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3Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
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Abstract. In this paper we suggest a new method for investigation of stability of Fredholm properties of operators
on interpolation Banach spaces constructed by the real interpolation method. The method consists of two closely
related steps. In the first step, invertible operators are investigated. In the second step, the results obtained for
invertible operators are applied to investigation of Fredholm operators. This approach allows us to obtain results
on stability of kernels and cokernels of Fredholm operators in the spaces constructed by the real interpolation
method. A characterization of maximal intervals of parameter θ for which an operator T : ~Xθ ,q→~Yθ ,q is Fredholm
is also obtained.
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1. INTRODUCTION

A linear bounded operator T : X → Y from a Banach space X to a Banach space Y is called
a Fredholm operator if it has a finite dimensional kernel, that is, n(T ) := dim(kerT ) < ∞ and
its range T (X) has a finite codimension in Y , that is, d(T ) := dim(Y/T (X))< ∞. The quantity
i(T ) := n(T )−d(T ) is called the index of the operator T . It is clear that a set of Fredholm op-
erators is a natural extension of a set of invertible operators. Note also that Fredholm operators
are very important in analysis and in PDE’s in particular.

Let us recall some basic properties of Fredholm operators. It is well known that from d(T )<
∞ it follows that T (X) is a closed subspace of Y (see, for example, [1]). It is also known that
if an operator T is a Fredholm operator and a bounded linear operator S : X → Y is such that
‖S−T‖X→Y < ε , where ε = ε(T )> 0 is small enough, then the operator S is also Fredholm with
i(S) = i(T ) and n(S) ≤ n(T ), d(S) ≤ d(T ). Moreover, if we consider the conjugate operator
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T ∗ : Y ∗ → X∗ of the Fredholm operator T , then T ∗ is also Fredholm and n(T ∗) = d(T ) and
d(T ∗) = n(T ).

Throughout the paper by a Banach couple ~X = (X0,X1) we mean two Banach spaces X0, X1
that are linearly and continuously embedded in some Hausdorff linear space X . Let θ ∈ (0,1)
and q ∈ [1,∞] . As usual, by ~Xθ ,q = (X0,X1)θ ,q we denote the interpolation space constructed by
the real method of interpolation and by [~X ]θ = [X0,X1]θ the interpolation space constructed by
the complex method (see [8]).

We recall that a couple ~X = (X0,X1) is called regular if X0∩X1 is dense in Xi, i = 0,1. An
interpolation functor F is called regular if for any couple ~X the space X0∩X1 is dense in F(~X).
Functors F(~X) = [~X ]θ and F(~X) = ~Xθ ,q are regular for θ ∈ (0,1) and q ∈ [1,∞).

Let T : (X0,X1)→ (Y0,Y1) be a bounded linear operator from a Banach couple (X0,X1) to
a Banach couple (Y0,Y1), i.e., T : X0 +X1→ Y0 +Y1 is a linear operator and the restriction of T
to Xi (i = 0,1) is a bounded linear operator to Yi (i = 0,1). Henceforth we only consider such
type of operators. Everywhere below we use the notation kerT := {x ∈ X0 +X1: T x = 0} .

The following remarkable result on local stability of Fredholm operators for the complex
method of interpolation was proved by I. Shneiberg (see [18]) in 1974.

Theorem 1.1. (Shneiberg) Let T : (X0,X1)→ (Y0,Y1). Suppose that for some θ∗ ∈ (0,1) the op-
erator T : [~X ]θ∗→ [~Y ]θ∗ is Fredholm. Then there exists ε > 0 such that for any θ ∈ (θ∗−ε,θ∗+

ε) the operator T : [~X ]θ → [~Y ]θ is Fredholm with an index equals to the index of T : [~X ]θ∗ →
[~Y ]θ∗.

In the same paper ([18], Lemma 6) I. Shneiberg also proved that for all θ ∈ (θ∗− ε,θ∗+ ε),
we have

n(T : [~X ]θ → [~Y ]θ )≤ n(T : [~X ]θ∗ → [~Y ]θ∗), (1.1)

d(T : [~X ]θ → [~Y ]θ )≤ d(T : [~X ]θ∗ → [~Y ]θ∗). (1.2)

K.-H. Förster and K. Günther showed that (1.1) and (1.2) are in fact equalities (see [11]). It is
also clear that from Theorem 1.1 and the inequalities (1.1) and (1.2) it follows that if an operator
T : [~X ]θ∗ → [~Y ]θ∗ is invertible then for any θ ∈ (θ∗− ε,θ∗+ ε) the operator T : [~X ]θ → [~Y ]θ is
also invertible.

For the real method analogs of Shneiberg’s result were obtained by M. Zafran (see [19]) in
1980 for invertible operators and by W. Cao and Y. Sagher (see [10]) in 1990 for Fredholm
operators. In 1998 M. Krause (see [14]) proved the following more general result.

Theorem 1.2. (Krause) Let T : (X0,X1)→ (Y0,Y1). Suppose that for some θ∗ ∈ (0,1) and
q∗ ∈ [1,∞) the operator T : ~Xθ∗,q∗ →~Yθ∗,q∗ is Fredholm. Then there exists ε > 0 such that for
any θ ∈ (θ∗− ε,θ∗+ ε) and q ∈ [1,∞) the operator T : ~Xθ ,q→~Yθ ,q is Fredholm with the same
index and kernel, i.e.,

i(T : ~Xθ ,q→~Yθ ,q) = i(T : ~Xθ∗,q∗ →~Yθ∗,q∗),

kerT ∩~Xθ ,q = kerT ∩~Xθ∗,q∗.

Moreover, there exists a finite dimensional space M⊂Y0∩Y1 independent of θ ∈ (θ∗−ε,θ∗+ε)

and q ∈ [1,∞) such that~Yθ ,q = M⊕T (~Xθ ,q).
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Let us note that Shneiberg’s theorem (which deals with the complex method) does not prove
the local stability of kernels and cokernels of Fredholm operators, and Krause’s theorem (which
deals with the real method) proves the local stability for the case of q < ∞ but not for q = ∞.

In this paper, we suggest a new strategy for investigation of Fredholm operators on interpola-
tion spaces constructed by the real interpolation method. This strategy is based on the reduction
theorem that reduces investigation of Fredholm operators to investigation of invertible opera-
tors. This approach allows us to prove new and interesting results.. In particular, we generalize
Krause’s theorem for the important and non-trivial case q = ∞. We also use our results to
characterize maximal intervals of Fredholmness in terms of generalized dilation indices.

We would like to note that the use of dilation indices was inspired by the remarkable work
due to S. Ivanov and N. Kalton [13] on interpolation of subspaces. Note also that the con-
nection between the problem of description of maximal Fredholm intervals and the problem of
interpolation of subspaces was considered in [3].

2. INVERTIBLE OPERATORS IN SPACES OF REAL INTERPOLATION

Let T : (X0,X1)→ (Y0,Y1) be a bounded linear operator between Banach couples and let
a parameter q∗ ∈ [1,∞] be fixed. In [15] (see also [19] for 1 ≤ q∗ < ∞) it was shown that if
T : ~Xθ∗,q∗ →~Yθ∗,q∗ is invertible, then there exists δ > 0 such that for any θ ∈ (θ∗− δ ,θ∗+ δ )

the operator T : ~Xθ ,q∗ →~Yθ ,q∗ is invertible. So the set of all θ ∈ (0,1) for which the operator
T : ~Xθ ,q∗→~Yθ ,q∗ is invertible is open. A similar result for the complex method was obtained by
Shneiberg in [18].

Definition 2.1. Let T : (X0,X1) → (Y0,Y1). An interval (a,b) ⊂ (0,1) is said to be an in-
terval of invertibility of T for the real method with a parameter q∗ if for any θ ∈ (a,b) the
operatorT : ~Xθ ,q∗ →~Yθ ,q∗ is invertible.

