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Abstract. In [18] and [19], we have recently studied a behavior of the iterative processes to find fixed points of non-
expansive self-mappings S : Ω→Ω using both total asymptotically nonexpansive approximations Sk : Ω→Ω and
total asymptotically weakly contractive approximations Sk, where Ω is a closed and convex set in a uniformly con-
vex Banach space B. We proved there strong and weak convergence of the corresponding iterative consequences.
In the present paper we investigate the dynamical systems (1.14) with so called total asymptotically weakly con-
tractive approximating family of operators S(t) : Ω→Ω depending on continuous parameter t ≥ t0 ≥ 0. Part of the
results deals with nonexpansive approximating family of operators S(t). All our proofs are based on the estimates
of solutions of the differential inequalities to which most of the paper is devoted.
Keywords. Convergence on subsets; Differential inequalities; Dynamical systems, Total asymptotically nonex-
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1. INTRODUCTION AND PRELIMINARIES

Let B be a real normed space with norm ‖ · ‖, Ω⊆ B be a nonempty subset and S : Ω→ B be
a continuous operator. Let us recall that S is said to be:

1) strongly contractive if there exists a constant 0 < q < 1 such that

‖Sx−Sy‖ ≤ q‖x− y‖ ∀x,y ∈Ω,

2) nonexpansive if

‖Sx−Sy‖ ≤ ‖x− y‖ ∀x,y ∈Ω,
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3) weakly contractive if there exists a continuous and strictly increasing function ψ(t) defined
on R+ and positive on R+ \{0}, ψ(0) = 0, such that

‖Sx−Sy‖ ≤ ‖x− y‖−ψ(‖x− y‖) ∀x,y ∈Ω. (1.1)

Different aspects of the strongly contractive and nonexpansive operators were widely investi-
gated in the literature (for example, in [22, 23]). The class of weakly contractive operators sat-
isfying (1.1) has been introduced in our work [10] (see further development in [11, 21, 26, 30],
[33]-[38] and others). It is clear that the class of strongly contractive mappings is contained
in the class of weakly contractive mappings and the class of weakly contractive mappings is
contained in the class of nonexpansive mappings.

The fixed point problems, that is, problems of finding solutions of the equations x = Sx were
studied for a long time in detail namely for cases 1)-3). Suppose that the fixed point set of S

N = {x∗ : x∗ = Sx∗} 6= /0.

To find x∗ ∈N , the authors of the numerous papers mainly dealt with discrete iterative schemes
of two types: first the so-called method of successive approximations

xn+1 = Sxn, n = 1,2, ..., x1 ∈Ω, (1.2)

and later the more general Krasnoselskii-Mann style iterative scheme

xn+1 = xn−ωn(xn−Sxn), n = 1,2, ..., x1 ∈Ω, (1.3)

where 0 < ωn ≤ 1. Note that (1.2) is the particular case of (1.3) when ωn = 1 for all n≥ 1.
It is obvious that fixed point problems for expanding operators lose their meaning, so it was

essential to find intermediate classes of mappings for which the principle of fixed points remains
valid. This was done at the end of the last century. Goebel and Kirk introduced in [29] the very
important class of asymptotically nonexpansive maps as follows:

4) the mapping S : Ω→ B is said to be asymptotically nonexpansive if

‖Snx−Sny‖ ≤ (1+ kn)‖x− y‖, n = 1,2, ..., ∀x,y ∈Ω, (1.4)

where Sn denotes n-degree of S, a sequence {kn} ⊂ [0,∞) and kn→ 0 as n→ ∞.
Later there were several modifications of (1.4). For a corresponding review, see [24] and our

work [8], which was also a generalization and significant extension of (1.4). There, we pre-
sented the concepts of so-called total asymptotically nonexpansive mappings and total asymp-
totically weakly contractive maps by using Definitions 5) and 6), respectively:

5) the mapping S : Ω→ Ω is called total asymptotically nonexpansive if there exist nonneg-
ative real sequences {k(1)n } and {k(2)n } with k(1)n , k(2)n → 0 as n→ ∞, and strictly increasing and
continuous functions φ(ξ ) : R+→ R+ with φ(0) = 0 such that for all n≥ 1 and for all x,y ∈Ω

‖Snx−Sny‖ ≤ ‖x− y‖+ k(1)n φ(‖x− y‖)+ k(2)n . (1.5)

Definition 5) was generalized in [25, 32, 37, 39] and elsewhere.
6) the mapping S : Ω→Ω is called total asymptotically weakly contractive if there exist non-

negative real sequences {k(1)n } and {k(2)n } with k(1)n , k(2)n → 0 as n→ ∞, and strictly increasing
and continuous functions φ(ξ ),ψ(ξ ) : R+→ R+ with φ(0) = ψ(0) = 0 such that for all n≥ 1
and for all x,y ∈Ω

‖Snx−Sny‖ ≤ ‖x− y‖+ k(1)n φ(‖x− y‖)−ψ(‖x− y‖)+ k(2)n . (1.6)
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For the classes of the mappings 4)-6) the corresponding iterative process

xn+1 = (1−ωn)xn +ωnSnxn, x1 ∈Ω, n = 1,2, ..., (1.7)

was introduced in [40, 41] and explored by many authors (we refer to [8], [33]).
Along with (1.7) we considered the regularized successive approximation method

yn+1 = qnz0− (1−qn)Snyn, z0 ∈Ω, y1 ∈Ω, n = 1,2, ...,

and its implicit version

yn = qnz0− (1−qn)Snyn, z0 ∈Ω, y1 ∈Ω, n = 1,2, ...,

where lim
n→∞

qn = 0 and
∞

∑
n=1

qn =∞, and also fixed point problems with nonself-mappings S : Ω→

B (see [9, 15] and references within).
Once again, we note that in the inequalities (1.4)-(1.6) the asymptotic conditions are defined

for degrees of the exact operator S and this operator organizes the iterative scheme (1.7). We
proposed a completely different idea in the papers [18] and [19]. Namely, the original map
T : Ω→ Ω with a fixed point x∗ is not known exactly, however, a sequence of approximating
operators {Tk} is known, and given in the form of total asymptotically nonexpansive approxi-
mations of T and total asymptotically weakly contractive approximations of T.

We presume further that B is a uniformly convex Banach space, B∗ is a dual space, J : B→ B∗

is a normalize duality mapping [31, 16], Ω ⊆ B is a convex closed subset and T : Ω→ Ω is a
nonexpansive self-mapping. Let {Tk} be a sequence of self-mappings Tk : Ω→Ω, k = 1,2, ... .

7) the sequence {Tk} is called to be a total asymptotically nonexpansive approximation of T
if there exist nonnegative real sequences {hk, gk, lk, mk} → 0 as k→ ∞, continuous functions
η(ξ ) : R+→ R+ and φ(ξ ) : R+→ R+ with φ(0) = 0 such that

‖Tkx−T x‖ ≤ hkη(‖x‖)+gk ∀x ∈Ω (1.8)

and

‖Tkx−Tky‖ ≤ ‖x− y‖+ lkφ(‖x− y‖)+mk ∀x,y ∈Ω. (1.9)

8) the sequence of mappings {Tk} is called to be a total asymptotically weakly contractive
approximation of T if (1.8) is satisfied while (1.9) is replaced by

‖Tkx−Tky‖ ≤ ‖x− y‖− pkψ(‖x− y‖)+ lkφ(‖x− y‖)+mk ∀x,y ∈Ω,

where ψ(ξ ) : R+→ R+ is a continuous function with ψ(0) = 0 and 0≤ pk ≤ p̄.
In [18] and [19] we studied a behavior of the iterative sequence

xk+1 = (1−ωk)xk +ωkTkxk, x1 ∈Ω, k = 1,2, ..., (1.10)

for the maps defined in 7) and 8) with some additional restrictions for the functions η(ξ ),φ(ξ ),
and ψ(ξ ). In the present work, we attempt to build (as much as we are able) a continuous
version of (1.10).

Definition 1.1. A family of mappings {S(t)}, S(t) : Ω→ Ω, 0 ≤ t0 ≤ t < ∞, is called a to-
tal asymptotically weakly contractive approximation of self-mappings S : Ω→ Ω if there exist
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nonnegative functions k(t), l(t), m(t), h(t) and g(t), a positive bounded function p(t), continu-
ous functions φ(ξ ) and ψ(ξ ) : R+→ R+ with φ(0) = 0, ψ(0) = 0, ψ(ξ ) 6≡ 0, and continuous
nondecreasing η(ξ ) : R+→ R+ such that {k(t), l(t), m(t), h(t), g(t)}→ 0 as t→ ∞,

‖S(t)x−Sx‖ ≤ h(t)η(‖x‖)+g(t) (1.11)

and for all x,y ∈Ω

‖S(t)x−S(t)y‖ ≤ (1+ k(t))‖x− y‖− p(t)ψ(‖x− y‖)+ l(t)φ(‖x− y‖)+m(t). (1.12)

Note that in (1.12) the cases p(t) ≥ p > 0 and p(t)→ 0 as t → ∞ are significantly different
from each other: the second case asymptotically gives some additional level of weakly contrac-
tive degeneration, which approaches (1.12) to (1.13) below.

It is not difficult to check that in (1.11) parametric functions h(t) and g(t) can not be simul-
taneously equal to zero for all t0 ≤ t < ∞. Otherwise, {S(t)} and S coincide for all x ∈ Ω and
then the convergence problem disappears. The inequalities of type (1.11) are widely used in the
theory of ill-posed problems for perturbed mappings [16]. It is easy to note that if η(ξ ) is a
bounded function or Ω is a bounded set then S(t)x→ Sx uniformly for all x ∈Ω. Additionally,
if the function φ(ξ ) is bounded, then (1.12) implies

‖Sx−Sy‖ ≤ ‖x− y‖ ∀x,y ∈Ω,

that is, S is a nonexpansive mapping on Ω. It is well known that in this case the clearance
operator F = I−S is demi-closed [16]. Let us recall that the map F satisfies the inequality

〈Fx−Fy,J(x− y)〉 ≥ 0 ∀x,y ∈Ω.

This means that F is an accretive mapping on the set Ω [16].

Now we present the statement with much weaker conditions:

Definition 1.2. A family of mappings {S(t)}, S(t) : Ω→ Ω, 0 ≤ t0 ≤ t < ∞, is called a total
asymptotically nonexpansive approximation of self-mappings S : Ω→Ω if there exist nonneg-
ative functions k(t), l(t), m(t), h(t) and g(t), continuous functions φ(ξ ) : R+→R+ with φ(0) =
0, a continuous nondecreasing function η(ξ ) : R+→R+ such that {k(t), l(t), m(t), h(t), g(t)}→
0 as t→ ∞, (1.11) is satisfied, and for all x,y ∈Ω

‖S(t)x−S(t)y‖ ≤ (1+ k(t))‖x− y‖+ l(t)φ(‖x− y‖)+m(t). (1.13)

For the family of mappings {S(t)}, described in Definitions 1.1 and 1.2, we study the behav-
ior of trajectories x(t) of the following dynamical system:

dx(t)
dt

=−ω(t)
(

x(t)−S(t)x(t)
)
, t ≥ t0 ≥ 0, x(t0) = x0 ∈Ω, (1.14)

with 0 < ω(t)≤ 1 and ∫
∞

t0
ω(t)dt = ∞. (1.15)

We suppose that trajectories x(t) exist and are differentiable on the interval [t0,∞). If F(t) =
I−S(t), then (1.14) is

dx(t)
dt

=−ω(t)F(t)x(t), t ≥ t0 ≥ 0, x(t0) = x0 ∈Ω.
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The mapping F(t) is called the clearance operator of S(t) at the point t [13].

