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1. INTRODUCTION

The degree of noncompactness of a set is measured by means of functions called measures
of noncompactness (MNCs in short). The first MNC was considered by Kuratowski [20] in
1930 in connection with problems of general topology. It was Darbo [9] who first realized the
usefulness of the Kuratowski measure of noncompactness in fixed point theory. Since then,
the interplay between MNCs and fixed point theory has, over the course of time, become more
and more strong and fruitful. Essentially, MNCs have played a prominent role in the devel-
opment of fixed point theory and its applications to the theories of differential, integral and
integrodifferential equations [3, 6, 7, 11, 12, 13]. It is relevant to note that there is a number
of definitions of MNCs which have appeared in the literature, over the years. We quote for
instance the Hausdorff measure of noncompactness introduced by Goldenstein et al. in 1957,
the inner Hausdorff measure of noncompactness and the Istratescu measure introduced by Is-
tratescu in 1972 [3]. This notion afterwards got an abstract setting in which the Kuratowski and
Hausdorff measures are only examples. We will mention here the axiomatic approach for mea-
sure of noncompactness, developed by Banas and Goebel [5] in 1980. A view to applications
has motivated a useful extension of MNCs, namely the vector-valued MNCs. As stressed in
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[4], the use of MNCs which take values in an ordered vector space, has better effect in applica-
tions than the classical MNCs, which take values in [0,∞). Indeed it turns out that vector-valued
MNCs provide a more flexible tool enabling to unblock some difficult situations (see Section 4).
The main focus of this work is to contribute to highlighting the role of vector-valued measures
of noncompactness in fixed point theory and its applications to the study of the solvability of
ordinary and partial differential equations and systems. Specifically, we first prove some new
fixed point theorems for mappings satisfying a Darbo-Sadovskii type condition with respect to
a vector-measure of noncompactness. Furthermore, we show how this fixed point results may
be used to investigate the solvability of a class of neutral differential equations.

Our paper is organized as follows. In preliminaries we give some basic definitions and facts
concerning vector-valued measures of noncompactness as well as some results concerning the
estimation of the measure of noncompactness of some integral operators. In the third section
we prove some new Darbo-Sadovskii type fixed point theorems associated with vector-valued
measures of noncompactness in locally convex spaces. Section four is devoted to applications
of results from the third section to establish existence principles for a class of semilinear neutral
differential equations. In the last section, we examine and discuss some key assumptions that
we have used in the fourth section.

2. PRELIMINARIES

In this section, we recall some basic definitions and results which will be needed in our further
considerations. Let X be a locally convex space and M be a family of subsets of X . Let (E,�)
be an ordered Banach space with a cone P. We reprodudce here the definition, slightly modified,
of a (vector-valued) measure of noncompactness introduced in [3, 4, 19].

Definition 2.1. An operator φ : M →P is called a measure of noncompactness (MNC for short)
if

(i) For all Ω ∈M we have conv(Ω) ∈M and φ(conv(Ω)) = φ(Ω).
(ii) For all Ω ∈M we have φ(Ω) = 0 implies Ω is relatively compact.

The MNC φ is said to be :
(1) x0-stable (x0 ∈ X), if {x0} ∈M and for all Ω ∈M we have Ω∪{x0} ∈M and φ(Ω∪
{x0}) = φ(Ω).

(2) Countably x0-stable (x0 ∈ X), if {x0} ∈M and for any countable set Ω ∈M we have
Ω∪{x0} ∈M and φ(Ω∪{x0}) = φ(Ω).

(3) Monotone, if for all Ω ∈M and all Λ⊂Ω we have Λ ∈M and φ(Λ)≤ φ(Ω).

