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1. INTRODUCTION

Game Theory concerns the mathematics of strategic decision making. It provides a general
framework within which both cooperation and competition among independent agents, or play-
ers, may be modeled and gives powerful tools for analyzing these models. A game is said to
be a non-cooperative game if each player involved pursues his or her own interests which are
partially conflicting with others’. Non-cooperative games are important tools which are widely
used in economics, social sciences, political sciences, computer science, biology, and in other
fields. The central problem in game theory is the identification of some special strategic choices
for the players.

This work is an extension of a previously published paper [1] which examined the Two-
Player, Two-Strategy Game of Firms described in [2]. In that paper, we considered two firms,
Firm 1 and Firm 2, that have one open position each for which they are offering salaries 2a and
2b, respectively. Two players (job seekers) are competing for these two positions. Each player
can apply to only one of the positions and the players must simultaneously decide whether to
apply to Firm 1 or to Firm 2 by shouting F1 or F2, respectively. If only one of the players
applies for a position, then he or she gets hired. If both players apply for the same position,
then the concerned firm hires one of them at random, each player being equally likely to be
selected. This final strategic form is a 2× 2 non zero-sum game with payoff function given
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by the bimatrix (1.1), where we denote Player I’s strategy space by {F1, F2} and Player II’s
strategy space by {F1, F2}.

F1 F2( )
F1 (a,a) (2a,2b)
F2 (2b,2a) (b,b)

, (1.1)

The analysis of this game depended on the values and relationship of and between the pa-
rameters a and b. To make sure that the two salaries are not too far out of line with each other,
we imposed the constraints 2a > b > 0 and 2b > a > 0. In [1], we examined this game and
its extensions. In particular, the use of unit quaternions proved to be a powerful tool in the
identification of families of Nash equilibria in the extended games.

In this work, we consider a three-player, two-strategy version of this game. As before, two
firms, Firm 1 and Firm 2, have each one open position for which they are offering salaries 6a
and 6b, respectively. This time, three players are competing for these two open positions. The
reason for using salaries 6a and 6b is just to keep the calculations simple. We still impose the
constraints 2a > b > 0 and 2b > a > 0. With the same set-up as in the two-player case, we
obtain the final strategic form of a 3×2 non zero-sum game with payoff function given by Fig.
1, where we denote Player I’s strategy space by {F1, F2}, Player II’s strategy space by {F1, F2},
and Player III’s strategy space by {F1, F2}.

I

II
F1 F2

F1 (2a,2a,2a) (3a,6b,3a)

F2 (6b,3a,3a) (3b,3b,6a)

Player III chooses F1

I

II
F1 F2

F1 (3a,3a,6b) (6a,3b,3b)

F2 (3b,6a,3b) (2b,2b,2b)

Player III chooses F2

FIGURE 1. Three-Player, Two-Strategy Game of Firms Model

In this game each player has access to exactly two pure strategies, namely F1 (apply to Firm
1’s position) and F2 (apply to Firm 2’s position). We call the sets S1 = {F1,F2}, S2 = {F1,F2},
and S3 = {F1,F2} the pure strategy spaces of Player I, Player II, and Player III, respectively.
Players I, II, and III move simultaneously and select pure strategies Fi, Fj, and Fk, respec-
tively, resulting in a strategic profile (Fi,Fj,Fk) from which Player l obtains outcome or pay-
off Pl(Fi,Fj,Fk). For example, the use of the strategy profile (F1,F2,F2) yields a payoff of
P3(F1,F2,F2) = 3b to Player III. The function Pl : S1×S2×S3 −→ R is called the payoff func-
tion of Player l. Hence, a three-player, two-strategy, or a 3× 2, pure classical game G is
completely specified by the tuple G = (S1,S2,S3,P1,P2,P3).

A fundamental goal in game theory is the identification of some special strategies or strategic
profiles. For example, most players would love to identify a strategy that guarantees a maximal
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utility. As this is not always possible, a security strategy, that is, a strategic choice that guar-
antees an explicit lower bound to the utility received, is also sought. However, given a fixed
strategy profile (t?,u?) ∈ S2× S3 of the opponents, Player I seeks a best reply strategy, that is,
s? ∈ S1 that delivers a utility as great as, if not greater, than any other strategy s∈ S1. In symbols

P1(s?, t?,u?)≥ P1(s, t?,u?) ∀s ∈ S1 (1.2)

The situation when each player in the game has chosen such a strategy is of fundamental im-
portance in the theory of games and gives rise to the concept of Nash equilibrium. A Nash equi-
librium, or a solution, or just an equilibrium for G is a strategy profile (x1,x2,x3) ∈ S1×S2×S3
such that each xi is a best reply to the pair (x j,xk) of opponents’ strategies. In symbols,
(x1,x2,x3) is a Nash equilibrium if

P1(x1,x2,x3)≥ P1(s,x2,x3) ∀s ∈ S1 (1.3)

and
P2(x1,x2,x3)≥ P2(x1, t,x3) ∀t ∈ S2. (1.4)

and
P3(x1,x2,x3)≥ P3(x1,x2,u) ∀u ∈ S3. (1.5)

Other ways of expressing this concept include the observation that no player can increase his or
her payoff by unilaterally deviating from his or her equilibrium strategy or that at the equilib-
rium a player’s opponents are indifferent to that player’s strategic choice.

As an example, consider the three-player dilemma game examined by Benjamin and Hayden
[3], a type of a non-zero-sum game in which three players may each “cooperate” (C) with or
“defect” (D), that is, betray the other players. This is a non-cooperative game and, therefore,
the players are assumed to be rational, that is, the only concern of each individual player in the
game is to optimize his or her own payoff without any concern for the other players’ payoffs.
The payoff function for the classical dilemma game considered is given in Fig. 2, where all
three players use the same two element pure strategy space denoted by {C, D}.