2. DIFFERENTIAL INEQUALITIES

In general, our research concerning fixed point problems is based on estimates of solutions
to the following differential inequalities:

dλ (t)
dt
≤ β (t)λ (t)−α(t)ψ(λ (t))+ρ(t)φ(λ (t))+ γ(t), t ≥ t0, λ (t0) = λ0, (2.1)

and
dλ (t)

dt
≤−α(t)ζ (t)+ γ(t), t ≥ t0, λ (t0) = λ0, (2.2)

where λ (t) is a nonnegative differentiable function for all t ≥ t0, ψ(λ ), φ(λ ) are positive con-
tinuous functions for all λ > 0 with ψ(0) = 0 and φ(0) = 0, β (t), ρ(t), γ(t) and ζ (t) are
nonnegative for all t ≥ t0, and α(t) is a positive continuous function for all t ≥ t0. Assume that
solutions of (2.1) and (2.2) exist. From now on, we assume that∫

∞

t0
α(t)dt = ∞ (2.3)

and ∫
∞

t0
β (t)dt < ∞. (2.4)

We consider (2.1) in Section 2 and (2.2) in Section 3. In Section 4 we explore the special
differential inequality

dλ (t)
dt
≤−α(t)λ (t)+ρ(t)λ n(t), n≥ 0, t ≥ t0 ≥ 0, λ (t0) = λ0 > 0. (2.5)

In Section 5 we apply differential inequalities to obtain the strong convergence theorems for the
dynamical systems (1.14 ) with (1.15). Much weaker results (convergence on subsets) hold in
Section 6 under very weak assumptions of type (1.13). Note that the inequality (2.5) is used in
the literature to establish convergence of differential methods of high orders, for instance, the
Newton-Kantorovich dynamical systems.

2.1 Differential Inequality (2.1) with φ(λ )≡ 0

a) First we consider the homogeneous nonlinear differential inequality (see [3]):

dλ (t)
dt
≤−α(t)ψ(λ (t)), t ≥ t0, λ (t0) = λ0. (2.6)

Lemma 2.1. Let λ (t) be a non-negative and differentiable function satisfying inequality (2.6),
where α(t) is a continuous positive function for all t ≥ t0 and ψ(λ ) is a positive continuous
function for all λ > 0 with ψ(0) = 0. Then

λ (t)≤Φ
−1
(

Φ(λ0)−
∫ t

t0
α(τ)dτ

)
, (2.7)

where Φ(λ ) is any antiderivative of the function
1

ψ(λ )
and Φ−1(z) is the inverse function to

Φ(λ ). Moreover, if (2.3) is true, then λ (t)→ 0 as t→ ∞.
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Proof. So, Φ(λ ) =
∫ dλ

ψ(λ )
+C with an arbitrary constant C (without loss of generality we

can set C = 0). From (2.6) we obtain the obvious inequality∫ t

t0

dλ

ψ(λ )
≤−

∫ t

t0
α(τ)dτ,

therefore

Φ(λ (t))≤Φ(λ0)−
∫ t

t0
α(τ)dτ.

Since
dΦ(λ )

dλ
=

1
ψ(λ )

> 0 for all λ > 0, the function Φ(λ ) is strictly increasing. It is well

known that Φ−1(z) also possesses this property. This implies (2.7). If (2.3) is fulfilled, then the
conclusion lim

t→∞
λ (t) = 0 is obtained again by virtue of the properties of Φ(λ ) and Φ−1(z).

Let us present a simple example. Examine the following inequality [1, 17]:

dλ (t)
dt
≤−α(t)λ ν(t), ν > 0, t ≥ t0, λ (t0) = λ0, (2.8)

that is, in (2.6) ψ(λ ) = λ ν , ν > 0. It is not difficult to deduce:

Φ(λ ) = lnλ , if ν = 1 and Φ(λ ) =
λ 1−ν

1−ν
, if ν 6= 1,

Φ
−1(z) = exp(z), if ν = 1 and Φ

−1(z) = [(1−ν)z]1/1−ν , if ν 6= 1,

λ (t)≤ λ0exp
(
−
∫ t

t0
α(τ)dτ

)
, if ν = 1, (2.9)

and

λ (t)≤
(

λ
1−ν

0 +(ν−1)
∫ t

t0
α(τ)dτ

)1/1−ν

, if ν 6= 1. (2.10)

Note that if in (2.8) ν < 1, then in (2.10) λ (t)→ 0 as t→ t̄, where t̄ ≥ t0 is a finite number.

b) Next we investigate the more general nonlinear homogeneous differential inequality

dλ (t)
dt
≤ β (t)λ (t)−α(t)ψ(λ (t)), t ≥ t0, λ (t0) = λ0. (2.11)

Lemma 2.2. Let λ (t) be a non-negative and differentiable function, β (t) be a non-negative
function and α(t) be a continuous positive function for all t ≥ t0. Assume that inequality (2.11)
is satisfied, where ψ(λ ) is a positive continuous and nondecreasing function for all λ > 0 with
ψ(0) = 0. If (2.4) is fulfilled, then

λ (t)≤C0Φ
−1
(

Φ(λ0)−C−1
0

∫ t

t0
α(τ)dτ

)
, (2.12)

where a positive constant C0 is defined by the estimate

exp
(∫ ∞

t0
β (t)dt

)
≤C0 (2.13)

and Φ(λ ) =
∫ dλ

ψ(λ )
. Moreover, if (2.3) is fulfilled, then lim

t→∞
λ (t) = 0.
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Proof. First, by (2.4) there exists a constant C0 > 0 such that

1≤ exp
(∫ t

t0
β (τ)dτ

)
≤C0. (2.14)

In (2.11) we provide the following replacement:

λ (t) = µ(t)exp
(∫ t

t0
β (τ)dτ

)
, (2.15)

where µ(t), ∞ > t ≥ t0, is some non-negative and differentiable function. Then µ(t0) = λ (t0) =
λ0 and

dλ (t)
dt

=
dµ(t)

dt
exp
(∫ t

t0
β (τ)dτ

)
+µ(t)β (t) exp

(∫ t

t0
β (τ)dτ

)
.

On the other hand, by (2.11) and (2.15)

dλ (t)
dt
≤ β (t)µ(t) exp

(∫ t

t0
β (τ)dτ

)
−α(t)ψ

(
µ(t) exp

(∫ t

t0
β (τ)dτ

))
.

From this, it follows that

dµ(t)
dt
≤−α(t)

(
exp
(∫ t

t0
β (τ)dτ

))−1
ψ

(
µ(t)exp

(∫ t

t0
β (τ)dτ

))
. (2.16)

Therefore, due to (2.13) and the nondecreasing property of ψ(λ ) we have

dµ(t)
dt
≤−C−1

0 α(t)ψ(µ(t)).

Consequently,

µ(t)≤Φ
−1
(

Φ(µ0)−C−1
0

∫ t

t0
α(τ)dτ

)
.

Through (2.15) one obtains (2.12), and (2.3) implies the limit result lim
t→∞

λ (t) = 0. The lemma
is proved.

c) We study now the inhomogeneous linear differential inequality [1, 3, 16]:

dλ (t)
dt
≤−α(t)λ (t)+ γ(t), t ≥ t0, λ (t0) = λ0. (2.17)

Lemma 2.3. Assume that a non-negative and differentiable function λ (t) and non-negative
continuous function γ(t) both satisfy the inequality (2.17), where α(t) is a continuous positive
function for all t ≥ t0. Then the estimate

λ (t)≤ λ0exp
(
−
∫ t

t0
α(τ)dτ

)
+
∫ t

t0
γ(θ)exp

(
−
∫ t

θ

α(τ)dτ

)
dθ (2.18)

holds. If (2.3) is carried out and

lim
t→∞

γ(t)
α(t)

= 0, (2.19)

then λ (t)→ 0 as t→ ∞.
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Proof. Multiplying both parts of (2.17) by

z(t) = exp
(∫ t

t0
α(s)ds

)
we obtain

d
dt

(
λ (t)z(t)

)
≤ γ(t)z(t).

Then

λ (t)z(t)≤ λ (t0)+
∫ t

t0
γ(τ)z(τ)dτ,

which is equivalent to (2.18). The first term on the right-hand side of (2.18) approaches zero by
the condition (2.3). Let us find the limit of the second term as t→∞. Denote the anti-derivative
of α(t) by ᾱ(t). If the integral ∫

∞

t0
γ(θ)eᾱ(θ)dθ (2.20)

is divergent then by applying L’Hôpital’s rule and (2.19), one obtains

lim
t→∞

∫ t

t0
γ(θ)e−

∫ t
θ

α(s)dsdθ = lim
t→∞

∫ t
t0 γ(θ)eᾱ(θ)dθ

eᾱ(t)
= lim

t→∞

γ(t)
α(t)

= 0. (2.21)

If the integral (2.20) is convergent then

lim
t→∞

∫ t

t0
γ(θ)e−

∫ t
θ

α(s)dsdθ = 0,

again by (2.3). The assertion of the lemma is true (see also Section 4).
d) Similarly to item b) for the differential inequality

dλ (t)
dt
≤ β (t)λ (t)−α(t)λ (t)+ γ(t), t ≥ t0, λ (t0) = λ0, (2.22)

the following statement is effective:

Lemma 2.4. Let λ (t), β (t), α(t) and γ(t) be as in Lemmas 2.2 and 2.3. Suppose that (2.4)
and (2.19) are satisfied. Then for a solution λ (t) of (2.22) the estimate

λ (t)≤C0λ0exp
(
− 1

C0

∫ t

t0
α(τ)dτ

)
+C0

∫ t

t0
γ(θ)exp

(
− 1

C0

∫ t

θ

α(τ)dτ

)
dθ

is valid for any t ≥ t0 and λ (t)→ 0 as t→ ∞.

Proof. Using (2.15) and (2.16) we set

dµ(t)
dt
≤−α(t)

(
exp
(∫ t

t0
β (τ)dτ

))−1(
µ(t)exp

(∫ t

t0
β (τ)dτ

))
+ γ(t)

(
exp
(∫ t

t0
β (τ)dτ

))−1
.

Therefore
dµ(t)

dt
≤−C0

−1
α(t)µ(t)+ γ(t),

where C0 is defined in (2.13). By virtue of (2.18)

µ(t)≤ µ(t0)exp
(
− 1

C0

∫ t

t0
α(τ)dτ

)
+
∫ t

t0
γ(θ)exp

(
− 1

C0

∫ t

θ

α(τ)dτ

)
dθ .

It only remains to apply (2.3), (2.13) and (2.15).
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The particular case of (2.22) with γ(t)≡ 0 gives

λ (t)≤C0λ (t0)exp
(
−C0

−1
∫ t

t0
α(τ)dτ

)
.

