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Abstract. This article deals with a certain category of nonsmooth multiobjective fractional programming problems
with equilibrium constraints in the setting of Hadamard manifolds (abbreviated as, (NMFPPEC)). The generalized
Guignard constraint qualification (abbreviated as, (GGCQ)) for (NMFPPEC) and Karush-Kuhn-Tucker (abbrevi-
ated as, KKT) type necessary criteria of Pareto efficiency for (NMFPPEC) are presented. Mond-Weir as well as
Wolfe type dual models related to (NMFPPEC) are formulated. Weak, strong, and strict converse duality results are
derived relating (NMFPPEC) and the respective dual models. Suitable non-trivial examples have been furnished to
demonstrate the significance of the results established in this article. The results derived in the article extend and
generalize several notable results previously existing in the literature.
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1. INTRODUCTION

In the theory of mathematical programming, an optimization problem accompanied by cer-
tain complementarity constraints or variational inequality constraints is referred to as a math-
ematical programming problem with equilibrium constraints (in brief, (MPEC)). One of the
first attempts in investigating such optimization problems is due to Harker and Pang [17], who
explored the existence of efficient solutions for (MPECs). Due to its immense scope of applica-
bility in numerous fields of science, technology, and engineering (see, for instance, [6, 28, 29]),
(MPECs) have been studied by numerous authors in recent years. For further details and an
updated survey of (MPEC) and its applications, we refer the readers to [22, 31, 35, 46] and the
references cited therein.
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In the last few decades, it has been observed that numerous real-life problems emerging in
various areas related to engineering, technology, and science can be formulated in a more ef-
fective way on manifold setting instead of Euclidean space, see [5, 37]. Further, extending and
generalizing the methods of optimization from the setting of Euclidean spaces to the setting of
manifolds have several crucial advantages. For instance, by appropriately using the notions of
Riemannian geometry, several constrained mathematical optimization problems can be conve-
niently converted into unconstrained problems. Apart from this, numerous non-convex opti-
mization problems can be converted into convex problems by employing Riemannian geometry
perspective (see, for instance, [25, 27]). Furthermore, it is a common observation that numer-
ous important constraints which naturally arise in certain mathematical programming problems
have a relative interior that can be viewed as Hadamard manifolds, for instance, the hypercube
(0,1)n endowed with the metric Z−2(I−Z)−2 = diag

(
z−2

1 (1− z1)
−2 , . . . ,z−2

n (1− zn)
−2
)

and
the set containing every symmetric positive definite matrix Sn

++ with the metric − logdetX are
Hadamard manifolds (see, for instance, [26]). As a result, a wider range of mathematical pro-
gramming problems can be solved by formulating the problems in the framework of Riemann-
ian and Hadamard manifolds. Some important concepts of optimization, such as convex sets
and convex functions, have been generalized, and corresponding notions of geodesic convex
sets and functions in manifold setting have been introduced (see, for instance, [30]). Further,
Udrişte [37] generalized the notion of geodesic convex function in Riemannian manifolds, and
provided the notions of geodesic pseudoconvex and quasiconvex function in the framework of
manifolds. In recent times, various other notions and concepts involved in mathematical pro-
gramming have been extended from Euclidean spaces to Riemannian and Hadamard manifolds
by several authors; see, for instance, [11, 13, 18, 19, 47].

Several regularity and optimality criteria for (MPEC) were investigated by Chen and Florian
[7]. Abadie constraint qualification for (MPEC) was studied by Flegel and Kanzow [9]. Op-
timality conditions for (MPEC) were explored by Ye [48]. Guignard constraint qualification
and criteria of optimality for for (MPEC) were explored by Flegel and Kanzow [10]. KKT-type
criteria for optimality as well as some duality results for multiobjective (MPEC), were deduced
by Singh and Mishra [31]. Treanţă et al. [35] studied optimality conditions for multiobjective
(MPEC) on Hadamard manifolds. Recently, Ghosh et al. [12] studied optimality conditions
and duality for multiobjective fractional programming problems with equilibrium constraints
on Hadamard manifolds.