I

II
C D

C (0,0,0) (−9,1,9)

D (1,−9,−9) (9,9,1)

Player III chooses C

I

II
C D

C (−9,−9,1) (1,9,9)

D (9,1,9) (2,2,2)

Player III chooses D

FIGURE 2. Three-Player Dilemma Game

Here, we note that for Player I the pure strategy D always delivers a higher outcome than the
strategy C (say D strongly dominates C) and, similarly, for Players II and III the pure strategy
D strongly dominates C. Hence the triple (D,D,D) is the only Nash equilibrium of the three-
player dilemma game. Note that if all three players cooperate with each other, i.e. stay silent
and do not betray each other by employing the strategy profile (C,C,C), then they receive the
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Pareto optimal payoff (0,0,0), that is, the game result from which no player can improve their
payoff by deviating without another player being worse off.

Given a game G, a Nash equilibrium may not exist among the pure strategy profiles. As an
example, consider the game of Simplified Poker Model, a 3× 2 zero-sum game whose payoff
function is given in Fig. 3.

I

II
t1 t2

s1 (5,−10,5) (0,0,0)

s2 (0,0,0) (10,−5,−5)

Player III chooses u1

I

II
t1 t2

s1 (−7,3,4) (0,0,0)

s2 (0,0,0) (−8,5,3)

Player III chooses u2

FIGURE 3. Three-Player Simplified Poker Model

Here one can easily show that there are no triple of pure strategies (xi,x j,xk) such that each
pure strategy in the triple is a best reply to the remaining two. Hence, this game has no equilibria
in pure strategies.

Note that in the game G, each player has access to a two-point worth strategy space. Suppose
that we now extend the game G by enlarging the domain and extending the payoff functions. A
standard extension of this point is to consider for each player the set of mixed strategies, i.e. the
set of real convex combinations of their pure strategies. For example, in the game above, Player
I could observe a fair coin and decide to play s1 if it falls Heads and s2 if it falls Tails. Suppose
that Player I uses his pure strategy s1 with probability p, Player II uses his pure strategy t1 with
probability q, and Player III uses her pure strategy u1 with probability r. Each player has now
access to the set of mixed strategies. We denote the set of probability distributions over Si by
∆(Si) and define the mixed strategy spaces of the players as follows

∆(S1) = {ps1 +(1− p)s2 | 06 p6 1} ≡ [0,1] (1.6)

∆(S2) = {qt1 +(1−q)t2 | 06 q6 1} ≡ [0,1] (1.7)

∆(S3) = {ru1 +(1− r)u2 | 06 r 6 1} ≡ [0,1] (1.8)

Note that we can embed Si into ∆(Si) by considering the element s ∈ Si as mapped to the
probability distribution which assigns 1 to s and 0 to everything else. Given (p,q,r) ∈ ∆(S1)×
∆(S2)×∆(S3), Player i obtains an expected outcome given by a probability distribution over
the outcomes of G, that is, an element of ∆(ImPi), the set of probability distributions over the
image of Pi. Now the game G is extended to a new, larger game Gmix, the mixed classical
game associated to G. The mixed classical game Gmix is therefore specified by the tuple Gmix =
(∆(S1),∆(S2),∆(S3),E1,E2,E3), where

Ei : [0,1]× [0,1]× [0,1]−→ ∆(ImPi) (1.9)
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is Player i’s expected payoff function. More specifically

Ei(p,q,r) =pqrPi(s1, t1,u1)+ pq(1− r)Pi(s1, t1,u2)+ p(1−q)rPi(s1, t2,u1)

+p(1−q)(1− r)Pi(s1, t2,u2)+(1− p)qrPi(s2, t1,u1)

+(1− p)q(1− r)Pi(s2, t1,u2)+(1− p)(1−q)rPi(s2, t2,u1)

+(1− p)(1−q)(1− r)Pi(s2, t2,u2)

or in matrix form

Ei(p,q,r) =
(
(p 1− p)M1

(
q

1−q

)
(p 1− p)M2

(
q

1−q

))(
r

1− r

)
(1.10)

where

M1 =

(
Pi(s1, t1,u1) Pi(s1, t2,u1)
Pi(s2, t1,u1) Pi(s2, t2,u1)

)
and M2 =

(
Pi(s1, t1,u2) Pi(s1, t2,u2)
Pi(s2, t1,u2) Pi(s2, t2,u2)

)
(1.11)

A triple of mixed strategies (p?,q?,r?) is a Nash equilibrium in Gmix if

E1(p?,q?,r?)≥ E1(p,q?,r?) ∀p ∈ [0,1] (1.12)

and
E2(p?,q?,r?)≥ E2(p?,q,r?) ∀q ∈ [0,1]. (1.13)

and
E3(p?,q?,r?)≥ E3(p?,q?,r) ∀r ∈ [0.1]. (1.14)

While a Nash equilibrium may not exist in the classical pure game G, Nash’s famous theorem
[4] says that if the Si’s are all finite, then there always exists at least one equilibrium in Gmix. For
example, the classical mixed game Gmix associated to the game depicted in Fig. 3 has two Nash
equilibria (p,q,r) = (0.894,0.488,0.204) and (p,q,r) = (0.160,0.977,0.588) with expected
payoffs to the players (−2.221,0.315,1.906) and (0.060,−0.743,0.683), respectively.

In the game Gmix, each player has access to a unit interval worth of strategies. As before,
suppose Player I plays his first pure strategy with probability p, say, Player II plays his first
strategy with probability q, say, and Player III plays her first pure strategy with probability r,
say, then the resulting probability distribution over the outcomes of G is given in Table 1.

t1 t2
s1 pqr p(1−q)r
s2 (1− p)qr (1− p)(1−q)r

(A) Player III uses u1

t1 t2
s1 pq(1− r) p(1−q)(1− r)
s2 (1− p)q(1− r) (1− p)(1−q)(1− r)

(B) Player III uses u2

TABLE 1. Probability Distribution over ImPi

We note that the maps Ei are not onto and therefore some probability distributions over the
outcomes of Pi will be impossible to establish. For example, an easy exercise shows that the
element of ∆(ImPi) represented in Table 2 is not realizable by any choice of p, q, and r.