We remark in passing that one can easily construct plenty of examples of both real-valued
and vector-valued MNCs in different function spaces (see for instance [3, 5, 11, 12, 13, 18, 19]
and the references therein). We limit ourselves here to giving one nontrivial example which we
will use thereafter. To this end, let (E,‖ · ‖) be a Banach space and let X :=C([a,b],E) be the
Banach space of E-valued functions defined and continuous on the interval [a,b], endowed with
the usual norm of uniform convergence ‖x‖∞ = sup

t∈[a,b]
‖x(t)‖. Let B(X) stands for the collection

of all bounded subsets of X and consider the mappings ψ1,ψ2 : B(X)→ [0,+∞) given by :

ψ1(B) = sup
t∈[a,b]

e−Lt
χ(B(t)) (L is a positive constant),
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where χ(.) is the Hausdorff measure of noncompactness, defined on each bounded subset M of
E by

χ(M) = inf
{

r > 0, M can be covered with a finite number of balls of radius equal to r},

and

ψ2(B) = sup
t∈[a,b]

mod C(B(t)),

where mod C(B(t)) is the modulus of equicontinuity of the set of functions B at point t
given by the formula

mod C(B(t)) = lim
δ→0

{
sup
x∈B
{sup{‖x(t1)− x(t2)‖ : t1, t2 ∈ (t−δ , t +δ )}}

}
.

It is manifest that ψ1 and ψ2 fail to be MNCs in X . Now, let ψ : B(X)→ R2 defined by

ψ(B) =
(

ψ1(B)
ψ2(B)

)
, B ∈B(X),

It is routine to check that ψ is a vector-valued MNC in the sense of Definition 2.1, which is
monotone and x0-stable for each x0 ∈ X (see [1, 3, 5, 19]).

We close this section by recalling a result regarding the estimation of the Hausdorff measure
of noncompactness for a class of integral operators as well as other related results. For this pur-
pose, let (U(t))t≥0 be a strongly continuous semigroup of linear operators acting on a Banach
space E and consider the integral operator V0 defined on C([0,a];E) by:

(V0x)(t) =
∫ t

0
U(t− s)x(s)ds, for t ∈ [0,a],

where x ∈C([0,a];E).

The following fundamental theorems are crucial for our further work.

Theorem 2.2. [19, Theorem 4.2.2]. Let (un)n≥1 ⊂ L1([0,a],E) be integrably bounded, namely,

‖un(t)‖ ≤ ν(t) for all n≥ 1 and a.e t ∈ [0,a], (2.1)

where ν ∈ L1([0,a]). Assume that

χ((un(t))n≥1)≤ q(t) for a.e t ∈ [0,a], (2.2)

where q ∈ L1([0,a]). Then χ((V0un(t))n≥1) ≤ 2Ma
∫ t

0 q(s)ds, for all t ∈ [0,a], where Ma =
sup

t∈[0,a]
‖U(t)‖.

Theorem 2.3. [11, Theorem 3.10.] Let (un)
∞
n=1 ⊂ L1([0,a],E) be as in (2.1). Assume that (2.2)

holds. Then, for every t ∈ [0,a] we have :

mod C((V0un(t))n≥1)≤ 4Ma

∫ t

0
q(s)ds. (2.3)
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3. FIXED POINT THEOREMS

This section of the paper contains our main results. Basically, we use some material from the
previous section to prove a Darbo-Sadovskii type fixed point theorem in locally convex spaces.
For this purpose, we recall the following result on mappings of a compact topological space
into itself. The proof of this lemma can be found in [21].

Lemma 3.1. Let T be a mapping of a compact topological space K into itself. Then there exists
a nonempty subset M ⊆ K such that M = T (M).

Remark 3.2. Note that if T is continuous and K is Hausdorff space then T (M) is compact,
therefore closed. Hence M = T (M).

Now, we are ready to state and prove the following sharpening of [4, Theorem 2.5].

