ SFm,n is binary cp. Then from the proof
of Lemma 5.4 there exist some vectors u j ∈ Fn such that (2.5) holds, and

supp(ui)∩supp(u j) = /0,∀1≤ i < j ≤ q (5.7)

It follows that UTU = diag(n1, . . . ,nq) for U = [u1, . . . ,uq], where ni is the positive integer
described above. Thus (1)⇒ (3) is proved. The other direction can be proved by reversing the
above arguments. �
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