It is a well-known fact that duality plays a very important role in the modern theory of opti-
mization. Duality theory enables us to investigate a primal optimization problem from the per-
spective of a dual problem (see, for instance, [3, 23, 24]). In recent times, several researchers
have explored duality theory for various optimization problems. For instance, duality mod-
els for vector-valued fractional control problems involving (ρ,b)-quasiinvexity were studied
by Treanţă and Mititelu [36]. Several duality theorems for (ρ,ψ,d)-quasiinvex multiobjective
optimization problems with interval-valued components were investigated by Treanţă [32]. Du-
ality for multiobjective interval-valued variational control problems was explored by Treanţă
[33]. Guo et al. [15] derived optimality conditions and duality results for a class of general-
ized convex interval-valued optimization problems. Mond-Weir and Wolfe-type dual models
for set-valued fractional minimax problems in terms of contingent epi-derivative of second-
order were investigated by Das et al. [8]. Several symmetric gH-derivative applications to dual
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interval-valued optimization problems were explored by Guo et al. [16]. Duality results for a
class of constrained robust nonlinear optimization problems were investigated by Treanţă and
Saeed [34]. Antczak et al. [2] studied efficiency conditions and duality results for a class of
nonconvex non-differentiable multiobjective fractional variational control problems. Recently,
optimality conditions and duality results for E-differentiable multiobjective programming in-
volving V −E-type I functions were investigated by Abdulaleem and Treanţă [1].

Motivated by the results established in [7, 31, 35, 41, 48], a category of nonsmooth multiob-
jective fractional programming problems with equilibrium constraints (NMFPPEC) is studied
in the present article in the setting of Hadamard manifolds. The generalized Guignard constraint
qualification (GGCQ) for (NMFPPEC) is presented. Further, the KKT type necessary criteria
of optimality for (NMFPPEC) is presented. subsequently, Mond-Weir, as well as Wolfe-type
dual models related to (NMFPPEC), are formulated. Weak, strong, and strict converse duality
results are derived relating (NMFPPEC) and the respective dual models. Suitable non-trivial
examples have been furnished to demonstrate the significance of the results established in this
article. The novelty and the contributions of the present paper are twofold. Firstly, the duality
results derived by [31] are extended to the class of (NMFPPEC) in the setting Hadamard man-
ifolds by the results derived in this article. Secondly, the results deduced in this paper extend
the corresponding results of [41] from the setting of multiobjective (MPEC) to a wider category
of problems, namely, (NMFPPEC). In particular, we have extended the corresponding results
of [12] smooth multiobjective fractional programming problems with equilibrium constraints
to (NMFPPEC). To the best of our knowledge, duality models for (NMFPPEC) have not been
explored before in the Hadamard manifold setting.

The remaining portion of the article unfolds in the following manner. We recollect some basic
definitions and mathematical preliminaries that will be helpful in this article in Section 2. We
define (NMFPPEC) in manifold setting and introduce (GGCQ) for (NMFPPEC) in Section 3.
Further, we present KKT-type necessary criteria of optimality employing (GGCQ). In Section
4 and Section 5, Mond-Weir as well as Wolfe-type dual models related to (NMFPPEC) are
formulated, respectively. Weak, strong and strict converse duality results are derived relating
(NMFPPEC) and respective the dual models. Finally, in Section 6, we draw conclusions to our
work in this article and further discuss some future courses of research.

2. NOTATION AND MATHEMATICAL PRELIMINARIES

The standard symbols Rn and N are employed to signify the Euclidean space having dimen-
sion n, and the set of all natural numbers, respectively. The non-negative orthant of Rn, denoted
by the notation Rn

+, is defined as: Rn
+ := {(z1,z2, . . . ,zn) : zk ≥ 0,∀k = 1,2, . . . ,n} . We use the

symbol 〈·, ·〉 to signify the usual Euclidean inner product on the set Rn. For arbitrary α,β ∈Rn,
the following notation for inequalities will be employed in the sequel:

α ≺ β ⇐⇒ αk < βk, ∀k = 1,2, . . . ,n.