Theorem 3.3. Let (E,�) be a Banach space ordered by a cone P and L ⊂ P be a complete
lattice with 0 ∈ L. Let X be a Fréchet space, C be a nonempty convex closed subset of X and
x0 ∈ C. Let T : C→ C be a continuous mapping and φ : M → E be a monotone, countably
x0-stable MNC defined on a family M of subsets of X . Moreover, assume that

(1) For all Ω ∈M with Ω⊂C we have φ(Ω) ∈ L.
(2) T (C) ∈M .
(3) There is an increasing mapping A : L→ L such that φ(T Ω) � A(φ(Ω)) whenever Ω ∈

M is a countable subset of C.
(4) A does not have fixed points in L\{0}.

Then T has at least one fixed point in C.

Proof. Consider the set K := {T n(x0), n = 0,1, · · ·} of iterates starting from x0. Clearly T (K)∪
{x0}=K. From our assumptions we infer that K ∈M and φ(K)= φ(T (K)∪{x0})= φ(T (K))�
A(φ(K)). Therefore, from Tarski’s fixed point theorem it follows that there is u ∈ L such that
φ(K) � u and Au = u. Hence, u = 0 by condition (4) and therefore φ(K) = 0. This implies
that K is compact. Let Λ be the subset of K whose existence is insured by the Lemma 3.1 and
denote by F the class of all closed and convex subsets Ω of C such that Ω ∈M , Λ ⊂ Ω and
T (Ω)⊂Ω. Put

Γ =
⋂
{Ω : Ω ∈F}, Σ = conv(T (Γ)).

Obviously, conv(T (C)) ∈ F and Γ ∈M . Furthermore, it is easily seen that T (Γ) ⊂ Γ and
Σ ∈M . We now claim that Γ = Σ. Indeed, since T (Γ)⊂ Γ, it follows that Σ⊂ Γ. This implies
T (Σ) ⊂ T (Γ) ⊂ Σ, so that Σ ∈F . Hence Γ ⊂ Σ and therefore Γ = Σ = conv(T (Γ)). Put ∆ =
sup{φ(Ω) : Ω is a countable subset of Γ}. Let Ω be a countable subset of Γ. According to [22,
Proposition 3.55], there is a countable Ω∗ ⊂ Γ with Ω⊂ conv(T Ω∗). Thus,

φ(Ω)� φ(conv(T Ω
∗))� φ(T Ω

∗)� A(φ(Ω∗))� A(φ(∆)).

Taking the supremum over all Ω we find ∆ � A(∆). Once more, it follows from Tarski’s fixed
point theorem that there is u ∈ L such that φ(∆) � u and Au = u. Hence, u = 0 by condition
(4) and therefore φ(∆) = 0. We claim that Γ is compact. Indeed, let (xn) be a sequence in Γ

and S = {xn : n ∈ N}. We have obviously that φ(S)� φ(∆) and so φ(S) = 0. Hence, (xn) has a
convergent subsequence, which implies the claim. Then, by the Schauder-Tychonoff fixed point
theorem, there exists x ∈ Γ such that T x = x.

�
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Remark 3.4. Notice that Theorem 3.3 is stated for Fréchet spaces but it is worthwile to mention
the result remains valid in quasicomplete, metrizable locally convex spaces.

From Theorem 3.3 one can derive several important and extremely pleasant results. We shall
merely present here one corollary which we will subsequently use.

Corollary 3.5. Let X be a Banach space and let C be a nonempty closed convex bounded
subset of X . Let T : C→C be a continuous mapping and assume that there exist set functions
µi : B(X)→ [0,+∞), i = 1, · · · ,n satisfying:

(P1) For each i= 1, · · · ,n and for any bounded subset M of X we have µi(conv(M)) = µi(M);
(P2) there is x0 ∈C such that for each i = 1, · · · ,n and for any bounded countable subset M

of X we have µi (M∪{x0}) = µi(M),
(P3) For each i = 1, · · · ,n we have M1 ⊂M2 implies µi(M1)≤ µi(M2).
(P4) If µi(M) = 0 for all i ∈ {1, · · · ,n}, then M is relatively compact.