A more exact estimate is obtained from the inequality

dλ (t)
dt
≤ β (t)λ (t)−α(t)λ (t),

if we use (2.9).

e) Next we provide the following nonlinear differential inequality:

dλ (t)
dt
≤−α(t)ψ(λ (t))+ γ(t), t ≥ t0, λ (t0) = λ0. (2.23)

Lemma 2.5. Assume that a non-negative and differentiable function λ (t) satisfies the differen-
tial inequality (2.23), where for all t ≥ t0 the function α(t) is continuous and positive, γ(t) is
non-negative and continuous, ψ(λ ) is positive, continuous, and increasing for all λ > 0, and
ψ(0) = 0. If (2.3) and (2.19) are fulfilled, then λ (t)→ 0 as t→ ∞

Proof. For this result see [3, 16]. For each t ≥ t0 there are two possibilities:

H1 : ψ(λ (t)) < q(t) (2.24)

or

H2 : ψ(λ (t))≥ q(t), (2.25)

where

q(t) =
1

A (t)
+

γ(t)
α(t)

and A (t) is defined as

A (t) =
∫ t

t0
α(τ)dτ. (2.26)

We denote the sets

T1 = {t ∈ T | H1 is true} and T2 = {t ∈ T | H2 is true}. (2.27)

In more detail:

T i
1 = {t ∈ (t1

i , t̄
1
i )⊆T1}, T1 = ∪iT i

1, i = 1,2, ..., k̄ , (2.28)

T j
2 = {t ∈ [t2

j , t̄
2
j ]⊆T2}, T2 = ∪ jT

j
2 , j = 1,2, ...l̄ . (2.29)

Sets T i
1 and T j

2 are alternating. It is easy to see that T1∪T2 = T = [t0,∞). The case T1 = T
is also possible. Let us prove that T1 is always an unbounded set. We assume the contrary.
Then there exists t = τ1 such that for all t ≥ τ1 the hypothesis H2 holds, and (2.23) yields the
inequality

dλ (t)
dt
≤− α(t)

A (t)
∀t ≥ τ1. (2.30)
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Hence,

λ (t)≤ λ (τ1)−
∫ t

τ1

α(s)
A (s)

ds. (2.31)

By virtue of the Cauchy integral criterion, we show that

lim
t→∞

∫ t

τ1

α(s)
A (s)

ds = lim
t→∞

ln
A (t)
A (τ1)

= ∞. (2.32)

It can be now seen from (2.31) that there exists a point t = τ2, for which λ (τ2) < 0. This
contradicts the condition of the lemma. Consequently, the positive function ψ(λ (t))→ 0 as
t→ ∞ and t ∈T1. Now the convergence of λ (t) to zero as t ∈T1 and t→ ∞ is guaranteed due
to the properties of ψ(t), namely,

λ (t)< ψ
−1
(

q(t)
)
∀t ∈T1. (2.33)

Note that the last interval of T always belongs to T1, therefore l̄ = k̄−1 and only two cases are
possible:

T = T 1
1 ∪T 1

2 ∪T 2
1 ∪T 2

2 ∪ ...∪T k̄−1
2 ∪T k̄

1 (2.34)

and

T = T 1
2 ∪T 1

1 ∪T 2
2 ∪T 2

1 ∪ ...∪T k̄−1
2 ∪T k̄

1 . (2.35)

Suppose case (2.34). By (2.30), on each set T j
2 = [t2

j , t̄
2
j ] the function λ (t) strongly decreases

because of
dλ (t)

dt
< 0. Thus, λ (t)≤ λ (t2

j ) for all t ∈ [t2
j , t̄

2
j ]. Since the function λ (t) is continu-

ous, we conclude without loss of generality that λ (t)≤ λ (t̄1
j−1) on the interval [t2

j , t̄
2
j ]. Therefore

λ (t)< ψ
−1
(

q(t̄1
j−1)

)
∀t ∈ [t2

j , t̄
2
j ]. (2.36)

Note that all q(t̄1
j−1)→ 0 as t→ ∞.

If case (2.35), then on the interval [t0, t̄2
1 ] = [t2

1 , t̄
2
1 ] the function λ (t) strictly decreases from

λ (t0) to λ (t̄2
1). This must occur on the bounded interval [t0, t̄], where t̄ is determined by (2.31)

as a solution of the inequality ∫ t

t0

α(s)
A (s)

ds≤ λ (t0)

with respect to t. Starting from t̄ we return to the previous case (2.34). Finally, the lemma is
proved by (2.33) and (2.36).

Remark 2.6. Earlier in [3] we obtained not only the convergence λ (t)→ 0 as t → ∞, but also
different non-asymptotic estimates for the rate of convergence. This part is long and difficult,
therefore, we do not present it in this review.

Our next step is to obviate the increasing property of ψ(t) (see [4]).

Lemma 2.7. Let λ (t) be a non-negative and differentiable function satisfying the differential
inequality (2.23), where function α(t) is continuous and positive for t ≥ t0 while γ(t) is con-
tinuous and non-negative. If ψ(λ ) is a continuous positive function for λ > 0 with ψ(0) = 0,
there exist constants c > 0 and λ+ > 0 such that ψ(λ )≥ c for all λ ≥ λ+ and zero is its unique
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limit point on the interval [0,λ+]. If (2.3) is fulfilled and (2.19) monotonically decreases to 0,
then lim

t→∞
λ (t) = 0.

Proof. Using the alternative (2.24), (2.25), definitions (2.27)-(2.29) and also (2.34) and
(2.35), we first prove that T1 is an unbounded set. It is clear from the previous lemma: either
T1 = T or intervals of T belong to T1 and T2 and alternate such that always the set T k̄

1 = [t k̄
1,∞).

By the hypothesis H1, at each interval of T1 the function ψ(λ (t)) is estimated from above by
the monotonically decreasing function and ψ(λ (t))→ 0 as t→∞ and t ∈T1. Therefore, due to
the properties of ψ(λ ), λ (t)→ 0 for such t. In turn, by virtue of the hypothesis H2, λ (t) is esti-
mated by the (2.31) at each point t ∈ [t2

j , t̄
2
j ]⊂ T2. The right hand side of (2.31) monotonically

decreases on interval [t2
j , t̄

2
j ]. This means that λ (t)≤ λ (t2

j ) for all t ∈ [t2
j , t̄

2
j ]. In addition, let us

note that ψ(λ (t2
j )) = q(t2

j ). Since q(t2
j ) monotonically decreases as j increases, we deduce that

lim
t→∞

λ (t) = 0. The proof is complete.
f) We further consider the inequality

dλ (t)
dt
≤ β (t)λ (t)−α(t)ψ(λ (t))+ γ(t), t ≥ t0, λ (t0) = λ0. (2.37)

Lemma 2.8. Assume that a non-negative and differentiable function λ (t) and non-negative
functions β (t) and γ(t) satisfy the inequality (2.37), where α(t) is a continuous positive function
for all t ≥ t0, and ψ(λ ) is a positive continuous and increasing function for all λ > 0 with
ψ(0) = 0. If (2.3), (2.4) and (2.19) are fulfilled, then λ (t)→ 0 as t→ ∞.

Proof. The methods of Lemma 2.2 give the following inequality for (2.37):

dµ(t)
dt
≤−

[
α(t)ψ

(
µ(t)exp

(∫ t

t0
β (τ)dτ

))
+ γ(t)

](
exp
(∫ t

t0
β (τ)dτ

))−1
.

Since ψ(λ ) is nondecreasing function and (2.13) is valid, we see that

dµ(t)
dt
≤−C−1

0 α(t)ψ(µ(t))+ γ(t).

The proof follows from Lemma 2.5 and (2.15).

Remark 2.9. Another version of Lemma 2.8 is Corollary 2.13 below.

g) The very important question about the behavior of solutions of differential inequalities
with a constant γ(t) = ε > 0 has not previously been studied. Here, we will consider only one
case of (2.23) where α(t) = α > 0:

dλ (t)
dt
≤−αψ(λ (t))+ ε, t ≥ t0, λ (t0) = λ0. (2.38)

In fact, we will establish the continuous version of Lemma 2.5 from [11].

Lemma 2.10. Assume that in the differential inequality (2.38) λ (t) is non-negative and differ-
entiable function, ψ(λ ) is a strictly increasing function. Then there exists t̄ ≥ t0. such that the
estimates (2.40)-(2.42) below are satisfied for all t ≥ t̄.

Proof. Consider the alternative:

H1 : ψ(λ (t)) <
1

αt
+

ε

α
or H2 : ψ(λ (t)) ≥ 1

αt
+

ε

α
. (2.39)
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Define the sets (2.27)-(2.29) and T = T1∪T2 = [t0,∞). Like in item e) we prove that T1 is an
unbounded set. Suppose the contrary. Then there exists t = τ1 such that H2 is fulfilled for all
t ≥ τ1 and (2.38) gives the inequality

dλ (t)
dt
≤−1

t
∀t ≥ τ1.

This yields the following inequality for t ≥ τ1 :

λ (t)≤ λ (τ1)−
∫ t

τ1

ds
s
= λ (τ1)− lnt + lnτ1,

which is impossible because λ (t) ≥ 0 for all t ≥ t0. Thus, the hypothesis H1 is carried out on
subsets T i

1 ⊂ T and then

λ (t)< ψ
−1
( 1

αt
+

ε

α

)
∀t ∈T1. (2.40)

Let us return to (2.34) and (2.35). For each t ∈ T j
2 = [t2

j , t̄
2
j ] we obtain λ (t) ≤ λ (t2

j ), more-
over,

λ (t2
j )< ψ

−1
( 1

αt2
j
+

ε

α

)
(2.41)

or

λ (t2
j )< ψ

−1
( 1

α t̄2
j−1

+
ε

α

)
. (2.42)

If t0 ∈ T 1
1 , then the estimate (2.40) is true. If t0 ∈ T 1

2 = [t2
1 , t̄

2
1 ] = [t0, t̄2

1 ], then for all t ∈ T 1
2

one obtains λ (t)≤ λ (t0), and (2.40)-(2.42) are satisfied for at least all t > t̄2
1 .

Remark 2.11. If the function λ (t) satisfying (2.38) has a limit λ ∗ as t → ∞, then inequalities

(2.40)-(2.42) guaranty the estimate λ
∗ < ψ

−1
(

ε

α

)
. However, we can not assert as before that

λ ∗ = 0.

2.2 Differential Inequality (2.1) with φ(λ ) 6≡ 0

We study the differential inequality

dλ (t)
dt
≤−α(t)ψ(λ (t))+ρ(t)φ(λ (t))+ γ(t), t ≥ t0, λ (t0) = λ0, (2.43)

In Lemma 2.12 below we use the following notation:

c1 = max
{

ρ(t)
α(t)

, t ≥ t0
}
, c2 = max

{
γ(t)
α(t)

, t ≥ t0
}
, φ1(λ ) = c1φ(λ )+ c2. (2.44)

Lemma 2.12. Let λ (t) be a non-negative and differentiable function satisfying the differential
inequality (2.43), where ρ(t) and α(t) are bounded positive functions, γ(t) is continuous and
non-negative, φ(λ ) : R+→ R+ is a continuous function and ψ(λ ) : R+→ R+ is an increasing
continuous function with φ(0) = ψ(0) = 0. Suppose that there exists a constant M≥ 0 such that
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φ1(λ )≤ ψ(λ ) for all λ ≥M and the equation φ1(λ ) = ψ(λ ) has no more than one root λ∗ on
the set [0,∞). Let (2.3) be fulfilled and

lim
t→∞

ρ(t)+ γ(t)
α(t)

= 0. (2.45)

Then lim
t→∞

λ (t) = 0.

Proof. One of the following must occur for each t ∈ T = [t0,∞): either

H1 : −α(t)ψ(λ (t))+ρ(t)φ(λ (t))+ γ(t)≥ 0,

or

H2 : −α(t)ψ(λ (t))+ρ(t)φ(λ (t))+ γ(t)< 0.

Define the sets (2.27)-(2.29). As before, it is clear that T = T1∪T2 = [t0,∞) and there exists a
case T1 = T.

i) Suppose that the equation ψ(λ ) = φ1(λ ) has exactly one root λ∗ on the set [0,∞). We see
from the conditions of this lemma that φ1(λ )≤ ψ(λ ) if λ ≥ λ∗ and φ1(λ )≥ ψ(λ ) if λ ≤ λ∗.
a) First, consider t0 ∈T1, that is,

−α(t0)ψ(λ (t0))+ρ(t0)φ(λ (t0))+ γ(t0)≥ 0.

Then at each point t ∈ [t1
i , t̄

1
i ]⊂T1 we have

0 ≤ ρ(t)φ(λ (t))−α(t)ψ(λ (t))+ γ(t)

≤ α(t)
(

ρ(t)
α(t)

φ(λ (t))−ψ(λ (t))+
γ(t)
α(t)

)
≤ α(t)

(
c1φ(λ (t))−ψ(λ (t))+ c2

)
. (2.46)

Since α(t)> 0, one gets

φ1(λ (t)) = c1φ(λ (t))+ c2 ≥ ψ(λ (t)).

This means that
λ (t)≤ λ∗ ∀t ∈ [t1

i , t̄
1
i ]. (2.47)

Consider now the interval [t2
j , t̄

2
j ]⊂T2. Recall that the function φ1(λ ) is positive and contin-

uous. Denote
Mmax = max{φ1(λ ), 0≤ λ ≤ λ∗}.