Let us start with the following theorem.

Theorem 2.2. Let (a,b) be an interval of invertibility of an operator T : (X0,X1)→ (Y0,Y1) for
the real method with a parameter q∗ ∈ [1,∞]. Then for any θ0,θ1 ∈ (a,b) and any interpolation
functor G the operator T : G(~Xθ0,q∗,

~Xθ1,q∗)→ G(~Yθ0,q∗,
~Yθ1,q∗) is invertible.

Proof. Let θ0,θ1 ∈ (a,b). Since the operator

T : (~Xθ0,q∗,
~Xθ1,q∗)→ (~Yθ0,q∗,

~Yθ1,q∗)

is invertible on the end spaces, i.e., the operators T : ~Xθi,q∗ →~Yθi,q∗ , i = 0,1, are invertible, then
according to Proposition 1 in [4] it is sufficient to prove the injectivity of the operator

T : ~Xθ0,q∗+
~Xθ1,q∗ →~Yθ0,q∗+

~Yθ1,q∗. (2.1)

To prove its injectivity it is enough to show that on the interval (a,b) the operator T has the
property of “local injectivity”, i.e., for any θ∗ ∈ (a,b) there exists ε = ε(θ∗) > 0 such that for
any µ0,µ1 ∈ (θ∗− ε,θ∗+ ε) the operator

T : ~Xµ0,q∗+~Xµ1,q∗ →~Yµ0,q∗+~Yµ1,q∗ (2.2)

is injective. Indeed, suppose that on (a,b) the operator T has the property of “local injectivity”
but the operator (2.1) is not injective. Then there exists a non-zero element x ∈ ~Xθ0,q∗ +

~Xθ1,q∗
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such that T x = 0. Hence, x = x0 + x1, x0 ∈ ~Xθ0,q∗, x1 ∈ ~Xθ1,q∗ and so from T x = 0, we have
y = T x0 = T (−x1) ∈~Yθ0,q∗ ∩~Yθ1,q∗ . Then from the reiteration theorem it follows that

y ∈
⋂

θ∈[θ0,θ1]

~Yθ ,q∗ .

By our hypothesis the operator T : ~Xθ ,q∗ → ~Yθ ,q∗ is invertible for any θ ∈ [θ0,θ1], so there
exists a family {xθ}θ∈[θ0,θ1] of elements xθ ∈ ~Xθ ,q∗ such that T xθ = y. Let us now observe
that from “local injectivity” of T , it follows that for any θ∗ ∈ [θ0,θ1] there exists an interval
(θ∗− ε,θ∗+ ε) such that the elements xθ are equal for all θ ∈ (θ∗− ε,θ∗+ ε)∩ [θ0,θ1]. Now
using compactness of the interval [θ0,θ1] , we can conclude that xθ0 = xθ1. It remains to note
that xθ0 = x0 and xθ1 = −x1. Therefore x = x0 + x1 = 0, i.e., from “local injectivity” follows
injectivity of the operator (2.1). So we only need to prove “local injectivity”. Let θ∗ ∈ (a,b)
then there exists δ > 0 such that the operator T : (X0,X1)θ ,q∗→ (Y0,Y1)θ ,q∗ is invertible for any
θ ∈ (θ∗−δ ,θ∗+δ ). Now let us consider the couples (A0,A1), (B0,B1), where

A0 = ~Xθ∗−δ ,q∗+
~Xθ∗+δ ,q∗, A1 = ~Xθ∗−δ ,q∗ ∩~Xθ∗+δ ,q∗ ,

B0 =~Yθ∗−δ ,q∗+
~Yθ∗+δ ,q∗, B1 =~Yθ∗−δ ,q∗ ∩~Yθ∗+δ ,q∗.

From the calculations in [16] and [17], based on K-divisibility (see Theorems 3.3.15 and 3.8.7
in [9]), it follows that for λ ∈ (0,1/2) we have

(A0,A1)λ ,q∗ =
~Xθ∗−(1−2λ )δ ,q∗+

~Xθ∗+(1−2λ )δ ,q∗,

(B0,B1)λ ,q∗ =
~Yθ∗−(1−2λ )δ ,q∗+

~Yθ∗+(1−2λ )δ ,q∗

and
(A0,A1)1/2,q∗ =

~Xθ∗,q∗, (B0,B1)1/2,q∗ =
~Yθ∗,q∗. (2.3)

Since T : (A0,A1)→ (B0,B1), from (2.3) follows the invertibility of the operator

T : (A0,A1)1/2,q∗ → (B0,B1)1/2,q∗ .

So there exists ε1 > 0 such that for all λ ∈ (1/2− ε1,1/2+ ε1) the operator

T : (A0,A1)λ ,q∗ → (B0,B1)λ ,q∗

is invertible. Hence, if we take ε ∈ (0,2δε1) then λ = 1/2− ε/2δ ∈ (1/2− ε1,1/2) and the
operator

T : ~Xθ∗−ε,q∗+~Xθ∗+ε,q∗ →~Yθ∗−ε,q∗+~Yθ∗+ε,q∗

is invertible. From the reiteration theorem we deduce that for any µ0,µ1 ∈ (θ∗− ε,θ∗+ ε) the
following inclusion holds:

~Xµ0,q∗+~Xµ1,q∗ ⊂ ~Xθ∗−ε,q∗+~Xθ∗+ε,q∗.

Thus, the operator (2.2) is injective and so “local injectivity” is proved. �

From Theorem 2.2 and the reiteration theorem for the real method immediately follows:

Corollary 2.3. If (a,b) is an interval of invertibility for an operator T : (X0,X1)→ (Y0,Y1) for
the real method for some parameter q∗ ∈ [1,∞], then (a,b) is an interval of invertibility for the
real method for any parameter q ∈ [1,∞].
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Remark 2.4. Theorem 2.2 also follows from Theorem 4.9 and Proposition 4.2 in [7]. However,
the proof presented above is much simpler than the proof in [7]. Corollary 2.3 also follows from
the results in [4].

3. FREDHOLM OPERATORS IN SPACES OF REAL INTERPOLATION

In this section we apply our results on invertibility of operators to investigation of Fredholm
operators. Below we need the following technical lemma (see Lemma 3.1 in [6]).

Lemma 3.1. Let X and Y be Banach spaces such that X ⊂Y and X is dense in Y . Then for any
closed subspace V of Y with dim(Y/V ) < ∞ there exists a finite dimensional subspace M of X
with dimM = dim(Y/V ) such that Y = M⊕V and X = M⊕ (X ∩V ). In particular, we have
dim(Y/V ) = dim(X/(X ∩V )).

Our main tool in this section is the following theorem.

Theorem 3.2. (Reduction theorem) Let ~X , ~Y be regular couples and F be a regular func-
tor. Let T : (X0,X1)→ (Y0,Y1). Suppose that T : F(~X)→ F(~Y ) is Fredholm. Then there ex-
ist couples (X̃0, X̃1), (Ỹ0,Ỹ1) and an invertible operator T̃ : F(X̃0, X̃1)→ F(Ỹ0,Ỹ1) such that
if T̃ : G(X̃0, X̃1)→ G(Ỹ0,Ỹ1) is invertible for some interpolation functor G then the operator
T : G(~X)→ G(~Y ) is Fredholm with the index equal to the index of T : F(~X)→ F(~Y ).

Proof. The proof repeats the reasoning given in Theorem 1.2 in [6]. For the convenience of the
reader we show here the construction of the couples (X̃0, X̃1),(Ỹ0,Ỹ1) and the operator T̃ . The
construction consists of several steps.