Assume further that there is a nonnegative matrix A ∈Mn(R+) with spectral radius r(A) < 1
such that for any countable set M ⊂C we have µ1(T M)

...
µn(T M)

� A

 µ1(M)
...

µn(M)

 , (3.1)

where � is the natural coordinatewise partial order on Rn. Then T has at least one fixed point
in C.

Remark 3.6. Since A ∈Mn(R+) is a nonnegative matrix with spectral radius r(A)< 1, then it
is readily seen that for each X � 0 we have X � AX implies X = 0 (see for instance [23, Lemma
4.1]).

Proof. Apply Theorem 3.3 with M = B(X), L = [0,µ1(C)]×·· ·× [0,µn(C)] and

φ(·) =

 µ1(·)
...

µn(·)

 .

�

Remark 3.7. It is of interest that the contractivity condition (3.1) is only assumed to hold for
countable sets. As a matter of fact, if the operator T involves integration of vector functions,
estimates like (3.1) are only obtained for countable sets (see for instance Theorem 2.2 and
Theorem 2.3).

Remark 3.8. It should be underlined that our fixed point results extend several earlier works in-
cluding [4, 17] and many others and offer some new tools to deal with the existence of solutions
to many differential and integral equations.

4. APPLICATION TO NEUTRAL DIFFERENTIAL EQUATIONS

The results we consider in this section are generalizations of the work done in [10]. Specifi-
cally, we shall discuss the existence of mild solutions to the following neutral differential equa-
tion
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
d
dt

(
x(t)−g(t,x(t))

)
= A

(
x(t)−g(t,x(t))

)
+ f (t,x(t)), t ∈ I,

x(0) = x0.

(4.1)

Here I = [0,a], a > 0, A is the generator of a strongly continuous semigroup (U(t))t≥0 of lin-
ear operators defined on a Banach space E, f ,g : [0,a]×E −→ E are suitably defined functions
satisfying certain conditions to be specified later.

We should emphasize that Eq. (4.1) is an abstract formulation of many partial differential
equations arising in the mathematical modeling of real world phenomena (see for instance
[8, 14, 15, 16, 24, 25, 26] and the references therein).

In what follows we make the following assumptions :

(H1): The semigroup (U(t))t≥0 is strongly continuous.

(H2): The function g maps [0,a]×E into E and there are nonnegative constants kg and
cg ∈ [0,1) such that for all u,v ∈ E and for all t,s ∈ [0,a] we have

‖g(t,u)−g(s,v)‖ ≤ kg|t− s|+ cg‖u− v‖.

(H3):
(i) The map f : [0,a]×E −→ E satisfies Carathéodory conditions, that is, for almost

every t ∈ [0,a], the function f (t, .) : E −→ E is continuous and for all x ∈ E, the
function f (.,x) : [0;a]−→ E is measurable.

(ii) There exists a function h : [0,a]×R+ → R+ such that h(.,s) ∈ L1([0,a],R+) for
every, s ≥ 0, h(t, ·) is continuous and increasing for a.e. t ∈ [0,a], and ‖ f (t,x)‖ ≤
h(t,‖x‖) for a.e. t ∈ [0,a] and all x ∈ X , and for each positive scalar m there exists
a continuous function r : [0,a]→ R+ such that

m+Ma

∫ t

0
h(s,r(s))ds≤ (1− cg)r(t), t ∈ [0,a]. (4.2)

(iii) There exists a function β ∈ L1([0,a],R+)such that for every bounded set D⊆ E we
have χ( f (t,D))≤ β (t).χ(D) for almost every t ∈ [0,a].

Remark 4.1. We point out that (H3), (ii) implies that any composition t ∈ [0,a]→ h(t,x(t))
is measurable whenever x ∈C([0,a],R+). We refer the readers to [2] for more information on
measurability of compositions. In addition, for any continuous function x we have h(t,x(t)) ≤
h(t,κ) where κ = sup

t∈[0,a]
x(t). Thus, h(·,x(·)) ∈ L1([0,a],R+) whenever x ∈C([0,a],R+).