This observation motivates the search for a higher randomization apparatus. Since the game
G has eight outcomes, we will utilize the eight-dimensional real division algebra of the octo-
nions to establish a suitable extension of Gmix.
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t1 t2
s1 1/2 0
s2 0 0

(A) Player III uses u1

t1 t2
s1 0 0
s2 0 1/2

(B) Player III uses u2

TABLE 2. An Element of ∆(ImPi)

2. REAL DIVISION ALGEBRAS OF THE QUATERNIONS AND OCTONIONS

There are exactly four real division algebras: the real numbers R, the complex numbers C,
the quaternions H, and the octonions O. The real numbers form a complete ordered field.
The complex numbers are algebraically complete but not ordered. The quaternions are not
commutative, and the octonions are both non-commutative and non-associative.

2.1. Quaternions. The quaternions, denoted by H, are a 4-dimensional normed division alge-
bra over the real numbers. They are spanned by the identity 1 and three imaginary units i, j,
and k. These fundamental units satisfy the so-called Hamilton’s relation

i2 = j2 = k2 = i jk =−1. (2.1)

A general quaternion q is of the form

q = a+bi+ c j+dk, (2.2)

where a,b,c,d are real numbers and i, j, and k satisfy Hamilton’s relation. We can also express
a general quaternion in the form

q = α +β j, (2.3)

where α and β are complex numbers. Throughout, we will work with the general quaternions
p = p0 + p1i+ p2 j+ p3k and q = q0 +q1i+q2 j+q2k.

The sum of two quaternions is a new quaternion and we have

Definition 2.1. Addition with quaternions is component wise, that is,

p+q = (p0 +q0)+(p1 +q1)i+(p2 +q2) j+(q3 +q3)k. (2.4)

The product of two quaternions results in a new quaternion.

Definition 2.2. Multiplication with quaternions is polynomial subject to Hamilton’s relation
i2 = j2 = k2 = i jk =−1, that is, for p and q given as above, we have

pq = (p0 + p1i+ p2 j+ p3k)(q0 +q1i+q2 j+q3k)

= (p0q0− p1q1− p2q2− p3q3)+(p0q1 + p1q0 + p2q3− p3q2)i (2.5)

+(pa0q2− p1q3 + p2q0 + p3q1) j+(p0q3 + p1q2− p2q1 + p3q0)k

If p =α +β j and q = δ +γ j, where α , β , δ , and γ , are complex numbers, then an alternative
definition for the product of p and q is given by the map

((α,β ),(δ ,γ)) 7−→
(

αδ −βγ,αγ +βδ

)
.

The length of a quaternion can be calculated the way we compute length in R4.
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Definition 2.3. The conjugate of a quaternion p is defined as

p = p0− p1i− p2 j− p3k. (2.6)

It is straightforward to verify the following properties.
(1) The product pp = p2

0+ p2
1+ p2

2+ p2
3 defines the square of a norm ||p|| for the quaternion

p. That is,
||p||2 = pp = p2

0 + p2
1 + p2

2 + p2
3. (2.7)

(2) The norm is multiplicative, that is, ||pq||= ||p||||q|| for all quaternions p and q.
(3) For any nonzero quaternion q,

q−1 =
q
||q||2

. (2.8)

This establishes H−{0} as a division algebra.
(4) The set of unit quaternions H1 = {q | ||q||2 = 1} forms a subgroup of H−{0} under

quaternionic multiplication and can be thought as the unit 3-sphere S3 living in R4.
(5) Multiplication with quaternions is not commutative.
(6) Multiplication with quaternions is associative.
(7) The distributive laws hold.

In light of all the above properties, the quaternions form a skew-field, that is, a non-commutative
field. In addition, as a real vector space, H can be identified with R4 via the map

(a0 +a1i+a2 j+a3k) 7−→


a0
a1
a2
a3

 (2.9)

For more details on real division algebras in general and on quaternions in particular, the reader
is referred to [5, 6].

2.2. Octonions. The octonions O are a non-associative, non-commutative, 8-dimensional, normed
division algebra over the real numbers. One can derive the octonions from the set of quater-
nions H the way we obtain the set of complex numbers C from R2 as C = R+Ri, or the way
we obtain H from C2 as H = C+C j. They are spanned by the real number 1 and seven basic
square roots of −1 that we denote by i1, i2, i3, i4, i5, i6, and i7. A general octonion o has form

o =
7

∑
j=0

a ji j (2.10)

where the at’s are real numbers, i0 = 1 by convention, and the it’s have the property that i2t =−1
for all positive indices. Addition with octonions is component-wise exactly the way we add
vectors in R8. Given any two distinct basic square roots of −1, ir and is, say, there is a third it ,
so that these distinct three basic square roots of −1 satisfy

i2r = i2s = i2t = irisit =−1 (2.11)

Thus any pair of distinct basic square roots of −1 determines a quaternionic subspace. Up to
order, there are exactly seven such choices. Therefore, there are seven “natural” quaternionic
subspaces all together. Any such quaternionic subspaces intersect in a common copy of the
complex numbers. Now consider the seven basic square roots of −1 as “points” and the seven
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quaternionic subspaces as “lines” these points are incident to. Thus the octonionic algebra
satisfies the following two axioms of projective geometry:

(1) Two points determine a line.
(2) Two lines determine a point.