α � β ⇐⇒

{
αk ≤ βk, for all k = 1,2, . . . ,n;
αr < βr, for at least one r ∈ {1,2, . . . ,n}.

We shall be using the notation M to signify a smooth manifold having dimension n, where n is
any natural number. Let y∗ ∈M be arbitrary. The set that contains every tangent vector at the
element y∗ ∈M is known as the tangent space at y∗, and is signified by Ty∗M . For any element
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y∗ ∈M , Ty∗M is a real linear space, having a dimension n, n ∈ N. In case we are restricted to
real manifolds, Ty∗M is isomorphic to the n-dimensional Euclidean space Rn. For any arbitrary
subsetW ⊂ Ty∗M , the closure and convex hull ofW in Ty∗M is denoted by the symbols cl(W)
and co(W), respectively.

A Riemannian metric, denoted by the notation G on the set M is a 2-tensor field that is sym-
metric as well as positive-definite. For every pair of elements w1,w2 ∈ Ty∗M , the inner product
of w1 and w2 is given by: 〈w1,w2〉y∗ = Gy∗(w1,w2), where the symbol Gy∗ denotes the Riemann-
ian metric at the element y∗ ∈M . The norm corresponding to the inner product 〈w1,w2〉y∗ is
denoted by ‖ · ‖y∗ (or simply, ‖ · ‖, when there is no ambiguity regarding the subscript).

Let a,b ∈ R, a < b and ν : [a,b]→M be any piecewise differentiable curve that joins the
elements y∗ and ẑ in M . That is, we have ν(a) = y∗, ν(b) = ẑ. The length of the curve ν is
denoted by the notation l(ν) and is defined in the following manner:

l(ν) :=
∫ b

a
‖ν ′(t)‖dt.

For any differentiable curve ν , a vector field Y is referred to be parallel along the curve ν ,
provided that the following condition is satisfied ∇ν ′Y = 0. If ∇ν ′ν

′ = 0, then ν is termed as a
geodesic. If ‖ν‖= 1, then the curve ν is said to be normalised.

For any y∗ ∈M , the exponential function expy∗ : Ty∗M →M is given by expy∗(ŵ) = ν(1),
where ν is a geodesic which satisfies ν(0) = y∗ and ν ′(0) = ŵ. A Riemannian manifold M is
referred to as geodesic complete, provided that the exponential function expu(v) is defined for
every arbitrary v ∈ TpM and u ∈M .

A Riemannian manifold is referred to as a Hadamard manifold (or, Cartan-Hadamard man-
ifold) provided that M is simply connected, geodesic complete, as well as, has a nonpositive
sectional curvature throughout. Henceforth, in our discussions, the notation M will always
signify a Hadamard manifold of dimension n, unless it is specified otherwise.

Let y∗ ∈M be some arbitrary element lying in the Hadamard manifold M . Then, the expo-
nential function on the tangent space expy∗ : Ty∗M →M is a globally diffeomorphic function.
Moreover, the inverse of the exponential function exp−1

y∗ : M → Ty∗M satisfies exp−1
y∗ (y

∗) = 0.
Furthermore, for every pair of arbitrary elements y∗1,y

∗
2 ∈M , there will always exist some

unique normalized minimal geodesic νy∗1,y
∗
2

: [0,1]→M , such that the geodesic ν satisfies the
following:

νy∗1,y
∗
2
(τ) = expy∗1

(τexp −1
y∗1
(y∗2)), ∀τ ∈ [0,1].

Thus, every Hadamard manifold M of dimension n is diffeomorphic to the corresponding n-
dimensional Euclidean space Rn. Unless specified otherwise, throughout the remaining part of
the paper, we shall use the symbol M to denote a Hadamard manifold of dimension n.

Now, we recall the definition of locally Lipschitz function in the setting of Hadamard mani-
folds (see, for instance, [19]).