Since T : F(X0,X1)→ F(Y0,Y1) is Fredholm therefore dim(kerT ∩F(X0,X1)) < ∞. Hence,
there exists a closed subspace U~X of X0+X1 such that X0+X1 = (kerT ∩F(X0,X1))⊕U~X . From
regularity of (X0,X1) and Lemma 3.1 it follows that there exists a finite dimensional subspace
M~X ⊂ X0∩X1 such that

X0 +X1 = M~X ⊕U~X . (3.1)

Then we define X̃i by X̃i := Xi∩U~X for i = 0,1.
From Fredholmness of T : F(X0,X1)→ F(Y0,Y1), we have dim(F(Y0,Y1)/T (F(X0,X1))) <

∞. Since Y0∩Y1 is dense in F(Y0,Y1) then by Lemma 3.1 there exists a finite dimensional space
M~Y ⊂ Y0 ∩Y1 such that F(Y0,Y1) = M~Y ⊕ T (F(X0,X1)) . As M~Y is finite dimensional then in
Y0 +Y1 there exists a closed subspace U~Y which is a complement to M~Y , i.e.,

Y0 +Y1 = M~Y ⊕U~Y . (3.2)

Let us now define the space Ỹi by Ỹi := Yi ∩U~Y for i = 0,1. To construct the operator T̃ , we
consider the projections P~X : X0 +X1→U~X and P~Y : Y0 +Y1→U~Y with the corresponding ker-
nels M~X and M~Y (see (3.1) and (3.2)). We define the operator T̃ by T̃ := P~Y T P~X : X̃0 + X̃1 →
Ỹ0 + Ỹ1. �

Below we need the following lemma (see also [12] and [2]).

Lemma 3.3. Suppose that couples ~X, ~Y are ordered and regular, i.e., X0 ⊂ X1, Y0 ⊂ Y1, X0 is
dense in X1 and Y0 is dense in Y1. Suppose that an operator T : (X0,X1)→ (Y0,Y1) is such that
the operators T : Xi→ Yi, i = 0,1, are Fredholm with equal indices. Then

kerT ∩X0 = kerT ∩X1 (3.3)
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and
T (X0) = T (X1)∩Y0. (3.4)

Moreover, there exists a finite dimensional space M ⊂ Y0 such that Yi = M⊕T (Xi), i = 0,1.

Proof. Let ni = dim(kerT ∩Xi), i = 0,1. Then from the inclusion

kerT ∩X0 ⊂ kerT ∩X1 (3.5)

it follows that n0≤ n1. Since Y0 is dense in Y1 and the operator T : X1→Y1 is Fredholm, Lemma
3.1 with X = Y0, Y = Y1 and V = T (X1) yields that the codimension of T (X1) in Y1 is equal to
the codimension of T (X1)∩Y0 in Y0. Clearly,

T (X0)⊂ T (X1)∩Y0 (3.6)

and so d0 := dim(T (X0)/Y0)≥ d1 := dim(T (X1)/Y1). From equality of indices of the operators
T : Xi→ Yi, i = 0,1, we have n0− n1 = d0− d1. Hence from the inequalities n0 ≤ n1, d0 ≥ d1
it follows that n0 = n1 and d0 = d1. Consequently, in the inclusions (3.5) and (3.6) we have the
equality of the indicated linear spaces, i.e., we have proved (3.3) and (3.4).

Finally, let us choose M such that Y0 = M⊕T (X0). As the codimension of T (X0) in Y0 is
equal to the codimension of T (X1) in Y1 and T (X0) = T (X1)∩Y0 then Y1 = M⊕T (X1). This
completes the proof. �

In the next theorem we consider a family {Fθ} of interpolation functors Fθ , θ ∈ (0,1), such
that

(a) functors Fθ are of order θ , i.e., for any couple ~X holds ~Xθ ,1 ⊂ Fθ (~X)⊂ ~Xθ ,∞;
(b) functors Fθ are regular and satisfy the reiteration theorem Fλ (Fθ0,Fθ1) = F(1−λ )θ0+λθ1;
(c) if T : (X0,X1)→ (Y0,Y1) and T : Fθ∗(~X)→ Fθ∗(~Y ) is invertible, then there exists ε > 0

such that for any interpolation functor G the operator

T : G(Fθ∗−ε(~X),Fθ∗+ε(~X))→ G(Fθ∗−ε(~Y ),Fθ∗+ε(~Y ))

is invertible.
Note that from Theorem 2.2 it follows that the family of functors of real interpolation Fθ (·) =

(·)θ ,q∗ with a fixed parameter q∗ ∈ [1,∞) satisfies the conditions (a)-(c).
Our main result in this section is the following theorem.

Theorem 3.4. Let {Fθ},0 < θ < 1, be a family of interpolation functors that satisfies the above
conditions (a)-(c). Suppose that T : (X0,X1)→ (Y0,Y1) and T : Fθ∗(~X)→ Fθ∗(~Y ) is Fredholm.
Then there exists ε > 0 such that for any interpolation functor G

(i) the operator

T : G(Fθ∗−ε(~X),Fθ∗+ε(~X))→ G(Fθ∗−ε(~Y ),Fθ∗+ε(~Y ))

is Fredholm with the index equal to the index of T : Fθ∗(~X)→ Fθ∗(~Y );
(ii) the spaces

W = kerT ∩G(Fθ∗−ε(~X),Fθ∗+ε(~X)), (3.7)

WW = T (G(Fθ∗−ε(~X),Fθ∗+ε(~X)))∩ (Y0∩Y1) (3.8)

do not depend on the functor G;
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(iii) there exists a finite dimensional space M ⊂ Y0∩Y1 independent of G such that

G(Fθ∗−ε(~Y ),Fθ∗+ε(~Y )) = M⊕T (G(Fθ∗−ε(~X),Fθ∗+ε(~X))).

Proof. (i) From the reiteration theorem and regularity of functors Fθ , θ ∈ (0,1), it follows that
without loss of generality we can assume that the couples (X0,X1), (Y0,Y1) are regular. Let
(X̃0, X̃1), (Ỹ0,Ỹ1) and T̃ be the couples and the operator constructed in Theorem 3.2. In this
case the operator

T̃ : Fθ∗(X̃0, X̃1)→ Fθ∗(Ỹ0,Ỹ1)

is invertible. Then from the condition (c) for the family of functors Fθ it follows that there exists
ε > 0 such that for any interpolation functor G the operator

T̃ : G(Fθ∗−ε(X̃0, X̃1),Fθ∗+ε(X̃0, X̃1))→ G(Fθ∗−ε(Ỹ0,Ỹ1),Fθ∗+ε(Ỹ0,Ỹ1))

is invertible. So from Theorem 3.2 it follows that the operator

T : G(Fθ∗−ε(~X),Fθ∗+ε(~X))→ G(Fθ∗−ε(~Y ),Fθ∗+ε(~Y ))

is Fredholm with the index equal to the index of T : Fθ∗(~X)→ Fθ∗(~Y ).
(ii) From (i) it follows that the operator

T : Fθ∗−ε(~X)+Fθ∗+ε(~X)→ Fθ∗−ε(~Y )+Fθ∗+ε(~Y )

is Fredholm with the index equal to the index of T : Fθ∗(~X)→ Fθ∗(~Y ). Let us consider a couple
(A0,A1) where

A0 = G(Fθ∗−ε(~X),Fθ∗+ε(~X)), A1 = Fθ∗−ε(~X)+Fθ∗+ε(~X)

and a couple (B0,B1) where

B0 = G(Fθ∗−ε(~Y ),Fθ∗+ε(~Y )), B1 = Fθ∗−ε(~Y )+Fθ∗+ε(~Y ).