Not surprisingly, octonionic multiplication of the seven basic square roots of −1 is modeled
along the 7 points, 7 lines projective plane shown in Fig. 4. We use the Fano plane to perform

FIGURE 4. An edge oriented Fano plane.

octonionic multiplication of the basic octonionic elements. In particular, multiplication with
octonions is polynomial subject to i2r = i2s = i2t = irisit =−1 if ir, is, and it are cyclically ordered
as shown in the Fano plane. One can also easily verify that octonionic multiplication is non-
associative by considering, for example, the associated products i3(i5i7) and (i3i5)i7. On one
hand i3(i5i7) = i3i4 = i6. On the other hand, (i3i5)i7 = i2i7 = −i6. In general, associativity
of basic octonionic elements fail up to a sign. Note that although octonionic multiplication is
not associative, it is nevertheless alternative, that is, x(xy) = (xx)y and x(yy) = (xy)y for all
x,y ∈ O. The octonionic conjugate of an octonion o is defined as o = a0−∑

7
j=1 a ji j. The

product oo = ∑
7
j=0 a2

j defines the square of the real-valued multiplicative norm N(o) of the
octonion o. More specifically, N(o)2 = oo = ∑

7
j=0 a2

j . Each non-zero octonion o possesses a
non-zero inverse given by o−1 = o/[N(o)]2. A unit octonion has length 1 and the set of all unit
octonions {o | N(o) = 1} can be thought as the 7-sphere S7 living in R8. For any octonion o,
we will denote by πk(o) the projection of the octonion o onto the subspace of O spanned by the
vector basis element ik with the convention that i0 = 1. For example, π3(2−3i1+5i3−2i7) = 5.
For us the octonions will be of great use due to the existence within a collection of 3-spheres
that intersect in a common circle. Further these three spheres will be identified with the special
unitary matrices SU(2) and the common circle with the unitary matrices U(1), all respecting
octonionic multiplication. Our collection of 3-spheres is then given by the three copies of unit
quaternions, meeting in a common copy of the unit complexes. Among the seven copies of
quaternionic subspaces of O, we are interested in three copies with a common embedded copy
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of the complex numbers C. For this we choose the quaternionic subspaces

H1 = {a0 +a1i1 +a2i2 +a3i4 | a j ∈ R} (2.12)

H2 = {b0 +b1i1 +b2i5 +b3i6 | b j ∈ R} (2.13)

H3 = {c0 + c1i1 + c2i3 + c3i7 | c j ∈ R} (2.14)

which meet in the complex space {α + β i1 | α,β ∈ R}. We focus our attention on the unit
S3’s in each of these four-dimensional copies of H and consider each such S3 as a “longitude”
of the unit octonions which form a seven-dimensional sphere S7 ⊂ O. Call U j the set of unit
octonions in H j.

3. UNIT OCTONIONS AS STRATEGIES

Consider a generic three-player, two-strategy game G whose payoff function is indicated in
Fig. 5, where (xt ,yt ,zt) ∈ R3 for all t = 0,1,2, · · · ,7.

I

II
t1 t2

s1 (x0,y0,z0) (x6,y6,z6)

s2 (x4,y4,z4) (x3,y3,z3)

Player III chooses u1

I

II
t1 t2

s1 (x7,y7,z7) (x2,y2,z2)

s2 (x5,y5,z5) (x1,y1,z1)

Player III chooses u2

FIGURE 5. Three-Player Generic Game

Theorem 3.1. Let G be the game described in Fig. 5. Then the associated pure quantum game
GQ is the three-player game in which Player i’s strategy space is Ui and the payoff function for
Player i is given by

PQ
i (s, t,u) =

7

∑
j=0

[π j(o(s, t,u))]2w j (3.1)

for some unit octonion o function of the unit octonions s, t, and u. Here w = x when i = 1, w = y
when i = 2, and w = z when i = 3. Therefore, the game GQ is completely specified by the tuple
GQ = (U1,U2,U3,P

Q
1 ,PQ

2 ,PQ
3 ).

The proofs of Theorem 3.1 and its corollary below can be found in [7, 8].

Corollary 3.2. In the game GQ if two of the players use pure quantum strategies which are rep-
resented by canonical octonionic basis elements and the third player employs a pure quantum
strategy represented by a unit octonion, that is, if the players employ a pure quantum strategy
profile (s, t,u) of the form

(s0 + s1i1 + s2i2 + s3i4, il, im) (3.2)

(ik, t0 + t1i1 + t2i5 + t3i6, im) (3.3)

(ik, il,u0 +u1i1 +u2i3 +u3i7) (3.4)
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where k ∈ {0,1,2,4}, l ∈ {0,1,5,6}, and m ∈ {0,1,3,7}, then the payoff to Player i is given by

PQ
i (s, t,u) =

7

∑
j=0

[π j((st)u)]2w j (3.5)

The following lemma is a straightforward result from Theorem 3.1 and its proof is omitted.

Lemma 3.3. In the game GQ if the players use a quantum strategy profile represented by a
triple of unit octonions (s, t,u) of the form (α0+α1i4,β0+β1i6,γ0+γ1i7) or (α0i2+α1i4,β0i5+
β1i6,γ0i3 + γ1i7), then the payoff to Player i is given by PQ

i (s, t,u) = ∑
7
j=0[π j((st)u)]2w j.

Next we show that the game GQ is an extension of the game G.

Theorem 3.4. The game GQ is an extension of the game Gmix and, therefore, also an extension
of the pure classical game G.

Proof. To show that GQ is an extension of Gmix it is sufficient to find a triple of three unit
octonions (s, t,u) ∈ U1×U2×U3 such that PQ

i (s, t,u) = Ei(p,q,r) for all i = 1, 2, and 3 where
(p,q,r) ∈ [0,1]× [0,1]× [0,1]. Let s =

√
p+
√

1− p i4, t =
√

q+
√

1−q i6, and u =
√

r +√
1− r i7. Then,

(st)u =
√

pqr+
√

(1− p)(1−q)(1− r) i1 +
√

p(1−q)(1− r) i2 +
√
(1− p)(1−q)r i3

+
√
(1− p)qr i4−

√
(1− p)q(1− r) i5 +

√
p(1−q)r i6 +

√
pq(1− r) i7.