Our main goal in the immediate sequel is to show the existence of solutions to Eq. (4.1)
under the assumptions made above . Before doing so, it is appropriate to clarify the definition
of solution we will consider.
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Definition 4.2. A continuous function x : [0,a]−→ E is said to be a mild solution to the neutral
differential equation (4.1) if:

(i) x(0) = x0,

(ii) x(t) =U(t)(x0−g(0,x0))+g(t,x(t))+
∫ t

0
U(t− s) f (s,x(s))ds for t ∈ [0,a].

To allow the abstract formulation of our problem we consider the operators T,S : C([0,a];E)−→
C([0,a];E) defined by

(T x)(t) =U(t)(x0−g(0,x0))+
∫ t

0
U(t− s) f (s,x(s))ds =U(t)u0 +

∫ t

0
U(t− s) f (s,x(s))ds,

and
(Sx)(t) = g(t,x(t)).

It is plainly visible that a fixed point of T +S is a mild solution of equation (4.1). With this in
mind, we shall show that operator T + S satisfies all conditions of Corollary 3.5. This will be
achieved in a series of lemmas.

Lemma 4.3. There is a closed convex subset V of C([0,a],E) such that (S+T )(V )⊂V.

Proof. Let r(t) the continuous function given by (4.2) for m = ‖g(t,0)‖+Ma‖u0‖. Let

V =
{

x ∈C([0,a],E) : ‖x(t)‖ ≤ r(t), for t ∈ [0,a]
}
.

For any x ∈V, we have

‖T x(t)+Sx(t)‖ ≤ ‖g(t,x(t))‖+‖U(t)(u0)‖+
∫ t

0
‖U(t− s) f (s,x(s))‖ds

≤ ‖g(t,0)‖+ cg‖x(t)‖+Ma‖u0‖+Ma

∫ t

0
h(s,‖x(s)‖)ds

≤ ‖g(t,0)‖+ cgr(t)+Ma‖u0‖+Ma

∫ t

0
h(s,r(s))ds

≤ r(t),

which is the desired result. �

Lemma 4.4. For any bounded subset B of C([0,a],E) we have
(i) ψ2(S(B))≤ cgψ2(B).

(ii) ψ1(S(B))≤ cgψ1(B).

Proof. To prove (i), take any bounded subset B of C([0,a],E) and pick up any t ∈ [0,a]. For any
x ∈ B and any t1, t2 ∈ [0,a], we have

‖(Sx)(t1)− (Sx)(t2)‖= ‖g(t1,x(t1))−g(t2,x(t2))‖ ≤ kg|t1− t2|+ cg‖x(t1)− x(t2)‖.
Thus,

sup
x∈B
{sup{‖S(x)(t1)−S(x)(t2)‖ : t1, t2 ∈ (t−δ , t +δ )}}

≤ 2kgδ + cg

{
sup
x∈B
{sup{‖x(t1)− x(t2)‖ : t1, t2 ∈ (t−δ , t +δ )}}

}
.
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Hence, letting δ tend to 0 we see that mod C((SB)(t))≤ cg mod C(B(t)) so that ψ2(S(B))≤
cgψ2(B). To prove (ii), let B be a bounded subset of C([0,a],E). Pick up any t ∈ [a,b] and take

λ > χ(B(t)). There exist x1, · · · ,xn ∈ E such that B(t) ⊆
n⋃

k=1

B(xk,λ ). Let x ∈ B. Then there

exist k ∈ {1, · · · ,n} and z ∈ E with ‖z‖ ≤ λ such that x(t) = xk + z. Hence,

‖(Sx)(t)−g(t,xk)‖= ‖g(t,x(t))−g(t,xk)‖ ≤ cg‖x(t)− xk‖= cg‖z‖ ≤ cgλ ,

and therefore, (SB)(t)⊆
n⋃

k=1

B(g(t,xk),cgλ ). Thus, χ((S(B))(t))≤ cgλ for all t ∈ [0,a]. Whence

it follows that χ((SB)(t))≤ cgχ(B(t)) for all t ∈ [0,a], which leads to the desired result.
�

Lemma 4.5. T and S are continuous on C([0,a];E).