Taking into account that ψ(λ ) is a continuous and increasing function with ψ(0) = 0, it is easy
to see that on the set [0,∞)

φ1(λ )≤Mmax +ψ(λ ). (2.48)

We now estimate λ (t) for t ∈ [t2
j , t̄

2
j ] from the differential inequalities

dλ (t)
dt
≤ ρ(t)φ(λ (t))−α(t)ψ(λ (t))+ γ(t)< 0. (2.49)

Obviously λ (t) ≤ λ (t2
j ) and by (2.47) λ (t) ≤ λ∗ for all t ∈ [t2

j , t̄
2
j ] ⊂ T2. At an arbitrary point

t ∈ [t1
i , t̄

1
i ] ⊂ T1 the function λ (t) is estimated by (2.46) and (2.47). If t ∈ [t2

j+1, t̄
2
j+1], then

λ (t)≤ λ∗ because of (2.49). Continuing this process further we obtain λ (t)≤ λ∗ for any t ∈ T.
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b) Now let t0 ∈T2. Then (2.49) is fulfilled on the set [t0, t̄2
1 ] and we conclude that λ (t)≤ λ0 for

all t ∈ [t0, t̄2
1 ]. On the next interval [t1

1 , t̄
1
1 ] the hypothesis H1 holds, therefore, λ (t) ≤ λ∗ similar

to (2.47). On the set [t2
2 , t̄

2
2 ] ⊂ T2 we again obtain the inequalities (2.49), hence λ (t) ≤ λ∗ for

all t ∈ [t2
2 , t̄

2
2 ], etc. on each interval [t2

j , t̄
2
j ], which alternates with [t1

j+1, t̄
1
j+1]. Thus the following

estimate holds:

λ (t)≤ max{λ0,λ∗} ∀t ∈ T. (2.50)

ii) Suppose now that the equation ψ(λ ) = φ1(λ ) has no roots on the set [0,∞). Since there
exists M > 0 such that φ1(λ ) ≤ ψ(λ ) for all λ ≥ M and ψ(0) = φ(0) = 0, this situation can
only arise in the case of c2 = 0. This implies the following assertion: the hypothesis H1 does
not appear for any t ≥ t0. Otherwise there exists t ≥ t0 such that φ1(λ (t))≥ψ(λ (t)). Therefore,
the hypothesis H2 is valid on the whole set T . Like b) we can show that λ (t)≤ λ (t0) = λ0 for
all t ∈ T. Hence, the general estimate remains in the form (2.50).

Since ψ(λ ) is an increasing function, from (2.48) we deduce the estimate

φ(λ ) ≤ c−1(Mmax +ψ(λ ))− c2

≤ c−1(Mmax +ψ(K)) =C,

where K = max{λ0,λ∗}. As a result, we obtain the following differential inequality:

dλ (t)
dt
≤−α(t)ψ(λ (t))+Cρ(t)+ γ(t).

Together with (2.3), (2.45) and Lemma 2.5 this complete the proof.
Under the conditions of Lemma 2.12, the function ψ(λ ) must grow faster at infinity than

the function c1φ(λ )+ c2. Let us now formulate the particularly important case of (2.1) with
φ(λ ) = λ :

dλ (t)
dt
≤−α(t)ψ(λ (t))+ρ(t)λ (t)+ γ(t), t ≥ t0, λ (t0) = λ0. (2.51)

Corollary 2.13. Let λ (t) be a non-negative and differentiable function satisfying the differential
inequality (2.51), where ρ(t) and α(t) are bounded positive functions, γ(t) is continuous and
non-negative, and ψ(λ ) : R+→ R+ is increasing continuous function with ψ(0) = 0. Assume
that c1 and c2 is defined by (2.44) with φ1(λ ) = c1λ + c2. Suppose also that there exists a
constant M ≥ 0 such that φ1(λ ) ≤ ψ(λ ) for all λ ≥ M and the equation φ1(λ ) = ψ(λ ) has
no more than one root λ∗ on the set [0,∞). In addition, if (2.3) and (2.45) are satisfied, then
lim
t→∞

λ (t) = 0.

Remark 2.14. If we compare Corollary 2.13 and Lemma 2.8 for the inequality (2.51) with

β (t) = ρ(t), it can be seen that the first statement essentially has a weaker condition lim
t→∞

ρ(t)
α(t)

=

0 in place of (2.4). At the same time, in Corollary 2.13 we assumed at least linear growth of
ψ(λ ) at infinity.

3. DIFFERENTIAL INEQUALITY (2.2)

Lemma 3.1. Assume that a non-negative and differentiable function λ (t) satisfies the inequality
(2.2), γ(t) and ζ (t) are non-negative, and α(t) is a positive continuous function for all t ≥ t0.
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Let ∫
∞

t0
γ(t)dt < ∞. (3.1)

Then the function λ (t) is bounded for all t ≥ t0.

Proof The proof is straightforward. We have from (2.2) that for any t ≥ t0

λ (t)≤ λ (t0)−
∫ t

t0
α(τ)ζ (τ)dτ +

∫ t

tı0
γ(τ)dτ.

This implies the estimate λ (t)≤ λ (t0)+
∫ t

tı0 γ(τ)dτ because
∫ t

t0 α(τ)ζ (τ)dτ ≥ 0. It follows that

λ (t)≤ λ (t0)+
∫

∞

tı0
γ(τ)dτ < ∞.

Lemma 3.2. Assume that a non-negative and differentiable function λ (t) satisfies the inequality
(2.2), γ(t) and ζ (t) are nonnegative continuous functions, and α(t) is a positive continuous
function for all t ≥ t0. Let (2.3) and (3.1) hold. Then there exists an unbounded subset T 1 ⊂
T = [t0,∞) such that lim

t→∞
ζ (t) = 0 for all t ∈T 1.

Proof. To begin, note that for any t̄ ≥ t0∫ t̄

t0
α(t)ζ (t)dt ≤ −

∫ t̄

t0

dλ (t)
dt

dt +
∫ t̄

t0
γ(t)dt

≤ λ (t0)−λ (t̄)+
∫ t̄

t0
γ(t)dt < ∞.

Since λ (t) is bounded for all t ≥ t0, we have
∫

∞

t0
α(t)ζ (t)dt < ∞. If the lemma is false, then

there exists σ > 0 and t̄ ≥ t0 such that ζ (t)≥ σ for all t ≥ t̄. Therefore∫
∞

t̄
α(t)ζ (t)dt ≥ σ

∫
∞

t̄
α(t)dt,

that contradicts (2.3).
The next two statements demonstrate that the convergence of λ (t)→ 0 only occurs on some

subsets of the set T = [t0,∞).

Lemma 3.3. Assume the non-negative and differentiable function λ (t) satisfies the inequality
(2.2), γ(t) and ζ (t) are non-negative, α(t) is a positive continuous function for all t ≥ t0, and
let (2.3) and (3.1) hold. Then there exists an unbounded set T1 ⊂ T = [t0,∞) such that ζ (t)→ 0
as t→ ∞ and all t ∈T1, with the monotone estimate H1 in (3.2).

Proof. Consider for all t ≥ t0 the following alternative:

H1 : ζ (t)≤ 1
A (t)

or H2 : ζ (t)>
1

A (t)
, (3.2)

where A (t) is defined by (2.26). As in Lemma 2.5 define the sets (2.27)-(2.29). In the general
case T k

1 alternates with T k
2 , k = 1,2,3, ... , however T1 = T is also possible. It is clear that

T1 ∪T2 = T = [t0,∞). We claim that set T1 is unbounded. If it is bounded, then there exists
t = τ1 such that

ζ (t)>
1

A (t)
∀t ≥ τ1,
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and one gets

dλ (t)
dt

<− α(t)
A (t)

+ γ(t) ∀t ≥ τ1.

Then

λ (t)< λ (τ1)−
∫ t

τ1

α(τ)

A (τ)
dτ +

∫ t

τ1

γ(τ)dτ.

Using (3.1) and (2.32) we conclude that there exist t̄ ≥ τ1 such that λ (t) becomes negative for
all t ≥ t̄, contradicting the conditions of the lemma. Thus, there exists a necessarily unbounded
subset T1 ⊆ T = [t0,∞) such that (3.2) holds for all t ∈ T1. This estimate is monotonically
decreasing on the set T1 because A (t) is a strictly increasing function. Note, however, that the
same behavior of ζ (t) on the set T2 cannot be expected. The proof is true.

Continuing, we obviate the requirement of (3.1) to present a more general lemma.

Lemma 3.4. Assume that a non-negative and differentiable function λ (t) satisfies the inequality
(2.2), γ(t) and ζ (t) are nonnegative, and α(t) is a positive continuous function for all t ≥
t0. Suppose that (2.3) and (2.19) hold. There then exists an unbounded set T1 ⊆ T = [t0,∞)
such that ζ (t)→ 0 as t → ∞ and all t ∈ T1 with the estimate (3.3). If the function in (2.19)
monotonically tends to zero, then (3.3) gives a monotonically decreasing estimate on T1.

Proof following the pattern of the previous lemma. For each t ≥ t0 either

H1 : ζ (t)≤ 1
A (t)

+
γ(t)
α(t)

(3.3)

or

H2 : ζ (t)>
1

A (t)
+

γ(t)
α(t)

,

where A (t) is defined by (2.26). Define again the sets (2.27)-(2.29). We will prove that T1 is
an unbounded set. Suppose T1 is bounded. Then there exists t = τ1 such that

ζ (t)>
1

A (t)
+

γ(t)
α(t)

∀t ≥ τ1.

The inequality (2.2) for all t ≥ τ1 implies

dλ (t)
dt

<− α(t)
A (t)

(3.4)

and (3.4) gives

λ (t)< λ (τ1)−
∫ t

τ1

α(s)
A (s)

ds, ∀t > τ1.

By virtue of the Cauchy integral criterion, we again have (2.32). As in Lemma 2.5 we come to
a contradiction with the condition that λ (t) ≥ 0 for all t ≥ t0. Thus, T1 is unbounded set. By
the hypothesis H1, at each interval of T1 the function ζ (t) is estimated from above as in (3.3).

Since T1 is an unbounded set, we conclude that ζ (t)→ 0 as t→∞ and all t ∈T1. If f (t) =
γ(t)
α(t)

is monotonically decreasing, then the estimate (3.3) is also monotonically decreasing because
A (t) is a strictly increasing function. The lemma is true.
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Recall that under the conditions of Lemma 3.4, T1 is an unbounded set and T2 is bounded.
Let T k

1 ⊂T1 and T k
2 ⊂T2, k = 1,2, ...k̄. Introduce, for example, (2.28). On each interval T j

2
the function λ (t) is bounded and monotonically decreasing by the inequality (3.4). However,
its value on the left boundary of T j

2 is not defined by our methods. On each interval T j+1
1 the

function ζ (t) monotonically decreases and its value on the left boundary of T j+1
1 is less than

its value on the right boundary of T j
1 . Therefore limt→∞ ζ (t) = 0 for all t ∈T1.

The following statement requires very strong assumptions (cf. [12]).

Lemma 3.5. Assume that a non-negative and differentiable function λ (t) satisfies the inequality
(2.2), α(t) is a positive continuous function, lim

t→∞
α(t) = 0, ζ (t) is a positive continuous and

differentiable function, (2.3) is fulfilled,∫
∞

t0
α(t)ζ (t)dt < ∞

and there exists a constant θ > 0 such that∣∣∣dζ (t)
dt

∣∣∣≤ θα(t). (3.5)

Then lim
t→∞

ζ (t) = 0.

Proof. Note first of all that
dζ (t)

dt
is the integrable function on any interval [t1, t2] ⊂ T =

[t0,∞). Then the function
∣∣∣dζ (t)

dt

∣∣∣ is also integrable on this interval and the inequality∣∣∣∫ t2

t1

dζ (t)
dt

dt
∣∣∣≤ ∫ t2

t1

∣∣∣dζ (t)
dt

∣∣∣dt

follows.
We know from Lemma 3.3 that there exists some piecewise continuous function ζ (1)(t) ⊂

ζ (t) defined on the unbounded subset T1 ⊂ T such that ζ
(1)(t) ≤ 1

A (t)
for all t ∈ T1. If

the result of this lemma does not hold, then there exists a constant σ > 0 and another piece-
wise continuous function ζ (2)(t) ⊂ ζ (t) defined on some unbounded subset P ⊂ T such that
ζ (2)(t) ≥ σ for all t ∈P. In this case, we are able to construct a third piecewise continuous
function ζ (3)(t)⊂ ζ (t) defined on some unbounded subset R ⊂T with the following selection
rule for the argument t ∈ T :

t = τ0 = min{t ≥ t0 : ζ (t)≥ σ}

t = τ1 = min{t ≥ τ0 : ζ (t)≤ 2−1
σ},

t = τ2 = min{t ≥ τ1 : ζ (t)≥ σ}
t = τ3 = min{t ≥ τ2 : ζ (t)≤ 2−1

σ},
t = τ4 = min{t ≥ τ3 : ζ (t)≥ σ},

etc...

t = τ2k+1 = min{t ≥ τ2k : ζ (t)≤ 2−1
σ},

t = τ2k+2 = min{t ≥ τ2k+1 : ζ (t)≥ σ},
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etc... .