Therefore

PQ
i (s, t,u) =

7

∑
j=0

[π j((st)u)]2w j

= pqrw0 +(1− p)(1−q)(1− r)w1 + p(1−q)(1− r)w2 +(1− p)(1−q)rw3

+(1− p)qrw4 +(1− p)q(1− r)w5 + p(1−q)rw6 + pq(1− r)w7

= Ei(p,q,r),

where w = x if i = 1, w = y if i = 2, and w = z if i = 3. �

We say that two strategy triples represented by the unit octonions (λ1,µ1,ν1) and (λ2,µ2,ν2)
are equivalent and write (λ1,µ1,ν1)∼ (λ2,µ2,ν2) if the resulting outcomes from the use of both
triples are equal, that is, PQ

i (λ1,µ1,ν1) = PQ
i (λ2,µ2,ν2) for all i = 1, 2, and 3. We note that the

strategy triples (±1,±1,±1),(±1,±i1,±i1),(±i1,±1,±i1),(±i1,±i1,±1), (±i2,±i5,±i3),
(±i2,±i6,±i7),(±i4,±i5,±i7), and (±i4,±i6,±i3) are all equivalent and yield the payoffs
(x0,y0,z0) to Player I, II, and III, respectively. Therefore, there are 64 triples of unit octonions
that are equivalent to the pure strategy profile (s1, t1,u1). Similarly, we have 64 equivalent strat-
egy triples to each of the 7 remaining triples of classical pure strategies (si, t j,uk). This means
that in the game GQ the players have 64 ways of playing each of the pure strategy profiles of
G. The extended game GQ will be of great interest to us due to the existence within of these
equivalence classes of strategy profiles.

In the game GQ, each player has access to a unit sphere worth of strategic space. With
the use of unit octonions as strategies, now we can establish any probability distribution over
the outcomes of the game G. For example, the element of ∆(ImPi) depicted in Table 2 can
be now realized by selecting the triplet (

√
2/2+

√
2/2i1,1,1) as PQ

i (
√

2/2+
√

2/2i1,1,1) =
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∑
7
j=0[π j((

√
2/2 +

√
2/2i1,1,1)(1))1)]2w j = (1/2)w0 + (1/2)w1. Note that there are many

other ways one can establish the element of ∆(ImPi) shown in Table 2.
It is worth noting here that nothing prohibits us from having the game GQ play the role of

G in the classical situation and by considering the probability distributions over U j, the set of
unit octonions in H j, creating yet a larger game GmQ, the mixed quantum game associated to
G. Hence GmQ = (∆(U1),∆(U2),∆(U3),E

Q
1 ,E

Q
2 ,E

Q
3 ), where

EQ
i : ∆(U1)×∆(U2)×∆(U3)−→ ∆(ImPi)

is Player i’s quantum expected payoff. If Player I, Player II, and Player III employ the probabil-
ity distributions λ , µ , and ν over U1, U2, and U3, respectively, then Player i’s expected payoff
is given by

EQ
i (λ ,µ,ν) =

∫
U1×U2×U3

PQ
i (s, t,u)dλ (s)dµ(t)dν(u)

The space of probability distributions over the set of U j is huge and complex. For simplicity,
we will restrict our work to probability distributions supported on the four points spanning U j,
that is, real convex combinations of 1, i1, i2, and i4 for Player I, real convex combinations of 1,
i1, i5, and i6 for Player II, and real convex combinations of 1, i1, i3, and i7 for Player III. For
more details on game extensions, the reader is referred to [9].

4. APPLICATION

As an application of the theory discussed above, we consider the three-player, two-strategy
game of Firms described in Fig.1. As opposed to the case of the two-player game, the three-
player game requires that we establish an order between the parameters a and b when one
undertakes the important task of identifying the Nash equilibria of the game G and its extensions
Gmix, GQ, and GmQ. To see why we are required to consider various cases depending on the
order between a and b, let us look at the following plausible scenario in the game G. Referring
to Fig.1, if Player II and Player III use the pure strategies F2 and F1, respectively, then Player I
can respond with pure strategy F1 and will receive a payoff of 3a or he can respond with F2 and
will receive a payoff of 3b. However, as there is no a definite order between a and b, Player I
cannot determine which of the two outcomes 3a or 3b is maximal, and hence, will fail to come
up with a best reply strategy. Thus this lack of order between a and b will cause a huge technical
glitch in the game. The work below seeks to remedy this problem.

4.1. Firm 1 pays better than Firm 2. In this section we analyze the case where Firm 1 pays
better than Firm 2, that is, 6a > 6b or a > b. To further simplify the calculations, and without
loss of generality, we select a = 4 and b = 3. We obtain the strategic form of the game with
payoff function given in Fig.6. Note that this choice of a and b respects the prescribed conditions
on a and b in the game, that is, 2a > b and 2b > a.

4.1.1. Nash Equilibria in G. A classical analysis of this game yields the following result.

Proposition 4.1. The game G admits three Nash equilibria, namely the pure strategic triplets
(F1,F1,F2), (F1,F2,F1) and (F2,F1,F1). These equilibria pay out (12,12,18), (12,18,12), and
(18,12,12) to the players, respectively.