Definition 2.1. Let G ⊆M and Ψ : G → R be a real valued function. Then Ψ is referred to
as a locally Lipschitz at z ∈ A with rank K (K ∈ R, K > 0), if for every z1,z2 in some open
neighborhood of z, the following is satisfied:

|Ψ(z1)−Ψ(z2)| ≤ Kω(z1,z2),

where ω(z1,z2) is the Riemannian distance between the points z1 and z2 on G.
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Remark 2.2. (a) If Ψ is locally Lipschitz at every element z∈G, then Ψ is said to be locally
Lipschitz on the set A.

(b) It is worthwhile to note that several functions which are not locally Lipschitz in Eu-
clidean space setting, can be considered as locally Lipschitz in the setting of Hadamard
manifolds. For instance, let us consider the set H defined as:

H := {z = (z2,z2) ∈ R2 : z1 > 0,z2 > 0}.

Consider the real valued function Ψ : H → R defined as follows:

Ψ(z) =
n

∑
i=1

ln(zi) ,

for every z = (z1, . . . ,zn) ∈ H . One can verify that the function Ψ is not a locally
Lipschitz function on the set H in the usual Euclidean sense. However, H can be
considered as a Hadamard manifold by endowing the set H with the Riemannian metric
given by

〈u,v〉y = 〈G (y)u,v〉, ∀u,v ∈ TyH = R2, y ∈H ,

where the symbol 〈·, ·〉 denotes the Euclidean inner product on R2 and

G (y) =

( 1
y2

1
0

0 1
y2

2

)
.

Then, it can be verified that the function Ψ is locally Lipschitz with rank 1 on the set
H in the setting of manifolds (see, for instance, [11]).

The following definitions are taken from [4].

Definition 2.3. Let us consider that Ψ : M →R be a real-valued and locally Lipschitz function
defined on a Hadamard manifold M . Let x,y∈M be arbitrary elements. Then, the generalized
directional derivative of Ψ at y in the direction v∈ TyM , is denoted by the symbol Ψ◦(y;v), and
is defined as follows:

Ψ
◦(y;v) := limsup

x→y,t↓0

Ψ

(
expx t

(
d expy

)
exp−1

y x v
)
−Ψ(x)

t
,

where
(
d expy

)
exp−1

y x : Texp−1
y x (TyM )' TyM → TxM is the differential of the exponential func-

tion at exp−1
y x.

Definition 2.4. Let Ψ : M → R be any real-valued and locally Lipschitz function defined on a
Hadamard manifold M . Then, the generalized gradient (in other words, Clarke subdifferential)
of Ψ at y ∈M is a subset ∂cΨ(y) of TyM , and is defined by

∂cΨ(y) :=
{

ζ ∈ TyM |Ψ◦(y;v)≥ 〈ζ ,v〉, ∀v ∈ TyM
}
.

Remark 2.5. (a) ∂cΨ(y) is a nonempty, convex, compact subset of TyM (see, for instance,
[19]).

(b) If M is finite dimensional, then ∂cΨ(y) is upper semicontinuous at y (see, for instance,
[19]).

Now, we recall the following lemma from [14] that will be useful in the sequel.
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Lemma 2.6. Let Ψ : M →R be a real-valued locally Lipschitz function defined on a Hadamard
manifold M . Let DΨ be the set of all points at which the function Ψ is differentiable on M .
Then, DΨ is dense in M , and

∂cΨ(y) = co
{

lim
n→∞

grad(yn) : {yn} ⊆DΨ, yn→ y
}
.

The following definition is from Udrişte [37].

Definition 2.7. Any subset G of a Hadamard manifold M is said to be a geodesic convex set in
M , if for every pair of distinct points z1,z2 ∈ G and for any geodesic γz1,z2 : [0,1]→M joining
the points z1 and z2, we have

γz1,z2(σ) ∈ G, ∀σ ∈ [0,1],

where, γz1,z2(σ) = expz1

(
σ exp−1

z1
z2
)
.

The following definition of geodesic convexity is from Barani [4].