Clearly, these couples are ordered. As X0∩X1 ⊂ A0 ⊂ A1 and X0∩X1 is dense in A1 therefore
the couple (A0,A1) is regular. Similarly, the couple (B0,B1) is also regular. Moreover, from (i)
we see that the operator T : (A0,A1)→ (B0,B1) satisfies the conditions of Lemma 3.3. Hence,
kerT ∩A1 = kerT ∩A0, i.e.,

kerT ∩ (Fθ∗−ε(~X)+Fθ∗+ε(~X)) = kerT ∩G(Fθ∗−ε(~X),Fθ∗+ε(~X)).

As the left-hand side of this equality does not depend on the interpolation functor G therefore
the space W (see (3.7)) is independent of G. Moreover, from Lemma 3.3 it also follows that
T (A1)∩B0 = T (A0), i.e.,

T (Fθ∗−ε(~X)+Fθ∗+ε(~X))∩G(Fθ∗−ε(~Y ),Fθ∗+ε
~Y )) = T (G(Fθ∗−ε(~X),Fθ∗+ε(~X))).

If we intersect both parts of this equality with Y0∩Y1 then from the embedding

Y0∩Y1 ⊂ G(Fθ∗−ε(~Y ),Fθ∗+ε(~Y )) = B0

we obtain

T (Fθ∗−ε(~X)+Fθ∗+ε(~X))∩ (Y0∩Y1) = T (G(Fθ∗−ε(~X),Fθ∗+ε(~X)))∩ (Y0∩Y1).

As the left-hand side does not depend on G therefore the space WW (see (3.8)) is independent
of G. The proof of the statement (ii) is complete.
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(iii) From Lemma 3.1 with X =Y0∩Y1, Y = Fθ∗−ε(~Y )+Fθ∗+ε(~Y ) and V = T (Fθ∗−ε(X0,X1)+
Fθ∗+ε(X0,X1)), we obtain that there exists a finite dimensional space M ⊂ Y0∩Y1 such that

Fθ∗−ε(~Y )+Fθ∗+ε(~Y ) = M⊕T (Fθ∗−ε(~X)+Fθ∗+ε(~X)).

We can see that the codimension of T (Fθ∗−ε(~X)+Fθ∗+ε(~X)) in Fθ∗−ε(~Y )+Fθ∗+ε(~Y ) (i.e., the
codimension of T (A1) in B1) is equal to dimM.

From (i) it follows that the indices of the operators T : A0→ B0 and T : A1→ B1 are equal,
so from the equality of kernels kerT ∩A0 = kerT ∩A1 (see (ii)) we obtain that the codimension
of T (A0) in B0 is equal to the codimension of T (A1) in B1. Hence, the codimension of T (A0) in
B0 is equal to dimM. As

M ⊂ Y0∩Y1 ⊂ G(Fθ∗−ε(~Y ),Fθ∗+ε(~Y )) = B0

and
M∩T (A0)⊂M∩T (A1) = {0}

therefore B0 = M⊕T (A0), i.e.,

G(Fθ∗−ε(~Y ),Fθ∗+ε(~Y )) = M⊕T (G(Fθ∗−ε(~X),Fθ∗+ε(~X))).

Moreover, from the construction of M it is clear that M is independent of the functor G. �

To formulate the next result we need the following definition.

Definition 3.5. Let T : (X0,X1)→ (Y0,Y1). An interval (a,b) ⊂ (0,1) is said to be an interval
of Fredholmness of the operator T for the real method with a parameter q∗ if the operator
T : (X0,X1)θ ,q∗ → (Y0,Y1)θ ,q∗ is Fredholm for all θ ∈ (a,b).

The next theorem proves stability of kernels and cokernels of an operator T on a Fredholm
interval for the real method. Note also that this theorem generalizes the result due to M. Krause
[14] to the important case of q = ∞.

Theorem 3.6. Let T : (X0,X1)→ (Y0,Y1) and let (a,b) be an interval of Fredholmness of the
operator T for the real method with a parameter q∗ ∈ [1,∞). Then for any θ ∈ (a,b) and
q ∈ [1,∞] the operator T : ~Xθ ,q→~Yθ ,q is Fredholm and the spaces

W = kerT ∩~Xθ ,q and WW = T (~Xθ ,q)∩ (Y0∩Y1)

are independent of θ ∈ (a,b) and q ∈ [1,∞]. Moreover, there exists a finite dimensional space
M ⊂ Y0∩Y1 such that

~Yθ ,q = M⊕T (~Xθ ,q) (3.9)
for all θ ∈ (a,b) and q ∈ [1,∞].

Proof. Note that for any θ∗ ∈ (a,b) the operator T : ~Xθ∗,q∗ → ~Yθ∗,q∗ is Fredholm. Applying
Theorem 3.4 with functors of real interpolation Fθ (·) = (·)θ ,q∗ and G(·) = (·)λ ,q, q ∈ [1,∞], we
obtain that there exists ε = ε(θ∗)> 0 such that for all θ ∈ (θ∗− ε,θ∗+ ε) the spaces

W = kerT ∩~Xθ ,q and WW = T (~Xθ ,q)∩ (Y0∩Y1)

are independent of θ ∈ (θ∗− ε(θ∗),θ∗+ ε(θ∗)) and q ∈ [1,∞]. Let θ0,θ1 ∈ (a,b), then

[θ0,θ1]⊂
⋃

θ∗∈[θ0,θ1]

(θ∗− ε(θ∗),θ∗+ ε(θ∗)) .
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From compactness of the interval [θ0,θ1] it follows that this interval can be covered by a finite
number of constructed above intervals (θ∗− ε(θ∗),θ∗+ ε(θ∗)) with θ∗ ∈ [θ0,θ1]. From this
and from independence of W and WW of θ and q on each interval (θ∗− ε(θ∗),θ∗+ ε(θ∗)) it
immediately follows that the spaces W and WW are independent of θ on the interval [θ0,θ1].
Since θ0,θ1 ∈ (a,b) are arbitrary we have independence of W and WW of θ and q on the whole
interval (a,b).

Now let us prove that there exists a finite dimensional space M ⊂ Y0 ∩Y1 independent of
θ ∈ (a,b), with the property (3.9). First let us note that from Fredholmness of the operator
T it follows that for any θ ∈ (a,b) the space T (~Xθ ,q) is closed in ~Yθ ,q and therefore from
Y0∩Y1 ⊂~Yθ ,q we obtain that the subspace

WW = T (~Xθ ,q)∩ (Y0∩Y1)

is closed in Y0∩Y1.
Now, if in the statement (iii) in Theorem 3.4 we set G(~X) = ~X1/2,q then for any θ ∈ (a,b), we

obtain the existence of a finite dimensional space Mθ ⊂ Y0∩Y1 such that

~Yθ ,q = Mθ ⊕T (~Xθ ,q).

If we intersect the spaces in both sides of this equality with Y0∩Y1 we obtain

Y0∩Y1 = Mθ ⊕WW.

Hence WW has a finite codimension in Y0∩Y1. As WW does not depend on θ ∈ (a,b) and q ∈
[1,∞] therefore there exists a finite dimensional space M that is also independent of θ ∈ (a,b)
and q and such that

Y0∩Y1 = M⊕WW.

Moreover, it is clear that for any θ ∈ (a,b) and q ∈ [1,∞] we have

~Yθ ,q = Mθ ⊕T (~Xθ ,q)⊂M⊕T (~Xθ ,q) =~Yθ ,q.

This gives us the required equality (3.9) and the proof is complete. �

Corollary 3.7. If (a,b) is an interval of Fredholmness of an operator T for the real method
with a parameter q∗ ∈ [1,∞), then (a,b) is an interval of Fredholmness for any q ∈ [1,∞], and
so the interval of Fredholmness is independent of q∗ ∈ [1,∞).