12 A.O. AHMED

I

II
F1 F2

F1 (8,8,8) (12,18,12)

F2 (18,12,12) (9,9,24)

Player III chooses F1

I

II
F1 F2

F1 (12,12,18) (24,9,9)

F2 (9,24,9) (6,6,6)

Player III chooses F2

FIGURE 6. Case 1: Firm 1 pays better than Firm 2 (a > b)

Proof. We will prove that the first pure strategic triplet is a Nash equilibrium. The proof that the
remaining two are Nash equilibria is left as an exercise for the reader. Suppose that Player 1 and
Player II use pure strategy F1. If Player III responds with F1, then she receives the amount 8. If
she responds with F2, then she receives the amount 18. Since 18 > 8 and Player III is assumed
to be a rational player, she will respond with her best reply F2. Now, suppose Player I and
Player III employ the pure strategies F1 and F2, respectively. Then, Player II can respond with
F1 and receives a payoff of 12 or he can respond with F2 and receives a payoff of 9. Therefore,
Player II’s best reply will be F1 for 12 > 9. Finally, suppose that Player II and Player III stick
with their equilibrium strategies. If Player I responds with F1, he receives a payoff of 12. If
he responds with F2, he receives a payoff of 9. Therefore, Player I’s best reply will be F1 for
12 > 9. This completes the proof that the strategic pair (F1,F1,F2) is a Nash equilibrium. �

We note that in each of these three equilibria, two of the three players compete for the job
position at Firm 1 while the third player is happy to seek the job position at Firm 2. This
behavior is due to the fact that Firm 1 pays better than Firm 2.

4.1.2. Nash Equilibria in Gmix. If the players employ probability distributions over their pure
classical strategies, then there is one Nash equilibrium in mixed classical strategies. More
specifically, we have the following result.

Proposition 4.2. The game Gmix admits the Nash equilibrium (p,q,r), where p = q = r =
15−3

√
21

2 ≈ 0.626. This mixed strategy equilibrium pays out 12.110 to each player.

Proof. Suppose that Player I uses his pure strategy F1 with probability p, Player II uses his pure
strategy F1 with probability q, and Player III uses her pure strategy F1 with probability r. Then
Player I’s expected payoff function is given by

E1(p,q,r) =
(
(p 1− p)A1

(
q

1−q

)
(p 1− p)A2

(
q

1−q

))(
r

1− r

)
(4.1)

where

A1 =

(
8 12

18 9

)
and A2 =

(
12 24
9 6

)
(4.2)

or
E1(p,q,r) = p[8qr−12q−12r+24]+ (1− p)[6qr+3q+3r+6]
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In a similar manner, we find that Player II and Player III’s expected payoff functions are given
by

E2(p,q,r) = q[8pr−12p−12r+24]+ (1−q)[6pr+3p+3r+6]

and
E3(p,q,r) = r[8pq−12p−12q+24]+ (1− r)[6pq+3p+3q+6],

respectively. Then, the triple (p,q,r) ∈ [0,1]3 is a Nash equilibrium in Gmix if
∂E1
∂ p = 0

∂E2
∂q = 0

∂E3
∂ r = 0

(4.3)

We obtain the unique solution r = p= q= 15−3
√

21
2 ≈ .626. Finally, this mixed Nash equilibrium

pays out E1(.626, .626, .626) = E2(.626, .626, .626) = E3(.626, .626, .626) ≈ 12.110 to each
player. �

We note that at this mixed equilibrium each player selects about 63% of the time pure strategy
F1 and about 37% of the time pure strategy F2. Again, the position with the higher salary is more
attractive to the players.

4.1.3. Nash Equilibria in GQ. A quantum analysis of the game GQ yields the following result.

Proposition 4.3. Let G be the game depicted in Fig.6 and let GQ be its associated quan-
tum game. Then the quantum strategy profiles represented by the triplets of unit octonions
(±1,±i5,±i1) and (±1,±i5,±i7) are Nash equilibria in GQ. Moreover, these equilibria yield
to the players the payoffs (12,18,12) and (18,12,12), respectively.

Proof. We show that (1, i5, i1) is a Nash equilibrium. The proof that the remaining 15 triplets
are Nash equilibria is left as an exercise for the reader. For this, take players II and III strategies
as given and suppose that Player I responds with the unit octonion s = a0 +a1i1 +a2i2 +a3i4.
We obtain the octonionic associated product (s ·1) · i1 =−a0i6+a1i5+a2i7+a3i3. Then Player
I’s expected payoff is given by

PQ
1 (s, i5, i1) = 12a2

0 +9a2
1 +12a2

2 +9a2
3 (4.4)

Player I needs to maximize Equation (4.4) subject to the constraint that s must be a unit octo-
nion, that is

a2
0 +a2

1 +a2
2 +a2

3 = 1 (4.5)

Then Player I’s best response is to select a unit octonion s such that a1 = a3 = 0, that is, s =
a0 + a2i2 with a2

0 + a2
2 = 1. In particular, Player I can select s = 1. Next, suppose Player I

responds with a mixed quantum strategy represented by a probability distribution µ over U1.
Then Player I’s expected payoff is given by

EQ
1 (µ, i5, i1) =

∫
U1

PQ
1 (s, i5, i1)dµ(s) =

∫
U1

(12a2
0 +9a2

1 +12a2
2 +9a2

3)dµ(s) (4.6)

Player I seeks to maximize (4.6) subject to (4.5). Then Player I’s best response is to select
a µ that assigns a0 and a2 positive probabilities and zero to everything else. In particular,
Player I can choose s = 1. In a similar manner, one can show that Player II’s best response
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to the opponents’ strategic profile (1, i1) is i5 and Player III’s best response to (1, i5) is i1.
Accordingly, the triplet (1, i5, i1) is a Nash equilibrium that pays out PQ

1 (1, i5, i1) = 12 to Player
I, PQ

2 (1, i5, i1) = 18 to Player II, and PQ
3 (1, i5, i1) = 12 to Player III. �

Note that the triplets (±1,±i5,±i1) and (±1,±i5,±i7) are equivalent to the pure strategy
profiles (F1,F2,F1) and (F2,F1,F1), respectively. In other words, we recovered two of the three
equilibria of the pure classical game G. We observe that in the game GQ, Player III is no longer
interested in competing for the job posting of Firm 2.

4.1.4. Nash Equilibria in GmQ. We will only consider probability distributions over the fun-
damental set of unit octonions for each player. Players I, II, and III can then use real convex
combinations of the basis elements {1, i1, i2, i4}, {1, i1, i5, i6}, and {1, i1, i3, i7}, respectively.