It is clear that

ζ (t)≥ 2−1
σ , τ2k ≤ t ≤ τ2k+1. (3.6)

Since
∫

∞

t0
α(t)ζ (t)dt < ∞, by (3.6) we get

∫
∞

t0
α(t)ζ (t)dt ≥

∞

∑
k

∫
τ2k+1

t2k

α(t)ζ (t)dt

≥ 2−1
σ

∞

∑
k

∫
τ2k+1

t2k

α(t)dt, (3.7)

that is, the series in (3.7) is convergent. Therefore,∫
τ2k+1

t2k

α(t)dt→ 0, k→ ∞. (3.8)

On the other hand, we have ζ (τ2k)≥ σ and ζ (τ2k+1)≤ 2−1σ , so that by virtue of (3.5)

σ

2
≤ ζ (τ2k)−ζ (τ2k+1) ≤

∣∣∣∫ τ2k+1

τ2k

dζ (t)
dt

dt
∣∣∣

≤
∫

τ2k+1

τ2k

∣∣∣dζ (t)
dt

∣∣∣dt

≤ θ

∫
τ2k+1

τ2k

α(t)dt, ∀k ≥ 0.

This contradicts (3.8). Thus, limt→∞ ζ (t) = 0. The proof is complete.

4. DIFFERENTIAL INEQUALITIES (2.5)

Now we investigate the differential inequality (2.5) under the conditions of Section 2 for
λ (t), α(t) and ρ(t) (see, for example, Lemma 2.12).

Lemma 4.1. For inequality (2.5) the estimate

λ (t)≤
[
λ

1−n
0 V−1(t)− (n−1)

∫ t

t0
ρ(θ)exp

(
(n−1)

∫ t

θ

α(s)ds
)

dθ

]− 1
n−1 (4.1)

holds, where

V (t) = exp
(
(1−n)

∫ t

t0
α(s)ds

)
.

Proof. Introduce the differentiable function y(t) and the replacement

λ (t) = y

1
1−n .

We have

dλ

dy
=

1
1−n

y

n
1−n .
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Using the simple equality
dλ

dt
=

dλ

dy
dy
dt

, from (2.5) we calculate

1
1−n

y

n
1−n dy(t)

dt
≤−α(t)y

1
1−n +ρ(t)y

n
1−n ,

which gives

dy(t)
dt
≥ (n−1)α(t)y

1
1−n y

n
n−1 − (n−1)ρ(t)y

n
1−n y

n
n−1 .

Thus,
dy(t)

dt
≥ (n−1)α(t)y(t)− (n−1)ρ(t).

It is not difficult to see that
d
dt

[
y(t)V (t)

]
=V (t)

dy(t)
dt
− (n−1)α(t)y(t)V (t).

Then
d
dt

[
y(t)V (t)

]
≥−(n−1)ρ(t)V (t)

and we obtain

y(t)V (t)− y(t0)≥ (1−n)
∫ t

t0
ρ(θ)V (θ)dθ .

From this, it follows that

y(t)≥ y(t0)V−1(t)+(1−n)
∫ t

t0
ρ(θ)V (θ)V−1(t)dθ ,

that is

y(t)≥ y(t0)V−1(t)+(1−n)
∫ t

t0
ρ(θ)exp

(
(n−1)

∫ t

θ

α(s)ds
)

dθ .

Thus, we have (4.1) for all t ≥ t0.
Let us note several partial cases:

1. If in the inequality (2.5) ρ(t)≡ 0, then (4.1) gives

λ (t)≤
[
λ

1−n
0 V−1(t)

]− 1
n−1 ,

which leads to the estimate

λ (t)≤ λ0 exp
(
−
∫ t

t0
α(s)ds

)
∀t ≥ t0.

It coincides with (2.7) and (2.18) in the cases ψ(λ ) = λ and γ(t) ≡ 0, respectively. If (2.3) is
fulfilled, then λ (t)→ 0 as t→ ∞.

2. If in (2.5) ρ(t) 6≡ 0 and n = 0, then it is the inequality

dλ (t)
dt
≤−α(t)λ (t)+ρ(t), t ≥ t0, λ (t0) = λ0.
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The estimate (4.1) implies

λ (t)≤ λ0exp
(
−
∫ t

t0
α(τ)dτ

)
+
∫ t

t0
ρ(θ)exp

(
−
∫ t

θ

α(τ)dτ

)
dθ , t ≥ t0.

It coincides with (2.18) if γ(t) is replaced with ρ(t). If (2.19) is fulfilled, then λ (t)→ 0 as t→∞.

3. If in (2.5) ρ(t) 6≡ 0 and n = 1, then the right hand side of (4.1) is degenerated because of its

degree, which equals − 1
n−1

. It is also clear from the corresponding differential inequality

dλ (t)
dt
≤−

(
α(t)−ρ(t)

)
λ (t),

which yields the estimate

λ (t)≤ λ0exp
(
−
∫ t

t0
(α(τ)−ρ(τ))dτ

)
. (4.2)

In view of (2.3) the convergence or divergence of λ (t) to 0 in (4.2) depend on the function ρ(t).
It is easy to see that the condition ρ(t)> α(t) for all t ≥ t̄ ≥ t0 sends the right hand side of (4.2)
to ∞ as t→∞, while the inverse condition ρ(t)<α(t) for all t ≥ t̄ ≥ t0 leads to the convergence:
lim
t→∞

λ (t) = 0.

4. If in (2.5) ρ(t) 6≡ 0 and n = 2, then Lemma 4.1 for the inequality

dλ (t)
dt
≤−α(t)λ (t)+ρ(t)λ 2(t), t ≥ t0 ≥ 0, λ (t0) = λ0 > 0, (4.3)

asserts that

λ (t)≤
[
λ
−1
0 exp

(∫ t

t0
α(s)ds

)
−
∫ t

t0
ρ(θ)exp

(∫ t

θ

α(s)ds
)

dθ

]−1
∀t ≥ t0. (4.4)

The right hand side of (4.4) tends to zero only if ρ(t) tends to 0. Let us give an example. Assume

that α(t) =
1
t

and ρ(t) = ρ̄ > 0, that is, we consider the inequality

dλ (t)
dt
≤−1

t
λ (t)+ ρ̄λ

2(t), t ≥ t0 ≥ 0, λ (t0) = λ0 > 0,

the first part in the square brackets of (4.4)

λ
−1
0 exp

(∫ t

t0
α(s)ds

)
=

t
λ0t0

, (4.5)

and the second part ∫ t

t0
ρ(θ)exp

(∫ t

θ

α(s)ds
)

dθ = tρ̄ ln
t
t0
.

Thus, (4.4) gives the estimate:

λ (t)≤
( t

λ0t0
− tρ̄ ln

t
t0

)−1
∀t ≥ t0. (4.6)

It is clear that if t > t0 exp(ρ̄λ0t0)−1, then the right hand side of (4.6) becomes negative. In this
case, we cannot conclude that lim

t→∞
λ (t) = 0.
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The following two simple examples illustrate the convergence of λ (t) to 0, when ρ(t) is not
a constant and lim

t→∞
ρ(t) = 0:

a) Let α(t) =
1
t

and ρ(t) =
ρ̄

t
, where t ≥ t0 > 0 and ρ̄ > 0. This means that we consider the

differential inequality (4.3) in the form:

dλ (t)
dt
≤−1

t
λ (t)+

ρ̄

t
λ

2(t), t ≥ t0 ≥ 0, λ (t0) = λ0 > 0.

We calculate the second part in the square brackets of (4.4):∫ t

t0
ρ(θ)exp

(∫ t

θ

α(s)ds
)

dθ = ρ̄ t
∫ t

t0

dθ

θ 2 =−ρ̄

(
1− t

t0

)
.

Taking into account (4.5), one gets

λ (t)≤
( t

λ0t0
− ρ̄ t

t0
+ ρ̄

)−1
∀t ≥ t0. (4.7)

If ρ̄ <
1
λ0

, then right hand side of (4.7) tends to 0 as t→ ∞, hence, lim
t→∞

λ (t) = 0.

b) Now let α(t) =
α

t
and ρ(t) =

ρ̄

t
, where α and ρ̄ are positive constants. They involve (4.3)

as it follows
dλ (t)

dt
≤−α

t
λ (t)+

ρ̄

t
λ

2(t), t ≥ t0 ≥ 0, λ (t0) = λ0 > 0.

Then the first part in the square brackets of (4.4) is
1
λ0

( t
t0

)α

and the second part∫ t

t0
ρ(θ)exp

(∫ t

θ

α(s)ds
)

dθ =
ρ̄

α

( t
t0

)α

− ρ̄

α
.

Thus, we obtain

λ (t)≤
[ 1

λ0

( t
t0

)α

− ρ̄

α

( t
t0

)α

+
ρ̄

α

]−1
∀t ≥ t0.

If ρ̄ <
α

λ0
, then lim

t→∞
λ (t) = 0.

c) Assume that α(t) =
1
t

and ρ(t) =
ρ̄

t2 , where t ≥ t0 > 0 and ρ̄ > 0. That is, we study the
differential inequality

dλ (t)
dt
≤−1

t
λ (t)+

ρ̄

t2 λ
2(t), t ≥ t0 ≥ 0, λ (t0) = λ0 > 0.

As in item a) the second part in the square brackets of (4.4) is calculated as∫ t

t0
ρ(θ)exp

(∫ t

θ

α(s)ds
)

dθ = ρ̄ t
∫ t

t0

dθ

θ 3 =− ρ̄

2

(1
t
− t

t2
0

)
.

Therefore

λ (t)≤
( t

λ0t0
− ρ̄ t

2t2
0
+

ρ̄

2t

)−1
∀t ≥ t0.

If ρ̄ < 2t0
λ0
, then limt→∞ λ (t) = 0.
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5. If in (2.5) n = 3 and ρ(t) 6≡ 0, then the inequality

dλ (t)
dt
≤−α(t)λ (t)+ρ(t)λ 3(t), t ≥ t0 ≥ 0, λ (t0) = λ0 > 0

gives the estimate (4.1) in the form of

λ (t)≤
[
λ
−2
0 exp

(
2
∫ t

t0
α(s)ds

)
−2

∫ t

t0
ρ(θ)exp

(
2
∫ t

θ

α(s)ds
)

dθ

]−1/2
.

As an example, consider α(t) =
1
t

and ρ(t) =
ρ̄

t
, where ρ̄ > 0. We obtain

λ (t)≤
( t2

λ 2
0 t02 −

ρ̄ t2

2t2
0
+

ρ̄

2

)−1/2
∀t ≥ t0. (4.8)

If ρ̄ <
2

λ 2
0
, then λ (t)→ 0 as t→∞. It is possible to similarly investigate other examples of item

4 and n≥ 4.

5. DYNAMIC SYSTEMS WITH TOTAL ASYMPTOTICALLY WEAKLY CONTRACTIVE

APPROXIMATIONS OF OPERATORS

In this Section we study the dynamical system (1.14), where S(t) is a total asymptotically
weakly contractive approximating family of nonexpansive operators S (see Definition 1.1).