Definition 2.8. Let Ψ : G →R be a locally Lipschitz real-valued function defined on a geodesic
convex subset G of a Hadamard manifold M . Then, Ψ is referred to as a geodesic convex
function at y, if for every x ∈ G and for every ζ ∈ ∂cΨ(y), we have

Ψ(x)−Ψ(y)≥
〈
ζ ,exp−1

y x
〉

y .

Similarly, Ψ is referred to as a strictly geodesic convex function at y, if for every x ∈ G, x 6= y
and every ζ ∈ ∂cΨ(y), we have

Ψ(x)−Ψ(y)>
〈
ζ ,exp−1

y x
〉

y .

For more details on geodesic convex functions on Hadamard manifolds, we refer the reader
to [30, 37, 38, 40, 41, 42, 43, 44, 45] and the references cited therein.

3. PARETO EFFICIENCY CRITERIA FOR (NMFPPEC)

In this section, a nonsmooth multiobjective fractional programming problem with equilib-
rium constraints (NMFPPEC) is considered in the setting of Hadamard manifolds. We deduce
KKT type necessary criteria of optimality for (NMFPPEC) by employing the generalized Guig-
nard constraint qualification.

Let us consider the following (NMFPPEC) in the setting of Hadamard manifolds:

(NMFPPEC) Minimize
A(y)
B(y)

:=
(
A1(y)
B1(y)

,
A2(y)
B2(y)

, . . . ,
Ar(y)
Br(y)

)
,

subject to Ψ j(y)≤ 0, ∀ j ∈ IΨ := {1,2, . . . , l},

θ j(y) = 0, ∀ j ∈ Iθ := {1,2, . . . , p},
C j(y)≥ 0, ∀ j ∈ T := {1,2, . . . ,m},
D j(y)≥ 0, ∀ j ∈ T ,

D j(y)C j(y) = 0, ∀ j ∈ T .
Here, each of the functions A j, B j : M → R ( j ∈ I := {1,2, . . . ,r}), Ψ j : M → R, ( j ∈ IΨ),
θ j : M → R ( j ∈ Iθ ), C j : M → R, D j : M → R ( j ∈ T ) are assumed to be locally Lipschitz
and are defined on some Hadamard manifold M having a dimension n, where n ∈ N.
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We use the symbol F to signify the set containing every feasible solution of the considered
problem (NMFPPEC). Without any loss of generality, we assume thatAi(y)≥ 0 and Bi(y)> 0,
for every y ∈F and i ∈ I. Throughout the rest of the paper, we shall use the following notation:

Φi(y) :=
Ai(y)
Bi(y)

, ∀i ∈ I, and,

Π j(y) :=D j(y)C j(y), ∀ j ∈ T ,

for every y ∈M .
We recall the concepts of Pareto efficiency as well as weak Pareto efficiency in the following

definitions, which will be used in the paper (for instance, see, [21]).

Definition 3.1. Let ẑ ∈ F be arbitrary. Then ẑ is termed as a Pareto efficient solution of (NMF-
PPEC), provided that there does not exist any other feasible element z̃ ∈ F , which satisfies the
following inequality:

Φ(z̃)�Φ(ẑ),

that is,
A(z̃)
B(z̃)

� A(ẑ)
B(ẑ)

.

Definition 3.2. Let ẑ ∈ F be arbitrary. Then ẑ is termed as a weak Pareto efficient solution
of (NMFPPEC), provided that there does not exist any other feasible element z̃ ∈ F , which
satisfies the following inequality:

Φ(z̃)≺Φ(ẑ),

that is,
A(z̃)
B(z̃)

≺ A(ẑ)
B(ẑ)

.

Suppose that ẑ ∈ F is any arbitrary feasible solution of (NMFPPEC). The index sets defined
below will be crucial in the remaining portion of the article.

A Ψ(ẑ) := { j ∈ IΨ : Ψ j(ẑ) = 0},
R+0(ẑ) :=

{
j ∈ T : C j(ẑ)> 0, D j(ẑ) = 0

}
,

R0+(ẑ) :=
{

j ∈ T : C j(ẑ) = 0, D j(ẑ)> 0
}
,

R00(ẑ) :=
{

j ∈ T : C j(ẑ) = 0, D j(ẑ) = 0
}
.