Proposition 4.4. The game GmQ admits a family of Nash equilibria where Player I uses the
unit octonion s = 1, Player II uses the unit octonion t = i5, and Player III uses any real convex
combination of the unit octonions i1 and i7. That is, the triplet (1, i5,αi1 + β i7), where α

and β are in [0,1] and α + β = 1, is a Nash equilibrium in GmQ. This equilibrium pays out
(12α +18β ,18α +12β ,12) to Players I. II, and III, respectively.

Proof. Take players II and III strategies as given and suppose that Player I responds with the
unit octonion s = a0 +a1i1 +a2i2 +a3i4. Then Player I’s expected payoff is given by

EQ
1 (s, i5,αi1 +β i7) = αPQ

1 (s, i5, i1)+βαPQ
1 (s, i5, i1)

= α[12a2
0 +9a2

1 +12a2
2 +9a2

3]+β [12a2
0 +9a2

1 +12a2
2 +9a2

3]

= 12a2
0 +9a2

1 +12a2
2 +9a2

3 (4.7)

Player I needs to maximize Equation (4.7) subject to the constraint that s must be a unit octonion
as shown in (4.5). Then Player I’s best response is to select a unit octonion s such that a1 =
a3 = 0, that is, s = a0 +a2i2 with a2

0 +a2
2 = 1. In particular, Player I can select s = 1.

Next, take Players I and III strategies as given and suppose that Player II responds with the
unit octonion t = b0 +b1i1 +b2i5 +b3i6. Then Player II’s expected payoff is given by

EQ
2 (1, t,αi1 +β i7) = αPQ

2 (s, i5, i1)+βPQ
2 (s, i5, i1)

= α[6b2
0 +8b2

1 +12b2
2 +9b2

3]+β [12b2
0 +9b2

1 +12b2
2 +9b2

3]

= (6α +12β )b2
0 +(8α +9β )b2

1 +(12α +12β )b2
2 +(9α +9β )b2

3 (4.8)

Player II seeks to maximize (4.8) subject to the constraint that t must be a unit octonion, that is

b2
0 +b2

1 +b2
2 +b2

3 = 1 (4.9)

Since the return 12α + 12β = 12 is the largest, Player II’s best response is to select a unit
octonion t such that b0 = b1 = b3 = 0, that is, t = i5.

Finally, take Players I and II strategies as given and suppose that Player III responds with the
unit octonion u = c0 + c1i1 + c2i3 + c3i7. Then Player III’s expected payoff is given by

PQ
3 (1, i5,u) = 9c2

0 +12c2
1 +9c2

2 +12c2
3 (4.10)

Player III seeks to maximize (4.10) subject to the constraint that u must be a unit octonion, that
is

c2
0 + c2

1 + c2
2 + c2

3 = 1 (4.11)
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Then Player III’s best response is to select a unit octonion u such that c0 = c2 = 0, that is,
u= c1i1+c3i7, where c2

1+c2
3 = 1. In particular, Player III can select the real convex combination

αi1 + β i7, where α = c2
1 and β = c2

3. If Player III responds with a mixed quantum strategy
represented by a probability distribution µ over U3. Then Player III’s expected payoff is given
by

EQ
3 (1, i5,µ) =

∫
U3

PQ
3 (1, i5,u)dµ(u) =

∫
U3

(9c2
0 +12c2

1 +9c2
2 +12c2

3)dµ(u) (4.12)

Player III seeks to maximize (4.12) subject to (4.11). Then Player III’s best response is to select
a µ that assigns c1 and c3 positive probabilities and zero to everything else. In particular, Player
III can choose µ = αi1+β i7. Accordingly, (1, i5,αi1+β i7) is a Nash equilibrium that pays out
EQ

i (1, i5,αi1 +β i7) = αPQ
i (1, i5, i1)+βPQ

i (1, i5, i7) = αw6 +βw4 to Player i. This translates
into the triplet payoffs to the players (12α +18β ,18α +12β ,12). �

Define a discrete distribution as a mixed strategy that is supported on a finite number of
points. One such distribution is the special discrete distribution where each player uses his pure
strategy corresponding to a single octonionic basis element with probability 1/4. In particular,
for Players I, II, and III these are the mixed quantum strategies given by λ = 1

4 +
1
4 i1+ 1

4 i2+ 1
4 i4,

µ = 1
4 +

1
4 i1 + 1

4 i5 + 1
4 i6, and ν = 1

4 +
1
4 i1 + 1

4 i3 + 1
4 i7, respectively.

Proposition 4.5. The strategic profile (λ ,µ,ν) is a Nash equilibrium in GmQ that pays out the
average of the classical individual payoffs or 12.25 to each player.

Proof. Take Players II and III strategies as given and suppose that Player I responds with a
pure quantum strategy represented by the unit octonion s = a0 + a1i1 + a2i2 + a3i4. Then, the
expected payoff to Player I is given by

EQ
1 (s,µ,ν) =

1
16 ∑

l,m,n
PQ

1 (s, im, in),

where m ∈ {0,1,5,6} and n ∈ {0,1,3,7} with i0 = 1. After some easy but tedious calculations,
one can show that EQ

1 (s,µ,ν) = 12.25. Therefore Player I is indifferent between his pure
quantum strategies.