4. CHARACTERIZATION OF MAXIMAL FREDHOLM INTERVALS

Let an operator T : (X0,X1)→ (Y0,Y1) be invertible on the end spaces, i.e., the operators
T : Xi→Yi, i = 0,1, are invertible. Suppose also that for some parameters θ∗ ∈ (0,1), q ∈ [1,∞)

the operator T : ~Xθ∗,q→~Yθ∗,q is Fredholm. In this section we show that it is possible to charac-
terize the maximal interval (a,b) that contains θ∗ and such that for all θ ∈ (a,b) the operator
T : ~Xθ ,q→~Yθ ,q is Fredholm. We would like to mention that the problem of characterization of
a maximal interval of invertibility of an operator was solved in [4].

Below we need the notion of quotient operators for the case of couples. Let (X0,X1) be
a couple and let U ⊂ X0 +X1 be a closed subspace. Then we can consider a quotient operator
with the kernel U , i.e., an operator

π : X0 +X1→ (X0 +X1)/U,
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where (X0+X1)/U (we also denote it by π(X0+X1)) is a quotient space with the quotient norm

‖x̄‖
π(X0+X1)

= inf
π(x)=x̄

‖x‖X0+X1
.

Note that Xi ∩U is a closed subspace of Xi, i = 0,1. Therefore, on the space π(Xi) we can
consider the quotient norm Xi/(Xi∩U), i.e.,

‖x̄‖
π(Xi)

= inf
π(x)=x̄

‖x‖Xi
, i = 0,1.

The couple (π(X0),π(X1)) with these norms is said to be the quotient couple. Then with the
equality of the norms (see [5]) we have

π(X0)+π(X1) = π(X0 +X1).

It is not difficult to prove the next result.

Proposition 4.1. Let T : (X0,X1)→ (Y0,Y1). Suppose that U ⊂ kerT is a closed subspace of
X0 +X1 and π : X0 +X1→ (X0 +X1)/U is a quotient map. Then there exists a unique bounded
linear operator S : (π(X0),π(X1))→ (Y0,Y1) such that

T = Sπ .

To characterize maximal Fredholm intervals of an operator T : (X0,X1)→ (Y0,Y1) we need
to define linear spaces V 0

θ ,q =V 0
θ ,q(T ), V 1

θ ,q =V 1
θ ,q(T ). These spaces were introduced in [4] and

they are defined by the formulas

V 0
θ ,q(T ) =

{
x ∈ kerT : x = x0 + x1, x0 ∈ ~Xθ ,q∩X0, x1 ∈ X1

}
,

V 1
θ ,q(T ) =

{
x ∈ kerT : x = x0 + x1, x0 ∈ X0, x1 ∈ ~Xθ ,q∩X1

}
.

The spaces V 0
θ ,q and V 1

θ ,q can also be defined in terms of the K-functional (see [4]):

V 0
θ ,q =

{
x ∈ kerT :

(∫ 1

0
(t−θ K(t,x;X0,X1)

)q dt
t

) 1
q
< ∞

}
,

V 1
θ ,q =

{
x ∈ kerT :

(∫ ∞

1
(t−θ K(t,x;X0,X1)

)q dt
t

) 1
q
< ∞

}
.

From these definitions it follows (see [4] and [5]) that

V 0
θ1,q ⊂V 0

θ0,q, V 1
θ0,q ⊂V 1

θ1,q if θ0 < θ1 (4.1)

and
kerT ∩~Xθ ,q =V 0

θ ,q∩V 1
θ ,q. (4.2)

We also define a linear space Ṽθ ,q such that

kerT = (V 0
θ ,q +V 1

θ ,q)⊕Ṽθ ,q. (4.3)

In [5] it was shown that in the case when T : ~Xθ ,q→~Yθ ,q is Fredholm the spaces V 0
θ ,q∩V 1

θ ,q and
Ṽθ ,q are finite dimensional and the operator T can be decomposed into three operators

T = T3T2T1, (4.4)
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where T1 is a quotient operator with the kernel U1 =V 0
θ ,q∩V 1

θ ,q that maps the couple (X0,X1) to
the couple (T1(X0),T1(X1)), the operator T2 is a quotient operator with the kernel U2 = T1(Ṽθ ,q)
that maps the couple (T1(X0),T1(X1)) to the couple (T2T1(X0),T2T1(X1)) and T3 is chosen in
such a way that T = T3T2T1 (see Proposition 4.1).

The next theorem proves stability of spaces V 0
θ ,q, V 1

θ ,q on Fredholm intervals.

Theorem 4.2. Suppose that an operator T : (X0,X1)→ (Y0,Y1) is invertible on the end spaces.
Let (a,b) be a Fredholm interval of the operator T for the real method and 1≤ q < ∞. Then the
spaces V 0

θ ,q, V 1
θ ,q are independent of θ ∈ (a,b).

Proof. Let us first prove that

V i
θ ,q = (V i

θ ,q +Ṽθ ,q)∩ (V 0
θ ,q +V 1

θ ,q), i = 0,1. (4.5)

Clearly,
V i

θ ,q ⊂ (V i
θ ,q +Ṽθ ,q)∩ (V 0

θ ,q +V 1
θ ,q).

To prove the opposite embedding let x ∈ (V i
θ ,q + Ṽθ ,q)∩ (V 0

θ ,q +V 1
θ ,q). Then there exist decom-

positions

x = u+ ṽ, u ∈V i
θ ,q, ṽ ∈ Ṽθ ,q,

x = v0 + v1, v0 ∈V 0
θ ,q, v1 ∈V 1

θ ,q.

Hence
ṽ = v0 + v1−u ∈ Ṽθ ,q∩ (V 0

θ ,q +V 1
θ ,q).

From the definition of Ṽθ ,q it follows that Ṽθ ,q∩ (V 0
θ ,q +V 1

θ ,q) = {0}, i.e., ṽ = 0, and therefore
x = u ∈V i

θ ,q, which proves (4.5).
Let us now show that the linear space

V 0
θ ,q +V 1

θ ,q

is independent of θ ∈ (a,b), i.e., V 0
θ0,q

+V 1
θ0,q =V 0

θ1,q
+V 1

θ1,q for any θ0,θ1 ∈ (a,b). It is sufficient
to show that the embedding

V 0
θ0,q +V 1

θ0,q ⊂V 0
θ1,q +V 1

θ1,q (4.6)

is valid for any arbitrary θ0,θ1 ∈ (a,b). Let x ∈ V 0
θ0,q

+V 1
θ0,q, which means that x = v0 + v1,

where vi ∈V i
θ0,q

, i = 0,1. From the definition of V i
θ0,q

, we get

v0 = v0
0 + v1

0, v0
0 ∈ X0∩~Xθ0,q, v1

0 ∈ X1,

v1 = v0
1 + v1

1, v0
1 ∈ X0, v1

1 ∈ X1∩~Xθ0,q.

As vi ∈ kerT then

T v0
i =−T v1

i ∈ T (~Xθ0,q)∩ (Y0∩Y1) =WW, i = 0,1.

Defining x0 = v0
0 + v0

1 and x1 = v1
0 + v1

1 we have

x = v0 + v1 = (v0
0 + v0

1)+(v1
0 + v1

1) = x0 + x1,

where xi ∈ Xi (i = 0,1) and T x0 = −T x1 ∈WW . According to Theorem 3.6 the space WW is
independent of θ ∈ (a,b), i.e.,

WW = T (~Xθ0,q)∩ (Y0∩Y1) = T (~Xθ1,q)∩ (Y0∩Y1)
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and therefore there exists x̃ ∈ ~Xθ1,q such that

T x̃ = T x0 =−T x1.