Proof. The result follows by a routine argument. We first prove that T is continuous. To do this,
let (un) be a sequence in C([0,a],E) which converges to some u. From assumption (H3), (i) it
follows that:

f (s,un(s))→ f (s,u(s)), as n→+∞.

Since (un)n is bounded, then there exists N > 0 such that ‖un‖≤N, for all n∈N. Thus, ‖u‖≤N
and therefore

‖ f (s,un(s))− f (s,u(s))‖ ≤ 2h(s,N).

Using the dominated convergence theorem, one can conclude that T is continuous. Further, it
is a straightforward matter to check that S is continuous. �

Lemma 4.6. There is a real matrix A of second order with spectral radius r(A) < 1 such that
for any countable set D of V, we have ψ((T +S)D)≤ Aψ(D).

Proof. Let D = {un} be a countable subset of V and Fn(t) = f (t,un(t)). From our hypotheses
we know that ‖Fn(t)‖ ≤ h(t,r(t)) and

χ({Fn(t)})≤ β (t)χ(D(t))≤ β (t)eLt
ψ1(D).

Referring to Theorem 2.2 we see that

χ({V0Fn(t)})≤ 2Maψ1(D)
∫ t

0
eLs

β (s)ds,

Hence,

e−Lt
χ(T (D)(t)) = e−Lt

χ ({V0Fn(t))})≤ 2Maψ1(D)
∫ t

0
e−L(t−s)

β (s)ds

for all t ∈ [0,a]. Therefore,

ψ1(T (D))≤ 2Maλ2(L)ψ1(D), (4.3)

where λ2(L) = sup
t∈[0,a]

∫ t

0
e−L(t−s)

β (s)ds.

Furtheremore, from Theorem 2.3 we deduce that

modC({V0Fn(t)})≤ 4Maψ1(D)
∫ t

0
eLs

β (s)ds,
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so that,

ψ2(T (D))≤ 4MaeLa‖β‖1ψ1(D). (4.4)

Since lim
L→∞

λ2(L) = 0 (see [11, Lemma 2.7]) we may choose L as large as we please so that

cg +2Maλ2(L)< 1. Put

A =

(
cg +2Maλ2(L) 0
4MaeaL‖β‖1 cg

)
.

It is at once clear that r(A) = cg +2Maλ2(L)< 1 and ψ((T +S)(D)≤ Aψ(D). �

With these preliminaries out of the way we are in a position to state the main result of this
section.

Theorem 4.7. Assume that the conditions (H1), (H2) and (H3) are satisfied. Then Equation
(4.1) has at least one continuous mild solution on [0,a].

Proof. The result follows from Corollary 3.5 on the basis of Lemmas 4.3, 4.4, 4.5 and 4.6. �

Remark 4.8. In contrast to [10] in our setting the semigroup generated by A need not be
equicontinuous.

Remark 4.9. It should be observed that the use of vector-valued measures of noncompactness
may serve to alleviate or eliminate the effect of some unsettling coefficients. For example, the
constant 4MaeaL‖β‖1 appearing in the estimation (4.4), as large as it may be, has no bearing on
our result.

5. COMMENTS AND DISCUSSIONS

In this section, we shall examine and discuss a key assumption used in the previous section.
As a matter of fact, we shall give some examples of function h for which (4.2) holds for some
continuous function r : [0,a]→ R+. We start with the following result.

Proposition 5.1. Let h : [0,a]×R+→ R+ be a mapping such that h(.,u) ∈ L1([0,a],R+) for

every u≥ 0. Assume further that liminf
u→+∞

1
u

∫ a

0
h(s,u)ds = ` <+∞ and

cg +Ma` < 1. (5.1)

Then for each positive scalar m there exists a continuous function r : [0,a]→ R+ satisfying
(4.2).