Suppose now that Player I responds with a mixed quantum strategy σ which is a probability
measure on U1. Then

EQ
1 (σ ,µ,ν) =

∫
U1×U2×U3

PQ
1 (s, t,u)d(σ ×µ×ν)(s, t,u) (4.13)

Apply Fubini’s Theorem to obtain

EQ
1 (σ ,µ,ν) =

∫
U1

 ∫
U2×U3

P1(s, t,u)d(µ×ν)(t,u)

dσ(s)

=
∫
U1

(
1
8

7

∑
j=0

x j

)
dσ(s)

=
1
8

7

∑
j=0

x jσ (U1) =
1
8

7

∑
j=0

x j = 12.25. (4.14)



16 A.O. AHMED

Hence, Player I is indifferent between all his mixed quantum strategies. Now, if we interchange
the roles of the players, we obtain, by symmetry, the same conclusion. Therefore, the special
discrete distribution is a Nash equilibrium in GmQ. This equilibrium pays out an expected payoff
of 12.25 to each player. �

In the cases where a = b or a < b, we will only state the results and omit the proofs. One can
refer to the proofs given above which are typical when showing that a strategic profile is a Nash
equilibrium.

4.2. Firm 1 and Firm 2 offer the same salary. In this section we analyze the case where Firm
1 and Firm 2 offer the same salary, that is, 6a= 6b or a= b. To further simplify the calculations,
and without loss of generality, we select a = b = 3. We obtain the strategic form of the game
with payoff function given in Fig.7. Note that this choice of a and b respects the prescribed
conditions on a and b in the game, that is, 2a > b and 2b > a.

I

II
F1 F2

F1 (6,6,6) (9,18,9)

F2 (18,9,9) (9,9,8)

Player III chooses F1

I

II
F1 F2

F1 (9,9,18) (18,9,9)

F2 (9,18,9) (6,6,6)

Player III chooses F2

FIGURE 7. Case 2: Firm 1 and Firm 2 offer the same salary (a = b)

4.2.1. Nash Equilibria in G. A classical analysis of this game yields the following result.

Proposition 4.6. The game G admits six Nash equilibria, namely the pure strategic triplets
(F1,F1,F2), (F1,F2,F1), (F1,F2,F2), (F2,F1,F1), (F2,F1,F2), and (F2,F2,F1) .

Six out of the the eight possible strategic profiles are Nash equilibria. This abundance of
equilibria is due to the fact that both positions are equally competitive since the salaries offered
are the same.

4.2.2. Nash Equilibria in Gmix. If the players employ probability distributions over their pure
classical strategies, then there is one Nash equilibrium.

Proposition 4.7. The game Gmix admits the Nash equilibrium (p,q,r), where p = q = r = 1
2 .

This mixed strategy equilibrium pays out 10.5 to each player.

4.2.3. Nash Equilibria in GQ. Throughout, we assume that l ∈ {0,1,2,4}, m ∈ {0,1,5,6}, and
n ∈ {0,1,3,7}.
Proposition 4.8. Every triplet of the form (il, im, in) with (ilim)in = ±i6 is a Nash equilib-
rium in GQ. These strategic profiles are all equivalent to the pure classical Nash equilibrium
(F1,F2,F1).

By symmetry, one can generalize this proposition by observing that every triplet of the form
(il, im, in) with (ilim)in 6=±1 and (ilim)in 6= i1 is in fact a Nash equilibrium in GQ.
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4.2.4. Nash Equilibria in GmQ. Consider the real convex combinations λ = α1i2 +α2i4, µ =
β1i5 +β2i6, and ν = γ1i3 + γ2i7. Then we have families of equilibria where one player uses a
mix of two octonionic basis elements and the other two use the unit octonion 1.

Proposition 4.9. The strategy profiles (λ ,1,1), (1,µ,1), and (1,1,ν) are Nash equilibria in
GmQ.

4.3. Firm 2 pays better than Firm 1. In this section we analyze the case where Firm 2 pays
better than Firm 1, that is, 6a < 6b or a < b. To further simplify the calculations, and without
loss of generality, we select a = 3 and b = 4. We obtain the strategic form of the game with
payoff function given in Fig.8. Note that this choice of a and b respects the prescribed conditions
on a and b in the game, that is, 2a > b and 2b > a.

I

II
F1 F2

F1 (6,6,6) (9,24,9)

F2 (24,9,9) (12,12,18)

Player III chooses F1

I

II
F1 F2

F1 (9,9,24) (18,12,12)

F2 (12,18,12) (8,8,8)

Player III chooses F2

FIGURE 8. Case 3: Firm 2 pays better than Firm 1(a < b)

This case is the mirror image of case 1 if one interchanges the roles of a and b. For instance,
the Nash equilibria in G are (F1,F2,F2), (F2,F1,F2), and (F2,F2,F1). There is a unique Nash
equilibrium (p,q,r) in Gmix, where p = q = r = 3

√
21−13
2 ≈ 0.371. Furthermore, the triplets

(1, i5,1) and (1, i5, i3) are Nash equilibria in GQ. If Players I and II stick with the pure strategies
1 and i5, respectively, and Player III uses a real convex combination of 1 and i3, then we obtain
a family of Nash equilibria in GmQ.

5. CONCLUSION

In this paper, we have shown that the unit octonions are powerful tools that can be utilized
in identifying the Nash equilibria in the extended games GQ and GmQ. In the case of the three-
player, two-strategy game of Firms, the use of unit octonions proved to be useful in identifying
families of Nash equilibria in both GQ and GmQ. The interest in the game of Firms originates
from the constraints 2a > b > 0 and 2b > a > 0 and the fact that no order is specified between
the numbers a and b in the two-player version. However, the analysis of the three-player version
of the game requires that we establish an order between a and b.

A future direction of this work is to establish the complete classification of Nash equilibria in
three-player, two-strategy octonionized quantum games. A best response analysis and the evi-
dence obtained to date suggest a conjectural breakdown of the Nash equilibria into equilibria of
types “pure, pure, pure” (each player uses a pure quantum strategy represented by a canonical
octonionic basis element), “pure, pure, mix of two” up to permutations (two players use canon-
ical octonionic basis elements, one player uses a mixed strategy supported on two orthonormal
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points), and “mix of two, mix of two, mix of two” (each player chooses a mixed quantum strat-
egy supported on two canonical octonionic basis elements, each played with probability 1/2).
Other types of equilibria may exist.
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