Let us consider a decomposition x = (x0− x̃) + (x1 + x̃) with x0− x̃, x1 + x̃ ∈ kerT . Since
x̃ ∈ ~Xθ1,q therefore according to Propositions 4 and 2 from [4] there exists a decomposition
x̃ = x̃0 + x̃1 such that x̃i ∈ Xi∩~Xθ1,q. Hence,

x0− x̃ = (x0− x̃0)− x̃1 and x1 + x̃ = x̃0 +(x1 + x̃1),

where
x0− x̃0 ∈ X0,−x̃1 ∈ X1∩~Xθ1,q and x̃0 ∈ X0∩~Xθ1,q, x1 + x̃1 ∈ X1.

It means that x0− x̃ ∈V 1
θ1,q and x1 + x̃ ∈V 0

θ1,q
, i.e.,

x = (x0− x̃)+(x1 + x̃) ∈V 0
θ1,q +V 1

θ1,q.

This proves the embedding (4.6) and therefore V 0
θ ,q +V 1

θ ,q is independent of θ ∈ (a,b).
The fact that the space V 0

θ ,q+V 1
θ ,q does not depend on θ ∈ (a,b) allows us to choose the space

Ṽθ ,q in (4.3) independently of θ ∈ (a,b). So, everywhere below we suppose that the space Ṽθ ,q
is independent of θ ∈ (a,b).

From (4.5) it follows that to prove the theorem it remains to show that the spaces

V 0
θ ,q +Ṽθ ,q, V 1

θ ,q +Ṽθ ,q (4.7)

are independent of θ ∈ (a,b). From (4.2) and Theorem 3.6 we see that V 0
θ ,q∩V 1

θ ,q = kerT ∩~Xθ ,q

is independent of θ on the whole interval (a,b). Since the space Ṽθ ,q is also independent
of θ ∈ (a,b) we obtain that the operators T1 and T2 in (4.4), and, consequently, even T3 are
independent of θ ∈ (a,b). As shown in [5], the operator

T3 : (T2T1(X0),T2T1(X1))θ ,q→ (Y0,Y1)θ ,q

is invertible for all θ ∈ (a,b). Therefore, from Theorems 11 and 14 in [4], it follows that

V 0
θ ,q(T3)⊕V 1

θ ,q(T3) = kerT3 (4.8)

and the spaces V 0
θ ,q(T3) and V 1

θ ,q(T3) are independent of θ ∈ (a,b).
From the definitions of the spaces V 0

θ ,q(T ) and V 1
θ ,q(T ) it is not difficult to prove that

T2T1(V i
θ ,q(T ))⊂V i

θ ,q(T3), i = 0,1. (4.9)

Therefore, from (4.8) it follows that

T2T1(V 0
θ ,q(T ))⊕T2T1(V 1

θ ,q(T ))⊂ kerT3.

On the other hand, T2T1 : X0+X1→ T2T1(X0)+T2T1(X1) is surjective therefore for any z∈ kerT3
there exists x∈ X0+X1 such that T2T1x = z. Clearly, x∈ kerT =V 0

θ ,q+V 1
θ ,q+Ṽθ ,q and therefore

x = v0 + v1 + ṽ, where vi ∈V i
θ ,q, i = 0,1, and ṽ ∈ Ṽθ ,q. Since T1(Ṽθ ,q) = kerT2 we have

z = T2T1x = T2T1v0 +T2T1v1.

Hence,
T2T1(V 0

θ ,q(T ))⊕T2T1(V 1
θ ,q(T )) = kerT3.
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Taking into account (4.8) and (4.9), we obtain

T2T1(V i
θ ,q(T )) =V i

θ ,q(T3), i = 0,1.

So from ker(T2T1) =V 0
θ ,q∩V 1

θ ,q +Ṽθ ,q it follows that{
x ∈ X0 +X1 : T2T1x ∈V i

θ ,q(T3)
}
=V i

θ ,q(T )+Ṽθ ,q(T ), i = 0,1.

Since the space V i
θ ,q(T3), i = 0,1, and the operator T2T1 are independent of θ ∈ (a,b) therefore

the space V i
θ ,q(T )+Ṽθ ,q(T ), i = 0,1, is also independent of θ ∈ (a,b).

We have proved that the space (4.7) is independent of θ ∈ (a,b) and thus the proof of the
theorem is complete. �

In [5] the spaces V 0
θ ,q,V

1
θ ,q and Ṽθ ,q were used to formulate the necessary and sufficient con-

dition for Fredholmness of an operator T : ~Xθ ,q→~Yθ ,q. The result was formulated in terms of
generalized dilation indices. Let us remind the definitions of these indices.

Let us consider a set Ω⊂ X0+X1. We denote by β (Ω) an infimum of all θ ∈ [0,1] for which
there exists γ = γ(θ ,Ω)> 0 such that for all x ∈Ω\{0} and all 0 < s≤ t, we have

K(s,x;X0,X1)

K(t,x;X0,X1)
≥ γ

(s
t

)θ

. (4.10)

If in this definition we consider such parameters s and t that satisfy the inequalities 0< s≤ t ≤ 1,
then we obtain an index β0(Ω) and if we consider such parameters s and t that satisfy the
inequalities 1≤ s≤ t then we obtain an index β∞(Ω).

Similarly, by α(Ω) we denote the supremum of all θ ∈ [0,1] for which there exists γ =
γ(θ ,Ω)> 0 such that for all x ∈Ω\{0} and all 0 < s≤ t we have

K(s,x;X0,X1)

K(t,x;X0,X1)
≤ γ

(s
t

)θ

. (4.11)

If instead of 0 < s≤ t we consider such parameters s and t that satisfy the inequalities 0 < s≤ t
≤ 1 then we obtain an index α0(Ω) and if we consider such parameters s and t that satisfy
1≤ s≤ t then we obtain an index α∞(Ω).

In the case when the set Ω consists of one element, i.e., Ω= {x}, we denote the indices α(Ω),
β (Ω) by α(x), β (x) (similarly, we obtain the indices α0(x), β0(x), α∞(x) and β∞(x)). Note that
if Ω = {0}, we put α(Ω) = α0(Ω) = α∞(Ω) = 1 and β (Ω) = β0(Ω) = β∞(Ω) = 0.

Let U ⊂ X0 +X1 be a closed subspace, then if π is a quotient operator with a kernel U then
using Proposition 5 in [5] we obtain that the K-functional of an element π(x) ∈ π(X0)+π(X1)
is equal to

K(t,π(x),π(X0),π(X1)) = inf
u∈U

K(t,x+u,X0,X1).

Thus, the indices for the set π(Ω) (Ω⊂ X0 +X1) with respect to the couple (π(X0),π(X1)) can
be calculated in terms of the K-functional of the couple (X0,X1). We denote them by α(Ω;U),
β (Ω;U), α0(Ω;U), β0(Ω;U), α∞(Ω;U), and β∞(Ω;U).

Note that from the definition of the Fredholm interval for the real method with a parameter q
it follows that if an operator T : (X0,X1)θ∗,q→ (Y0,Y1)θ∗,q, 1 ≤ q < ∞, is Fredholm, then there
exists a maximal Fredholm interval (a,b) that contains θ∗.
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Theorem 4.3. Suppose that an operator T : (X0,X1)→ (Y0,Y1) is invertible on the end spaces
and the operator T : ~Xθ∗,q→~Yθ∗,q,1≤ q < ∞, is Fredholm. Let (a,b) 3 θ∗ be a maximal Fred-
holm interval for the real method with a parameter q. Then θ ∈ (a,b) if and only if

β∞(U)< θ < α0(U), (4.12)

β0(V ;U)< θ < α∞(V ;U), (4.13)

β (V 1
θ∗,q;U +V )< θ < α(V 0

θ∗,q;U +V ), (4.14)

where U =V 0
θ∗,q∩V 1

θ∗,q and V = Ṽθ∗,q.