Since the set Ω is convex and closed, S(t) : Ω→ Ω for all t ≥ t0, and 0 < ω(t)≤ 1, it is not
difficult to see that the dynamical system

dx(t)
dt

+ x(t) = PΩ

(
x(t)−ω(t)(x(t)−S(t)x(t))

)
is equivalent to (1.14),

dx(t)
dt

+ x(t) ∈Ω, and by means of [20] x(t) ∈Ω for all t ≥ t0.

Let us recall that we denoted a fixed point set of S by N , i.e., N := {x ∈ Ω : Sx = x}. We
posited that N 6= /0 and x∗ ∈N .

If J : B→ B∗ is a normalized duality mapping in a uniformly convex Banach space B, then
the following equality for dual products is true:〈d(x(t)− x∗)

dt
,J(x(t)− x∗)

〉
=− ω(t)

〈
x(t)−S(t)x(t),J(x(t)− x∗)

〉
. (5.1)

Using the formula
d‖w(t)‖2

dt
= 2
〈dw(t)

dt
,Jw(t)

〉
, we rewrite (5.1) as

d‖x(t)− x∗‖2

dt
=− 2ω(t)

〈
x(t)−S(t)x(t),J(x(t)− x∗)

〉
. (5.2)

It is easy to check the equality〈
x(t)−S(t)x(t),J(x(t)− x∗)

〉
=

〈
F(t)x(t)−F(t)x∗,J(x(t)− x∗)

〉
+

〈
F(t)x∗−Fx∗,J(x(t)− x∗)

〉
,
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which together with (5.2) implies

d‖x(t)− x∗‖2

dt
= − 2ω(t)

〈
F(t)x(t)−F(t)x∗,J(x(t)− x∗)

〉
− 2ω(t)

〈
F(t)x∗−Fx∗,J(x(t)− x∗)

〉
.

Therefore

d‖x(t)− x∗‖2

dt
≤ − 2ω(t)

〈
F(t)x(t)−F(t)x∗,J(x(t)− x∗)

〉
+ 2ω(t) ‖F(t)x∗−Fx∗‖‖x(t)− x∗‖. (5.3)

Let us estimate the dual product in (5.3) from below, as〈
F(t)x(t)−F(t)x∗,J(x(t)− x∗)

〉
= ‖x(t)− x∗‖2−〈S(t)x(t)−S(t)x∗,J(x(t)− x∗)〉

≥ ‖x(t)− x∗‖2−‖S(t)x(t)−S(t)x∗‖‖x(t)− x∗‖,

and we have

d‖x(t)− x∗‖2

dt
≤ 2ω(t)

(
‖S(t)x(t)−S(t)x∗‖‖x(t)− x∗‖−‖x(t)− x∗‖2

)
+ 2ω(t) ‖F(t)x∗−Fx∗‖‖x(t)− x∗‖.

It follows that
d‖x(t)− x∗‖

dt
≤ ω(t)

(
‖S(t)x(t)−S(t)x∗‖−‖x(t)− x∗‖

)
+ ω(t)‖F(t)x∗−Fx∗‖.

Furthermore, Definition 1.1 gives us

‖F(t)x∗−Fx∗‖ ≤ h(t)η(‖x∗‖)+g(t).

It is clear from the conditions of the function η(ξ ) that there exists a constant C0 > 0 such that
η(‖x∗‖)≤C0 for any x∗ ∈N . Then

‖F(t)x∗−Fx∗‖ ≤C0h(t)+g(t).

Now (1.13) in Definition 1.1 yields the following differential inequality:

d‖x(t)− x∗‖
dt

≤ ω(t)
(

k(t)‖x(t)− x∗‖− p(t)ψ(‖x(t)− x∗‖)

+ l(t)φ(‖x(t)− x∗‖)+m(t)
)
+ω(t)

(
h(t)C0 +g(t)

)
. (5.4)

Setting λ (t) = ‖x(t)− x∗‖, we get

dλ (t)
dt

≤ ω(t)
(

k(t)λ (t)− p(t)ψ(λ (t))+ l(t)φ(λ (t))+m(t)
)

+ ω(t)
(

h(t)C0 +g(t)
)
.

Below, we present strong convergence theorems supported by the lemmas of Subsections 2.1
and 2.2.
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We start by considering the following particular case of (1.12):

‖S(t)x−S(t)y‖ ≤ (1+ k(t))‖x− y‖− p(t)ψ(‖x− y‖)+m(t), ∀x,y ∈Ω, (5.5)

For ω(t) in (1.14) and p(t) in (5.5) introduce the condition∫
∞

t0
ω(t)p(t)dt = ∞. (5.6)

1. Suppose that (1.11) is valid and (5.5) holds in the form of

‖S(t)x−S(t)y‖ ≤ ‖x− y‖− p(t)ψ(‖x− y‖)+m(t). (5.7)

Then (5.4) becomes the following:

d‖x(t)− x∗‖
dt

≤−ω(t)p(t)ψ(‖x(t)− x∗‖+ω(t)
(

m(t)+h(t)C0 +g(t)
)
. (5.8)

By setting λ (t) = ‖x(t)− x∗‖ again, we obtain

dλ (t)
dt
≤−ω(t)p(t)ψ(λ (t))+ω(t)

(
m(t)+h(t)C0 +g(t)

)
. (5.9)

Theorem 5.1. Assume that Ω ⊆ B is a closed convex set and S : Ω→ Ω. Let S(t) : Ω→ Ω for
each t ≥ t0 ≥ 0 be a total asymptotically weakly contractive approximating family of S, where
in (5.7) ψ(ξ ) : R+→ R+ is a continuous and increasing function with ψ(0) = 0, the functions
m(t), h(t) and g(t) are nonnegative, and p(t) is a positive bounded function. Suppose that
{m(t),h(t),g(t)}→ 0 as t→∞ and (5.6) is fulfilled. Starting from an arbitrary x(t0) = x0 ∈Ω,
define trajectory x(t) by the dynamical system (1.14) with the condition

lim
t→∞

m(t)+h(t)+g(t)
p(t)

= 0. (5.10)

Then lim
t→∞

x(t) = x∗.

Proof. Denoting in (5.9) α(t) = ω(t)p(t) and γ(t) = ω(t)(m(t)+ h(t)C0 + g(t)) and using
(5.6) and (5.10), we conclude that all the conditions of Lemma 2.5 are fulfilled. Thereby we
show that λ (t)→ 0 as t→ ∞. The theorem holds.

Remark 5.2. If p(t) ≥ p̄, where p̄ is a positive constant, then the condition (1.15) replaces
(5.6).

Under the conditions of Theorem 5.1, if ψ(ξ ) = ξ in (5.7), then the inequality

d‖x(t)− x∗‖
dt

≤−ω(t)p(t)‖x(t)− x∗‖+ω(t)
(

m(t)+h(t)C0 +g(t)
)

yields the following estimate of the convergence rate:

‖x(t)− x∗‖ ≤ 2−1‖x(t0)− x∗‖exp
(
−
∫ t

t0
ω(τ)p(τ)dτ

)
+ 2−1

∫ t

t0
ω(θ)γ(θ)exp

(
−
∫ t

θ

ω(τ)p(τ)dτ

)
dθ ,

where γ(t) = m(t)+h(t)C0 +g(t). This statement is supported by Lemma 2.3.

We now obviate the increasing property of ψ(t).
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Theorem 5.3. Let Ω⊆ B be a closed convex set and S : Ω→Ω and S(t) : Ω→Ω for each t ≥
t0 ≥ 0 be a total asymptotically weakly contractive approximating family of S, where in (1.11)
and (5.7) ψ(ξ ) : R+→ R+ is continuous function with ψ(0) = 0, the functions m(t), h(t) and
g(t) are nonnegative, and p(t) is a positive bounded function. Suppose that {m(t),h(t),g(t)}→
0 as t → ∞ and (5.6) is fulfilled. Assume that there exist constants c > 0 and ξ+ > 0 such that
ψ(ξ )≥ c for all ξ ≥ ξ+. Starting from an arbitrary x(t0) = x0 ∈Ω define trajectory x(t) by the
dynamical system (1.14) with the condition (5.10). Then lim

t→∞
x(t) = x∗.

Proof. As in previous theorem, the inequality (5.8) leads to (5.9). From (5.6) and (5.10) we
conclude that all the conditions of Lemma 2.7 are met. Therefore the result is true.

2. Suppose now that (1.11) is valid and consider the inequality (5.5). In this case (5.4) implies

d‖x(t)− x∗‖
dt

≤ 2−1
ω(t)

(
k(t)‖x(t)− x∗‖− p(t)ψ(‖x(t)− x∗‖)

)
+ ω(t)

(
m(t)+h(t)C0 +g(t)

)
. (5.11)

Assume in addition to (5.6) that ∫
∞

t0
ω(t)k(t)dt < ∞. (5.12)

Theorem 5.4. Let Ω⊆ B be a closed convex set and S : Ω→Ω. Let S(t) : Ω→Ω for each t ≥
t0 ≥ 0 be a total asymptotically weakly contractive approximating family of S, where in (1.11)
and (5.5) ψ(ξ ) : R+→ R+ is a continuous and increasing function with ψ(0) = 0, the functions
k(t), m(t), h(t) and g(t) are nonnegative, and p(t) is a positive bounded function. Suppose that
{k(t),m(t),h(t),g(t)} → 0 as t → ∞ and both (5.6) and (5.12) are fulfilled. Starting from an
arbitrary x(t0) = x0 ∈Ω define trajectory x(t) by the dynamical system (1.14) with the condition
(5.10). Then lim

t→∞
x(t) = x∗.

Proof uses Lemma 2.8 for the differential inequality

dλ (t)
dt

≤ ω(t)
(

k(t)λ (t)− p(t)ψ(λ (t))+m(t)+h(t)C0 +g(t)
)
,

which follows from (5.11) with λ (t) = ‖x(t)− x∗‖.
We again obviate the increasing property of ψ(t).

Theorem 5.5. Assume that Ω ⊆ B is a closed convex set and S : Ω→ Ω. Let S(t) : Ω→ Ω

for each t ≥ t0 ≥ 0 be a total asymptotically weakly contractive approximating family of S,
where in (1.11) and (5.5) ψ(ξ ) : R+→ R+ is continuous function with ψ(0) = 0, the functions
k(t), m(t), h(t) and g(t) are nonnegative, and p(t) is a positive bounded function. Suppose
that {k(t),m(t),h(t),g(t)} → 0 as t→ ∞ and both (5.6) and (5.12) are fulfilled. Suppose there
exist constants c > 0 and ξ̄ > 0 such that ψ(ξ ) ≥ c for all ξ ≥ ξ̄ . Starting from an arbitrary
x(t0) = x0 ∈ Ω define trajectory x(t) by the dynamical system (1.14) with the condition (5.10).
Then lim

t→∞
x(t) = x∗.

The proof of this theorem is based on Lemma 2.7.

Remark 5.6. In Theorems 5.4 and 5.5 we require the condition (5.12). It can be replaced by a
stronger condition for ψ(t) on infinity (see Corollary 5.8).
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3. Assume that (1.12) is now given in the form:

‖S(t)x−S(t)y‖ ≤ ‖x− y‖− p(t)ψ(‖x− y‖)+ l(t)φ(‖x− y‖)+m(t). (5.13)

Then

d‖x(t)− x∗‖
dt

≤ 2−1
ω(t)

(
− p(t)ψ(‖x(t)− x∗‖)+ l(t)φ(‖x(t)− x∗‖)

)
+ ω(t)

(
m(t)+h(t)C0 +g(t)

)
.