Proof. Let m be a positive scalar and consider the set W of real numbers r≥ 0 which satisfy the
inequality

r ≤ 1
1− cg

(
m+Ma

∫ a

0
h(s,r)ds

)
.

We claim that there exists a constant r1 such that for all r ∈W we have r ≤ r1. If it is not the
case, then there exists a sequence rn ∈W with rn→+∞ as n→+∞. Hence,

1≤ 1
1− cg

(m
rn

+
Ma

rn

∫ a

0
h(s,rn)ds

)
,
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so that
1≤ 1

1− cg

(
Ma liminf

u→+∞

1
u

∫ a

0
h(s,u)ds

)
,

which contradicts (5.1). Choose r0 > r1, then, r0 6∈W. Hence,

1
1− cg

(
m+Ma

∫ a

0
h(s,r0)ds

)
< r0.

Thus, the condition (4.2) is satisfied for r(t) = r0.
�

Example 5.2. Let h(t,u) = e−t√u+ t2. Then,

1
u

∫ a

0
h(s,u)ds =

1√
u
(1− e−a)+

a3

3u
,

which implies that

lim
u→+∞

1
u

∫ a

0
h(s,u)ds = 0.

As a convenient specialization of Proposition 5.1 we obtain the following result.

Corollary 5.3. Let h(t,u) = θ(t)Ω(u), where θ ∈ L1([0,a],R+) and Ω : R+ −→ R+. Assume

that liminf
u→+∞

Ω(u)
u

= ` <+∞ and cg+‖θ‖1` < 1, where ‖θ‖1 =
∫ a

0
θ(s)ds. Then for each posi-

tive scalar m there exists a continuous function r : [0,a]→ R+ satisfying (4.2).

We next turn our attention to the case when h is affine. In this case, we show that the con-
dition (5.1) can be dropped. It is appropriate to point out that this result does not follow from
Proposition 5.1.

Proposition 5.4. Let h(t,u) = α(t)+ γ(t)u, where α,γ ∈ L1([0,a],R+). Then for each positive
scalar m there exists a continuous function r : [0,a]→ R+ satisfying (4.2).

Proof. Let C([0,a],R) be the Banach space of continuous real-valued functions defined on [0,a]
endowed with the following Bielecki’s norm

‖x‖b = sup
t∈[0,a]

e−ρt |x(t)|.

Let P be the positive cone of C([0,a],R) and m be a positive scalar. Define an operator F : P→P
by

(Fϕ)(t) = m+ cgϕ(t)+Ma

∫ t

0
(α(s)+ γ(s)ϕ(s))ds.

It is readily seen that

e−ρt |(Fϕ)(t)− (Fψ)(t)| ≤ cge−ρt |ϕ(t)−ψ(t)|+Mae−ρt
∫ t

0
γ(s)|ϕ(s)−ψ(s)|ds

≤ cge−ρt |ϕ(t)−ψ(t)|+Ma‖ϕ−ψ‖b

∫ t

0
e−ρ(t−s)

γ(s)ds

Consequently,
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‖(Fϕ)(t)− (Fψ)(t)‖b ≤ (cg +Maλ1(ρ))‖ϕ−ψ‖b,

where λ1(ρ) = sup
t∈[0,a]

∫ t

0
e−ρ(t0−s)

γ(s)ds. Since lim
ρ→∞

λ1(ρ) = 0 (see [11, Lemma 2.7]) we may

choose ρ0 as large as we please so that cg +λ1(ρ0) < 1. An appeal to the Banach contraction
principle yields that there exists a nonnegative continuous function r(·) such that

r(t) = m+ cgr(t)+Ma

∫ t

0
(α(s)+ γ(s)r(s))ds. (5.2)

This shows that the condition (4.2) is satisfied.
�
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