Remark 3.3. (a) The index set A (ẑ) is termed as the set of all active inequality indices for
the function Ψ at the point ẑ.

(b) The index set R00(ẑ) is termed as the degenerate index set at the point ẑ. The strict
complementarity condition is said to be satisfied at ẑ provided thatR00(ẑ) = /0.

(b) One can observe the fact that every index set that is defined above is dependent on the
particular choice of ẑ ∈ F . Nevertheless, in the remaining portion of the article, we
shall not indicate such dependence explicitly when it will be easily perceivable from the
context.
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Let ỹ ∈ F be arbitrary. The sets Bk (for every k ∈ I) and B as defined below will be crucial
to discuss Guignard constraint qualification and optimality conditions for (NMFPPEC).

Bk :=
{

y ∈ F : Φ j(y)≤Φ j (ỹ) , ∀ j ∈ I, j 6= k
}
,

B :=
{

y ∈ F : Φ j(y)≤Φ j (ỹ) , ∀ j ∈ I
}
.

Remark 3.4. (a) From the above definitions of the sets Bk and B, it is clear that
⋂

k∈I Bk =
B.

(b) In the case when I = {1}, then (NMFPPEC) reduces to a single-objective fractional
optimization problem with equilibrium constraints. In such a case, B1 = F .

In the next definition, we recall the notion of the contingent cone for any subset of M (see,
[20]).

Definition 3.5. Let H⊆M and ŷ be some arbitrary element in the closure of the set H. Then
the contingent cone (in other terms, Bouligand tangent cone) of the set H at the element ŷ is
symbolized by the notation C Tan(H, ŷ), and is given by:

C Tan(H, ŷ) := {ξ ∈ TŷM : ∃σn ↓ 0,∃ {ξn}∞
n=1 ⊂ TŷM , ξn→ ξ , expŷ(σnξn) ∈H ∀n ∈ N}.

The following notion of linearizing cone from [39] is an extension of Definition 6 from
Treanţă et al. [35] for (NMFPPEC) in the setting of Hadamard manifolds.

Definition 3.6. Let ŷ ∈ F be arbitrary. The linearizing cone to the set B at the element ŷ is the
set defined as follows:

C Lin (B, ŷ) :=
{

u ∈ TŷM :〈ξ Φ
j (ŷ) ,u〉 ≤ 0 ∀ξ Φ

j ∈ ∂cΦ j(ŷ), ∀ j ∈ I,

〈ξ Ψ
j (ŷ) ,u〉 ≤ 0, ∀ξ Ψ

j ∈ ∂cΨ j(ŷ), ∀ j ∈A Ψ,

〈ξ θ
j (ŷ) ,u〉 = 0, ∀ξ θ

j ∈ ∂cθ j(ŷ), ∀ j ∈ Iθ ,

〈ξ C
j (ŷ) ,u〉 = 0, ∀ξ C

j ∈ ∂cC j(ŷ), ∀ j ∈R0+,

〈ξD
j (ŷ) ,u〉= 0, ∀ξD

j ∈ ∂cD j(ŷ), ∀ j ∈R+0,

〈ξ C
j (ŷ) ,u〉 ≥ 0, ∀ξ C

j ∈ ∂cC j(ŷ), ∀ j ∈R00,

〈ξD
j (ŷ) ,u〉 ≥ 0, ∀ξD

j ∈ ∂cD j(ŷ), ∀ j ∈R00

}
.