We introduce the following notation:

c1 = max
{ l(t)

p(t)
, t ≥ t0

}
, c2 = max

{m(t)
p(t)

, t ≥ t0
}
, φ1(ξ ) = c1φ(ξ )+ c2. (5.14)

Theorem 5.7. Let Ω ⊆ B be a closed convex set and S : Ω→ Ω and S(t) : Ω→ Ω for each
t ≥ t0 ≥ 0 be a total asymptotically weakly contractive approximating family of S, where in
(1.11) and (5.13) φ(ξ ) : R+→ R+ is continuous function with φ(0) = 0, ψ(ξ ) : R+→ R+ is a
continuous and increasing function with ψ(0) = 0, the functions l(t), m(t), h(t) and g(t) are
nonnegative, and p(t) is a positive bounded function. Assume that {l(t),m(t),h(t),g(t)} → 0
as t → ∞, (5.6) is fulfilled, and there exists a constant M ≥ 0 such that φ1(ξ ) ≤ ψ(ξ ) for all
ξ ≥M and the equation φ1(ξ )=ψ(ξ ) has no more than one root ξ∗ on the set [0,∞). Starting
from an arbitrary x(t0) = x0 ∈Ω define trajectory x(t) by the dynamical system (1.14) with the
condition

lim
t→∞

l(t)+m(t)+h(t)+g(t)
p(t)

= 0.

Then lim
t→∞

x(t) = x∗.

Lemma 2.12 is used to prove this theorem. The general case of (1.12) with k(t) 6≡ 0 is studied
by analogy with Theorem 5.4.

4. Let us consider again the dynamical system (1.14) for (1.11) and (5.5), which is equivalent
to the inequality

‖S(t)x−S(t)y‖ ≤ ‖x− y‖− p(t)ψ(‖x− y‖)+ k(t)‖x− y‖+m(t) (5.15)

for all x,y ∈ Ω. It is particular case of (5.13) and in Theorem 5.7 we can put l(t) = k(t) and
φ(λ ) = λ . Then

d‖x(t)− x∗‖
dt

≤ 2−1
ω(t)

(
− p(t)ψ(‖x(t)− x∗‖)+ k(t)‖x(t)− x∗‖

)
+ ω(t)

(
m(t)+h(t)C0 +g(t))

)
.

As in (5.14) we define:

c1 = max
{ k(t)

p(t)
, t ≥ t0

}
, c2 = max

{m(t)
p(t)

, t ≥ t0
}
, φ1(ξ ) = c1ξ + c2.

Then the following statement is correct:
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Corollary 5.8. Let Ω ⊆ B be a closed convex set and S : Ω→ Ω and S(t) : Ω→ Ω for each
t ≥ t0 ≥ 0, S(t) be a total asymptotically nonexpansive approximation of S, where in (1.11) and
(5.15) ψ(ξ ) : R+→ R+ is a continuous and increasing function with ψ(0) = 0, the functions
k(t), m(t), h(t) and g(t) are nonnegative, and p(t) is a positive bounded function. Suppose
that {k(t),m(t),h(t),g(t)} → 0 as t → ∞, (5.6) is fulfilled, and there exists a constant M ≥ 0
such that φ1(ξ )≤ ψ(ξ ) for all ξ ≥M and the equation ψ(ξ ) = c1ξ + c has no more than one
root ξ∗ on the set [0,∞). Starting from an arbitrary x(t0) = x0 ∈Ω define trajectory x(t) by the
dynamical system (1.14) with the condition

lim
t→∞

k(t)+m(t)+h(t)+g(t)
p(t)

= 0.

Then lim
t→∞

x(t) = x∗.

6. DYNAMIC SYSTEMS WITH PERTURBED NONEXPANSIVE OPERATORS

In this Section, we study the dynamical system (1.14), where S(t) is a perturbed approxi-
mating family of nonexpansive mapping S. The latter weakens the operator condition so much
that it is impossible to guarantee even weak convergence of any trajectories x(t) to the fixed
point set N . The only exception is in the paper [13]. However, it deals with an exactly given
nonexpansive operator S and in (1.14) 0 < ω ≤ ω(t) ≤ 1. One of the main problems lies in
establishing a priori boundedness of x(t). This can be proved in some rare cases, shown later.
Another problem with our chosen method is that the condition (1.11) in Theorems 6.5 and 6.6
no longer applies, which leads to substantially weaker assertions.

Next, we present a very important auxiliary assertion, given without proof in [7]:

Lemma 6.1. If F = I−S with a nonexpansive mapping S, then for all x,y∈ B such that ‖x‖≤ R
and ‖y‖ ≤ R, the following estimate is satisfied:

〈Fx−Fy,J(x− y)〉 ≥ 2L−1R2
δB

(‖Fx−Fy‖
4R

)
, (6.1)

where δB(ε) is the modulus of convexity of the uniformly convex Banach space B and 1< L≤ 1.7
is the Figiel’s constant [28, 6].

Proof. In [14] (see also [6], p.22), following the lower parallelogram inequality we estab-
lished:

2‖v‖2 +2‖w‖2−‖v+w‖2 ≥ 4R2
δB

(‖v−w‖
2R

)
∀v,w ∈ B,

where R =
√

2−1(‖v‖2 +‖w‖2). It is equivalent to∥∥∥v+w
2

∥∥∥2
≤ 1

2
‖v‖2 +

1
2
‖w‖2−R2

δB

(‖v−w‖
2R

)
∀v,w ∈ B.

The following proposition was proved in [36] (see Lemmas 3.4 and 3.5 in [6]):

If a convex functional ϕ(x) defined on convex closed set Ω⊆ B satisfies the inequality

ϕ(
1
2

v+
1
2

w)≤ 1
2

ϕ(v)+
1
2

ϕ(w)−κ(||v−w||),
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where κ(r) ≥ 0, κ(r̄) > 0 for some r̄ > 0, then ϕ(v) is uniformly convex functional with the
modulus of convexity δ (t) = 2κ(t) and

ϕ(w)≥ ϕ(v)+< l(v),w− v >+2κ(||v−w||)
for all l(v) ∈ ∂ϕ(v). Here ∂ϕ(v) is the set of all support functionals (the set of all subgradients)
of ϕ(v) at the point v ∈Ω.

We can apply this statement to get

‖v‖2 ≤ ‖w‖2 +2〈v−w,Jv〉−2R2
δB

(‖v−w‖
2R

)
∀v,w ∈ B.

Introduce v = x− y and w = x− y−Fx+Fy for all x,y ∈ B. Then

‖x− y‖2 ≤ ‖x− y−Fx+Fy‖2 +2〈Fx−Fy,J(x− y)〉−2R2
δB

(‖Fx−Fy‖
2R

)
with

R =
√

2−1(‖x− y‖2 +‖Sx−Sy‖2).

Let ‖x‖ ≤ R and ‖y‖ ≤ R. Since S = I−F is a nonexpansive operator, it is obvious that R ≤
‖x− y‖ ≤ 2R. Next, we require the following (Figiel’s) inequality:

ε
2
δB(η)≥ (4L)−1

η
2
δB(ε) ∀η ≥ ε > 0.

Take η = (2R)−1‖Fx−Fy‖ and ε = (4R)−1‖Fx−Fy‖ with η ≥ ε. Then

2R2
δB

(‖Fx−Fy‖
2R

)
≥ 2L−1R2

δB

(‖Fx−Fy‖
4R

)
.

From this

‖Sx−Sy‖2 = ‖x− y−Fx+Fy‖2

≥ ‖x− y‖2−2〈Fx−Fy,J(x− y)〉+2L−1R2
δB

(‖Fx−Fy‖
4R

)
.

The last gives (6.1). The lemma is proved.

Remark 6.2. It can be show by the same way that if ‖v‖ ≤ R and ‖w‖ ≤ R, then∥∥∥v+w
2

∥∥∥2
≤ 1

2
‖v‖2 +

1
2
‖w‖2−L−1R2

δB

(‖v−w‖
2R

)
∀v,w ∈ B.

This inequality means that the functional ϕ(x) = ‖x‖2 for all x ∈ B is uniformly convex on any
bounded set in a uniformly convex Banach space B.

Remark 6.3. Lemma 6.1 with arbitrary x,y ∈ B is proved in an analogous fashion.

Continuing, we give two propositions including a proof of the boundedness of x(t):

Theorem 6.4. Let {S(t)}, 0 ≤ t0 ≤ t < ∞, S(t) : Ω→ Ω, be a family of asymptotically nonex-
pansive approximations of S : Ω→Ω with (1.11) and (1.13) as

‖S(t)x−S(t)y‖ ≤ (1+ l(t))‖x− y‖+m(t). (6.2)

We assume that in the dynamical system (1.14)∫
∞

t0
ω(t)

(
l(t)+m(t)+h(t)+g(t)

)
dt < ∞. (6.3)
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Then its solution x(t) is bounded for all t ≥ t0 by a constant C̄, ‖x(t)‖ ≤ C̄. There exists an
unbounded subset T 1 ⊂ T = [t0,∞] such that for all t ∈T 1

lim
t→∞

δB

(‖x(t)−Sx(t)‖
4R

)
= 0, (6.4)

where R = max{‖x∗‖,C̄}, with the monotone estimate

δB

(‖x(t)−Sx(t)‖
4R

)
≤ 1

D(t)
, D(t) = L−1R

∫ t

t0
ω(τ)dτ. (6.5)

Proof. From (5.4) we have

d‖x(t)− x∗‖
dt

≤ ω(t)l(t)‖x(t)− x∗‖+ω(t)
(

m(t)+h(t)C0 +g(t)
)
, (6.6)

where η(‖x∗‖)≤C0. Denoting

λ (t) = ‖x(t)− x∗‖, β (t) = ω(t)l(t)

and
γ(t) = ω(t)

(
m(t)+h(t)C0 +g(t)

)
,

from (6.6) it follows that

dλ (t)
dt
≤ β (t)λ (t)+ γ(t), t ≥ t0, λ (t0) = λ0.

It is clear that for all t ≥ t0 the function λ (t) is non-negative and differentiable, γ(t) is a non-
negative continuous function, and β (t) is a continuous positive function satisfying the inequal-

ities
∫

∞

t0
γ(t)dt < ∞ and

∫
∞

t0
β (t)dt < ∞. Then (2.18) gives

‖x(t)− x∗‖ ≤ ‖x0− x∗‖exp
(∫ t

t0
β (τ)dτ

)
+
∫ t

t0
γ(θ)exp

(∫ t

θ

β (τ)dτ

)
dθ . (6.7)

By virtue of the condition (6.3) there exist constants C1 > 0 and C2 > 0 such that

exp
(∫ ∞

t0
β (τ)dτ

)
≤C1 and

∫
∞

t0
γ(τ)dτ ≤C2.

Then from (6.7) we derive

‖x(t)− x∗‖ ≤C1(‖x0− x∗‖+C2),

therefore

‖x(t)‖ ≤C1(‖x0− x∗‖+C2)+‖x∗‖= C̄.

Since the function η(ξ ) is non-decreasing, it follows from (1.11)

‖S(t)x(t)−Sx(t)‖ ≤ h(t)η(C̄)+g(t). (6.8)

Let us present now (1.14) in the form:

dx(t)
dt

=−ω(t)
(

x(t)−Sx(t)
)
−ω(t)

(
Sx(t)−S(t)x(t)

)
, t ≥ t0, x(t0) = x0 ∈Ω.
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Since Fx(t) = x(t)−Sx(t) and Fx∗ = 0, similar to (5.3) one gets

d‖x(t)− x∗‖2

dt
≤ −2ω(t)

〈
Fx(t)−Fx∗,J(x(t)− x∗)

〉
+ 2ω(t)‖S(t)x(t)−Sx(t)‖‖x(t)− x∗‖.

This implies

d‖x(t)− x∗‖
dt

≤ −ω(t)‖x(t)− x∗‖−1
〈

Fx(t)−Fx∗,J(x(t)− x∗)
〉

+ ω(t)‖S(t)x(t)−Sx(t)‖. (6.9)

Let R = max{‖x∗‖,C̄}= C̄. By Lemma 6.1, in our case

〈Fx(t)−Fx∗,J(x(t)− x∗)〉 ≥ 2L−1R2
δB

(‖Fx(t)−Fx∗‖
4R

)
(6.10)

with Fx∗ = 0. Then (6.8), (6.9), and (6.10) give

d‖x(t)− x∗‖
dt

≤−2L−1Rω(t)δB

(‖x(t)−Sx(t)‖
4R

)
+ω(t)

(
h(t)η(C̄)+g(t)

)
. (6.11)

Denoting now
λ (t) = ‖x(t)− x∗‖, α(t) = 2L−1Rω(t),

γ(t) = ω(t)
(

h(t)η(C̄)+g(t)
)
, ζ (t) = δB

(‖x(t)−Sx(t)‖
4R

)
,

we obtain from (6.11) the differential inequality (2.2). It follows from (6.3) that∫
∞

t0
ω(t)

(
h(t)η(C̄)+g(t)

)
dt < ∞. (6.12)

By (6.12) and Lemma 3.3 we conclude that the theorem is true.