Proof. Necessity. Let θ ∈ (a,b). From Theorem 4.2 we see that V 0
θ ,q = V 0

θ∗,q and V 1
θ ,q = V 1

θ∗,q

and therefore the space Ṽθ ,q can be chosen equal to Ṽθ∗,q. Hence, Corollary 1 from [5] gives us
that for θ the inequalities (4.12)-(4.14) are valid.

Sufficiency. We need to show that for any θ satisfying the inequalities (4.12)-(4.14), the
operator T : ~Xθ ,q→~Yθ ,q is Fredholm. Since T : ~Xθ∗,q→~Yθ∗,q is Fredholm, the operator T can
be decomposed as T = T3T2T1 (see (4.4)), where T1,T2 are quotient operators with the kernels
V 0

θ∗,q∩V 1
θ∗,q and T1(Ṽθ∗,q), respectively. From Theorem 10 and Theorem 11 in [5] it follows that

for any θ satisfying (4.12)-(4.13), the operators

T1 : (X0,X1)θ ,q→ (T1(X0),T1(X1))θ ,q,

T2 : (T1(X0),T1(X1))θ ,q→ (T2T1(X0),T2T1(X1))θ ,q

are Fredholm. Note that from Theorem 12 in [5] we conclude that the operator T3 defined on
(T2T1(X0),T2T1(X1))θ∗,q is invertible. Therefore, applying Theorem 14 from [4], we conclude
that for any θ satisfying (4.14) the operator T3 : (T2T1(X0),T2T1(X1))θ ,q→ (Y0,Y1)θ ,q is invert-
ible. Consequently, the operator

T = T3T2T1 : (X0,X1)θ ,q→ (Y0,Y1)θ ,q

is Fredholm. This completes the proof. �

5. CHARACTERIZATION OF MAXIMAL INTERVALS OF INVERTIBILITY

Theorem 4.3 generalizes Theorem 14 from [4], in which maximal intervals of invertibility
were characterized. In this case U = V 0

θ∗,q∩V 1
θ∗,q = {0}, V = Ṽθ∗,q = {0} and we arrive at the

following theorem.

Theorem 5.1. Suppose that an operator T : (X0,X1)→ (Y0,Y1) is invertible on the end spaces
and the operator T : ~Xθ∗,q→~Yθ∗,q,1≤ q≤ ∞, is invertible. Let (a,b) be a maximal interval of
invertibility of the operator T that contains θ∗. Then θ ∈ (a,b) if and only if

a = β (V 1
θ∗,q)< θ < α(V 0

θ∗,q) = b. (5.1)

The calculation of indices β (V 1
θ∗,q) and α(V 0

θ∗,q) is a rather difficult problem. As we can see
below, the next result allows us to simplify the calculations in some concrete situations.

Theorem 5.2. Suppose that an operator T : (X0,X1)→ (Y0,Y1) is invertible on the end spaces.
Let (a0,b0) and (a1,b1) be two maximal intervals of invertibility of T for the real method with
a0 < b0 ≤ a1 < b1. If θ0 ∈ (a0,b0) and θ1 ∈ (a1,b1) then

b0 = α(V 0
θ0,q∩V 1

θ1,q), a1 = β (V 0
θ0,q∩V 1

θ1,q).
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Proof. We need some simple properties of dilation indices that follow directly from the defini-
tions (see (4.10), (4.11)):

(i) let Ω⊂ X0 +X1 and Ω 6= {0} then

α(Ω)≤ β (Ω); (5.2)

(ii) if Ω0 ⊂Ω1 ⊂ X0 +X1 then

α(Ω0)≥ α(Ω1) and β (Ω0)≤ β (Ω1). (5.3)

Note that from (5.1) we have

ai = β (V 1
θi,q), bi = α(V 0

θi,q), i = 0,1. (5.4)

Let us first show that

V 0
θ0,q =V 0

θ1,q⊕ (V 0
θ0,q∩V 1

θ1,q), V 1
θ1,q =V 1

θ0,q⊕ (V 0
θ0,q∩V 1

θ1,q). (5.5)

From invertibility of operators

T : ~Xθi,q→~Yθi,q, i = 0,1,

and Theorem 11 from [4] it follows that

kerT =V 0
θi,q⊕V 1

θi,q, i = 0,1. (5.6)

Hence,
V 0

θ1,q∩ (V
0
θ0,q∩V 1

θ1,q) = {0} , V 1
θ0,q∩ (V

0
θ0,q∩V 1

θ1,q) = {0}
and therefore from the inclusions (4.1) we have

V 0
θ1,q⊕ (V 0

θ0,q∩V 1
θ1,q)⊂V 0

θ0,q, V 1
θ0,q⊕ (V 0

θ0,q∩V 1
θ1,q)⊂V 1

θ1,q. (5.7)

Now let us prove the opposite inclusions. According to (5.6) for any x ∈ kerT there exist
decompositions

x = x0
θ0
+ x1

θ0
, x = x0

θ1
+ x1

θ1
, (5.8)

where x0
θ0
∈V 0

θ0,q
, x1

θ0
∈V 1

θ0,q and x0
θ1
∈V 0

θ1,q
, x1

θ1
∈V 1

θ1,q. So x0
θ0
+ x1

θ0
= x0

θ1
+ x1

θ1
and therefore

the element
u = x0

θ0
− x0

θ1
= x1

θ1
− x1

θ0

belongs to V 0
θ0,q
∩V 1

θ1,q. Since x0
θ0
= x0

θ1
+u and x1

θ1
= x1

θ0
+u therefore from the assumption that

x ∈V 0
θ0,q

we have x = x0
θ0

in (5.8) and consequently we obtain the inclusions

V 0
θ0,q ⊂V 0

θ1,q⊕ (V 0
θ0,q∩V 1

θ1,q).

Similarly, from the assumption that x ∈V 1
θ1,q we have

V 1
θ1,q ⊂V 1

θ0,q⊕ (V 0
θ0,q∩V 1

θ1,q).

The obtained inclusions together with (5.7) give the equalities (5.5).
To prove the theorem we need to show that

α(V 0
θ0,q) = α(V 0

θ0,q∩V 1
θ1,q), β (V 1

θ1,q) = β (V 0
θ0,q∩V 1

θ1,q).
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First let us note that the inclusions V 0
θ0,q
∩V 1

θ1,q ⊂ V 0
θ0,q

, V 0
θ0,q
∩V 1

θ1,q ⊂ V 1
θ1,q and the property

(5.3) give us

α(V 0
θ0,q)≤ α(V 0

θ0,q∩V 1
θ1,q), (5.9)

β (V 0
θ0,q∩V 1

θ1,q)≤ β (V 1
θ1,q). (5.10)

Since V 0
θ0,q

= V 0
θ1,q
⊕ (V 0

θ0,q
∩V 1

θ1,q), any element x ∈ V 0
θ0,q

can be decomposed as x = u+ v,
where u ∈V 0

θ1,q
and v ∈V 0

θ0,q
∩V 1

θ1,q. Hence, from (5.10) and (5.4) it follows that

β (V 0
θ0,q∩V 1

θ1,q)≤ β (V 1
θ1,q) = a1 < b1 = α(V 0

θ1,q)

and therefore Lemma 1 in [4] gives us the inequalities

K(s,u+ v)
K(t,u+ v)

≤ γ1
K(s,u)+K(s,v)
K(t,u)+K(t,v)

≤
γ2(

s
t )

α(V 0
θ1,q

)−εK(t,u)+ γ3(
s
t )

α(V 0
θ0,q
∩V 1

θ1,q
)−εK(t,v)