Theorem 6.5. Assume that in dynamical system (1.14), the approximation family S(t) of non-
expansive operator S : Ω→Ω satisfies the following uniform condition at each point x ∈Ω:

‖S(t)x−Sx‖ ≤ h(t) (6.13)

and ∫
∞

t0
ω(t)h(t)dt < ∞. (6.14)

Then a solution x(t) is bounded for all t ≥ t0 and there exists an unbounded subset T 1 ⊂ T =
[t0,∞] such that (6.4) holds for all t ∈T 1.

Proof. By Lemma 6.1, if F = I− S with a nonexpansive mapping S and arbitrary x,y ∈ Ω

then
〈Fx−Fy,J(x− y)〉 ≥ 0.

Therefore from (6.13) and (6.9) one obtains
d‖x(t)− x∗‖

dt
≤ ω(t)h(t).

Under the condition (6.14) there exists a constant C > 0 such that

‖x(t)− x∗‖ ≤ ‖x0− x∗‖+
∫

∞

t0
ω(t)h(t)dt ≤C.
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Therefore solutions x(t) of the system (1.14) are bounded for all t ≥ t0, that is, there exists a
constant C̄ > 0 such that ‖x(t)‖ ≤ C̄. Let max{‖x∗‖,C̄}= R.

By Lemma 6.1 again, if F = I−S with a nonexpansive mapping S, then (6.10) holds. From
(6.9) we obtain

d‖x(t)− x∗‖
dt

≤−ω(t)2L−1RδB

(‖Fx(t)−Fx∗‖
4R

)
+ω(t)h(t).

Next, it remains only to use Lemma 3.2. The proof is finished.
We suppose in the next theorem that (1.14) has a bounded solution x(t), that is, there exists a

constant C̄ > 0 such that ‖x(t)‖ ≤ C̄.

Theorem 6.6. Assume that in dynamical system (1.14) the approximation family S(t) of nonex-
pansive operator S : Ω→Ω at each point x ∈Ω satisfies inequality (1.11). Then there exists an
unbounded set T 1 ⊂ T = [t0,∞) such that (6.4) holds for all t ∈T 1 with the estimate

δB

(‖x(t)−Sx(t)‖
4R

)
≤ 1

D(t)
+h(t)η(C̄)+g(t), D(t) = LR

∫ t

t0
ω(τ)dτ. (6.15)

Proof. Using the same definition of λ (t), α(t), γ(t) and ζ (t) as in Theorem 6.4, apply
Lemma 3.4 to (6.11). Since the inequality (1.11) assumes that h(t)→ 0 and g(t)→ 0 as t→∞,
we obtain

lim
t→∞

γ(t)
α(t)

= lim
t→∞

(
h(t)η(C̄)+g(t)

)
= 0.

Thus, the estimate (6.15) is fulfilled and the limit relation (6.4) holds. The rest of the proof
follows the pattern of the proof of Lemma 3.4.

Corollary 6.7. Under the conditions of Theorems 6.4 - 6.6 for all t ∈T 1.

lim
t→∞
‖x(t)−Sx(t)‖= 0. (6.16)

Moreover, lim
t→∞
‖x(t)−S(t)x(t)‖= 0.

Proof. It is known (see [6, 27]) that in a uniformly convex Banach space B the modulus of
convexity δB(ε) is well defined on the interval [0, 2], continuous, increasing (not strictly in the
general case), and δB(0) = 0 and 0 < δB(ε) < 1 if 0 < ε < 2. These properties prove (6.16).
Furthermore, using (6.2) or (6.13) we can write

‖x(t)−S(t)x(t)‖ ≤ ‖x(t)−Sx(t)‖+‖S(t)x(t)−Sx(t)‖
≤ ‖x(t)−Sx(t)‖+h(t)η(C̄)+g(t).

The result follows from (1.11) because lim
t→∞

(h(t)+g(t)) = 0.

Remark 6.8. If there exists strictly increasing function δ̃B(ε) such that the modulus of convex-
ity δB(ε)≥ δ̃B(ε) on the interval [0,2], then instead of the estimate (6.5) one has

‖x(t)−Sx(t)‖ ≤ 4Rδ̃
−1
B

( 1
D(t)

)
∀t ∈T 1,

where δ̃
−1
B (.) is the inverse function to δ̃B(ε). For example, in the spaces B= lp and B= Lp, 1<

p < ∞, any δB(ε) has such δ̃B(ε) (see [16], p.48). By analogy, one can consider (6.15).
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Of course, it is not expected that the statements of this Section remain valid in the general
case (1.13).

Acknowledgements
The author thanks the referee for his painstaking reading of this paper.

REFERENCES

[1] Ya. Alber, Differential Descent and its Applications to the Solving Nonlinear Operator Equations and Varia-
tional Problems, PhD Thesis, 1967.

[2] Ya. Alber, A continuous regularization of linear operator equations in Hilbert spaces, Mathematical Notes, 9
(1968) 42-54.

[3] Ya. Alber, Methods for Solving Nonlinear Operator Equations and Variational Inequalities in Banach Spaces,
Doctor Science Thesis, 1987.

[4] Ya. Alber, A new approach to investigation of evolution differential equations in Banach spaces, Nonlinear
Anal. 23 (1994) 1115-1134.

[5] Ya. Alber, Generalized projection operators in Banach spaces: properties and applications, Functional Dif-
ferential Equations 1 (1994) 1-21.

[6] Ya. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, In:
Theory and Applications of Nonlinear Operators of Accretive and Monotone Type (A. Kartsatos, Ed.), pp.
15-50, Marcel Dekker, inc., 1996.

[7] Ya. Alber, New Results in Fixed Point Theory, Technion, Haifa, 1999.
[8] Ya. Alber, C.E. Chidume, and H. Zegeye, Approximating fixed points of total asymptotically nonexpansive

mappings, Fixed Point Theory Appl. 2006 (2006) Article ID 10673.
[9] Ya. Alber, R. Espı́nola, and P. Lorenzo, Strongly convergent approximations to fixed points of total asymp-

totically nonexpansive mappings, Acta Math. Sinica 24 (2008) 1005-1022.
[10] Ya. Alber and S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, Operator Theory,

Advances and Applications, 98 (1997) 7-22.
[11] Ya. Alber, S. Guerre-Delabriere, and L. Zelenko, The principle of weakly contractive maps in metric spaces,

Commun. Appl. Nonlinear Anal. 51 (1998) 45-68.
[12] Ya. Alber, A. Iusem, and M. Solodov, Minimization of nonsmooth convex functionals in Banach spaces, J.

Convex Anal. 4 (1997) 235-254.
[13] Ya. Alber and Jen-Chih Yao, On projection dynamical systems in Banach spaces, Taiwanese J. Math. 11

(2007) 819-847.
[14] Ya. Alber and A.I. Notik, Parallelogram inequalities in Banach spaces and some properties of the duality

mapping, Ukranian Math. J. 40 (1988) 650-652.
[15] Ya. Alber, S. Reich, and Jen-Chih Yao, Iterative methods for solving fixed point problems with nonself-

mappings in Banach spaces, Abst. Appl. Anal. 2003 (2003) 194-216.
[16] Ya. Alber and I. Ryazantseva, Nonlinear Ill-posed Problems of Monotone Type, Springer, 2006.
[17] Ya. Alber and S. Shilman, Recursive numerical and differential inequalities. III, No. 134, Inst. Radio Physics

Researchs, 1980.
[18] Ya. Alber and R.U. Verma, Fixed point problems with operators given by total asymptotically nonexpansive

approximations, Commun. Appl. Nonlinear Anal. 24 (2017) 1-28.
[19] Ya. Alber and R. U. Verma, Strong convergence and stability in the fixed point problems with total asymp-

totically nonexpansive approximations of operators, Commun. Appl. Nonlinear Anal. 25 (2018), 21-53.
[20] A.S. Antipin, Minimization of convex function on convex sets by means of differential equations, Differential

Equations, 30 (1994) 1365-1375.
[21] M.C. Arya, N. Chandra, and M.C. Joshi, Fixed point of (ψ,φ )-contractions on metric spaces, J. Anal. 28

(2020) 461–469.
[22] F. E. Browder, Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach

spaces, Archive Rational Mech. Anal. 24 (1967) 82-90.



DIFFERENTIAL INEQUALITIES AND DYNAMICAL SYSTEMS 33

[23] F.E. Browder, Nonlinear operators and nonlinear equations in Banach space, Proc. Symp. Pure . Math. 18,
Part II, Amer. Math. Soc., Providence, 1979.

[24] R.E. Bruck, T. Kuczumow, and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings
in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993) 169-179.

[25] S. Chang, L. Zhao, M. Liu, and J. Tang, Convergence theorems for total asymptotically nonexpansive map-
pings in CAT(k) spaces, Fixed Point Theory Algo. Sci. Eng. 2023 (2023) 2.

[26] C. Chidume, H. Zegeye, and S. Aneke, Approximation of fixed points of weakly contractive nonself maps in
banach spaces, J. Math. Anal. Appl. 270 (2002), 189-199.

[27] J. Diestel, Geometry of Banach Spaces - Selected Topics, Lecture Notes in Mathematics, 485, Springer, New
York, 1975.

[28] T. Figiel, On the moduli of convexity and smoothness, Studia Math. 56 (1976) 121-155.
[29] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer.

Math. Sos. 35 (1972) 171-174.
[30] J.Z. Xiao and X.H. Zhu, Common fixed point theorems on weakly contractive and nonexpansive mappings,

Fixed Point Theory Appl. 2008 (2008) 469357.
[31] J.-L Lions, Quelques methodes de resolution des problemes aux limites non limeaires, Dunod Gauthier-

Villars, Paris, 1969.
[32] F. Mukhamedov and M. Saburov, On unification of the strong convergence theorems for a finite family of total

asymptotically nonexpansive mappings in banach spaces, J. Appl. Math. 2012 (2012) Article ID 281383.
[33] T. Powell and F. Wiesne, Rates of convergence for asymptotically weakly contractive mappings in normed

spaces, Numer. Funct. Anal. Optim. 43 (2021) 1802-1838.
[34] S.H. Rasouli and A Ghorbani, A new fixed point theorem for nonlinear contractions of Alber-Guerre De-

labriere type in fuzzy metric spaces, Ann. Fuzzy Math. Info. 9 (2015) 573-579.
[35] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001) 2683–2693.
[36] A.A. Vladimirov, Yu.E. Nesterov, and Yu.N. Chekanov, Uniformly convex functionals, Vestnik Moscov.

Univ. Ser.15, Vychisl. Mat. Kibernet. 3 (1978) 12-23.
[37] X. Qin, S.Y. Cho, S.M. Kang, A weak convergence theorem for total asymptotically pseudocontractive map-

pings in Hilbert spaces, Fixed Point Theory Appl. 2011 (2011) 859795.
[38] J. Z. Xiao, X. H. Zhu, and X. Jin, Fixed point theorems for nonlinear contractions in Kaleva-Seikkalas type

fuzzy metric spaces, Fuzzy Sets and Systems 200 (2012) 65–83.
[39] Xiongrui Wang and Jing Quan, Strong convergence for total asymptotically pseudocontractive semigroups in

Banach spaces, Fixed Point Theory Appl. 2012 (2012) 216.
[40] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl.

158 (1991) 407-413.
[41] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bul. Austral.

Math. Soc. 43 (1991) 153-159.


	1. Introduction and Preliminaries
	2. Differential Inequalities
	3. Differential Inequality (2.2) 
	4. Differential Inequalities (2.5)
	5. Dynamic systems with total asymptotically weakly contractive approximations of operators
	6. Dynamic Systems with Perturbed Nonexpansive Operators
	References