K(t,u)+K(t,v)

for 0 < s ≤ t. Here γi, i = 1,2,3, are positive constants independent of u,v,s and t. From the
properties (5.2) and (5.3) we have

α(V 0
θ0,q∩V 1

θ1,q)≤ β (V 0
θ0,q∩V 1

θ1,q)≤ β (V 1
θ1,q)< α(V 0

θ1,q)

and therefore
K(s,x)
K(t,x)

=
K(s,u+ v)
K(t,u+ v)

≤ γ(
s
t
)

α(V 0
θ0,q
∩V 1

θ1,q
)−ε

,

which means that
α(V 0

θ0,q)≥ α(V 0
θ0,q∩V 1

θ1,q)

and we have the equality in (5.9). Similarly, we can prove the equality in (5.10). Indeed, as
V 1

θ1,q = V 1
θ0,q⊕ (V 0

θ0,q
∩V 1

θ1,q) therefore an arbitrary element x ∈ V 1
θ1,q can be decomposed as

x = u+ v, where u ∈V 1
θ0,q and v ∈V 0

θ0,q
∩V 1

θ1,q. Hence, from (5.9) and (5.4) it follows that

β (V 1
θ0,q) = a0 < b0 = α(V 1

θ0,q)≤ α(V 0
θ0,q∩V 1

θ1,q).

So from Lemma 1 in [4] we have
K(s,u+ v)
K(t,u+ v)

≥ γ1
K(s,u)+K(s,v)
K(t,u)+K(t,v)

≥
γ2(

s
t )

β (V 1
θ0,q

)+εK(t,u)+ γ3(
s
t )

β (V 0
θ0,q
∩V 1

θ1,q
)+εK(t,v)

K(t,u)+K(t,v)

for 0 < s≤ t. Here γi, i = 1,2,3, are positive constants independent of u,v,s and t. As 0 < s≤ t
and

β (V 0
θ0,q∩V 1

θ1,q)≥ α(V 0
θ0,q∩V 1

θ1,q)≥ α(V 0
θ0,q)> β (V 1

θ0,q)

therefore
K(s,u+ v)
K(t,u+ v)

≥ γ(
s
t
)

β (V 0
θ0,q
∩V 1

θ1,q
)+ε

.

Hence, β (V 1
θ1,q) ≤ β (V 0

θ0,q
∩V 1

θ1,q) and we obtain the equality in (5.10). This completes the
proof of the theorem. �
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Note that if dim
(

V 0
θ0,q
∩V 1

θ1,q

)
= 1 and e ∈ V 0

θ0,q
∩V 1

θ1,q, then in Theorem 5.2 we have b0 =

α(e) and a1 = β (e).
In [4] it was shown that if an operator T : (X0,X1)→ (Y0,Y1) is invertible on the end spaces

and dimkerT = n then the number of maximal intervals of invertibility does not exceed n+
1. The next theorem applies Theorem 5.2 to find the necessary conditions for the number of
maximal intervals of invertibility to be exactly n+1.

Theorem 5.3. Let T : (X0,X1) → (Y0,Y1) be an operator invertible on the end spaces with
dim(kerT ) = n. The set of invertibility consists of (n+1) disjoint intervals if and only if there
exists a basis e1, ...,en of kerT such that

0 < α(e1)≤ β (e1)< α(e2)≤ β (e2)< .. . < α(en)≤ β (en)< 1.

Proof. Sufficiency follows immediately from Theorem 16 in [4]. To prove necessity, let the
set of invertibility consists of n+1 disjoint intervals (a1,b1), . . . ,(an+1,bn+1), where ak < bk ≤
ak+1 < bk+1, k = 1, . . . ,n, and let θk ∈ (ak,bk). Note that from Theorem 5.1 one has

ak = β (V 1
θk,q), bk = α(V 0

θk,q)

and therefore V 0
θk,q
6= V 0

θk+1,q
, V 1

θk,q
6= V 1

θk+1,q
for each k = 1, . . . ,n+ 1. Hence, from (4.1), the

equality kerT =V 0
θk,q
⊕V 1

θk,q
(see Theorem 11 in [4]), and the fact that dimkerT = n we obtain

kerT =V 0
θ1,q ⊃V 0

θ2,q ⊃ . . .⊃V 0
θk,q ⊃ . . .⊃V 0

θn+1,q = {0}, (5.11)

{0}=V 1
θ1,q ⊂V 1

θ2,q ⊂ . . .⊂V 1
θk,q ⊂ . . .⊂V 1

θn+1,q = kerT (5.12)

with strict inclusions. Therefore, for the intervals (a1,b1) and (an+1,bn+1) Theorem 5.1 gives
us

a1 = β (V 1
θ1,q) = β ({0}) = 0,

bn+1 = α(V 0
θn+1,1) = α({0}) = 1.

Taking into account the equalities (5.5), from the inclusions (5.11)-(5.12) we have

V 0
θk,q =V 0

θk+1,q⊕ (V 0
θk,q∩V 1

θk+1,q), k ∈ {1, . . . ,n}.

Therefore,
kerT = (V 0

θ1,q∩V 1
θ2,q)⊕ (V 0

θ2,q∩V 1
θ3,q)⊕·· ·⊕ (V 0

θn−1,q∩V 1
θn,q)

and dim(V 0
θk,q
∩V 1

θk+1,q
)= 1, k∈{1, . . . ,n}. Let ek be an arbitrary element from V 0

θk,q
∩V 1

θk+1,q
, k=

1, . . . ,n. It is clear that {e1, . . . ,en} forms a basis in kerT . Applying Theorem 5.2 we arrive at

bk = α(V 0
θk,q∩V 1

θk+1,q) = α(ek) and ak+1 = β (V 0
θk,q∩V 1

θk+1,q) = β (ek)

for each k = 1, . . . ,n. Hence, as

0 = a1 < b1 ≤ a2 < b2 ≤ . . .≤ an+1 < bn+1 = 1

we have constructed a basis {e1, . . . ,en} of kerT such that

0 < α(e1)≤ β (e1)< α(e2)≤ β (e2)< .. . < α(en)≤ β (en)< 1.

�

We conclude the paper with the following.
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Remark 5.4. The proof of the theorem shows that in the settings of Theorem 5.3 the set of
invertibility of the operator T , i.e., the set of all θ ∈ (0,1) such that T : ~Xθ ,q→~Yθ ,q is invertible,
is (0,α(e1))∪ (β (e1),α(e2))∪ . . .∪ (β (en),1).

Acknowledgements
The third named author was supported by the National Science Centre, Poland,
Project no. 2019/33/B/ST1/00165.

REFERENCES

[1] Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics,
50, AMS. Providence, RI, 2002.

[2] E. Albrecht and K. Schindler, Spectrum of Operators on Real Interpolation Spaces, preprint.
[3] I. Asekritova, F. Cobos and N. Kruglyak, Interpolation of closed subspaces and invertibility of operators, Z.

Anal. Anwend. 34 (2015) 1-–15.
[4] I. Asekritova and N. Kruglyak, Necessary and sufficient conditions for invertibility of operators in spaces of

real interpolation, J. Funct. Anal. 264 (2013) 207–245.
[5] I. Asekritova, N. Kruglyak and M. Mastyło, Interpolation of Fredholms operators, Adv. Math. 295 (2016)

421–496.
[6] I. Asekritova, N. Kruglyak and M. Mastyło, Stability of Fredholm properties on interpolation Banach spaces,

J. Approx. Theory 260 (2020) 105493.
[7] I. Asekritova, N. Kruglyak and M. Mastyło, Stability of the inverses of interpolated operators with application

to the Stokes system, Revista Matemática Complutense, 36 (2023) 163–206.
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