We now provide the following definition from [39], which is an extension of the notion of
the modified linearizing cone from Singh and Mishra [31] from Euclidean space setting to
Hadamard manifold setting.
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Definition 3.7. Let ŷ∈F be arbitrary. The modified linearizing cone to the set B at the element
ŷ is the set defined as follows:

C Lin
MFPPEC (B, ŷ) :=

{
u ∈ TŷM :〈ξ Φ

j (ŷ) ,u〉 ≤ 0 ∀ξ Φ
j ∈ ∂cΦ j(ŷ), ∀ j ∈ I,

〈ξ Ψ
j (ŷ) ,u〉 ≤ 0, ∀ξ Ψ

j ∈ ∂cΨ j(ŷ), ∀ j ∈A Ψ,

〈ξ θ
j (ŷ) ,u〉 = 0, ∀ξ θ

j ∈ ∂cθ j(ŷ), ∀ j ∈ Iθ ,

〈ξ C
j (ŷ) ,u〉 = 0, ∀ξ C

j ∈ ∂cC j(ŷ), ∀ j ∈R0+,

〈ξD
j (ŷ) ,u〉= 0, ∀ξD

j ∈ ∂cD j(ŷ), ∀ j ∈R+0,

〈ξ C
j (ŷ) ,u〉 ≥ 0, ∀ξ C

j ∈ ∂cC j(ŷ), ∀ j ∈R00,

〈ξD
j (ŷ) ,u〉 ≥ 0, ∀ξD

j ∈ ∂cD j(ŷ), ∀ j ∈R00,

〈ξ C
j (ŷ) ,u〉〈ξD

j (ŷ) ,u〉= 0, ∀ξ C
j ∈ ∂cC j(ŷ), ∀ξD

j ∈ ∂cD j(ŷ), ∀ j ∈R00

}
.

Remark 3.8. (a) If M is considered to be the n-dimensional Euclidean space, and each
of the components of the objective function and the constraints of (NMFPPEC) are as-
sumed to be smooth, then the Definition 3.7 is a generalization of the notion of modified
linearizing cone presented by Singh and Mishra [31] for a more wider category of opti-
mization problems, that is, (NMFPPEC).

(b) It is significant to note that in view of Definition 3.6 and Definition 3.7, the following
inclusion relation readily follows:

C Lin
MFPPEC (B, ŷ)⊆ C Lin (B, ŷ) .

We now define the (GGCQ) in the framework of Hadamard manifolds for our considered
problem (NMFPPEC) (see, for instance, [39]).

Definition 3.9. Let y ∈ F be any arbitrary feasible element. The generalized Guignard con-
straint qualification (GGCQ) holds at the point y, provided that the following inclusion relation
is satisfied:

C Lin
MFPPEC (B,y)⊆

⋂
j∈I

clcoC Tan (B j,y
)
.

The following theorem from [39] presents strong KKT type necessary criteria of optimality
for (NMFPPEC).

Theorem 3.10. Let y∈F be any Pareto efficient solution of (NMFPPEC). Suppose that (GGCQ)
holds at y. Then we can obtain some real numbers α j ∈ R (α j > 0, j ∈ I), σΨ

j ∈ R ( j ∈ IΨ),
σθ

j ∈ R ( j ∈ Iθ ), σC
j ∈ R ( j ∈ T ) and σD

j ∈ R ( j ∈ T ), which satisfy the following:

0 ∈ ∑
j∈I

α j

[
∂cA j(y)−χ j∂cB j(y)

]
+ ∑

j∈IΨ

σ
Ψ
j ∂cΨ j (y)+ ∑

j∈Iθ

σ
θ
j ∂cθ j (y)

− ∑
j∈T

[
σ
C
j ∂cC j (y)+σ

D
j ∂cD j (y)

]
,

(3.1)

A j(y)−χ jB j(y) = 0, ∀ j ∈ I,
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σ
Ψ
j ≥ 0, σ

Ψ
j Ψ j (y) = 0, ∀ j ∈ IΨ,

σ
C
j free, ∀ j ∈R0+, σ

C
j ≥ 0, ∀ j ∈R00, σ

C
j = 0, ∀ j ∈R+0,

σ
D
j free, ∀ j ∈R+0, σ

D
j ≥ 0, ∀ j ∈R00, σ

D
j = 0, ∀ j ∈R0+.

(3.2)

We now furnish the following numerical example of (NMFPPEC) in the setting of a Hadamard
manifold to illustrate the importance of Theorem 3.10.

Example 3.11. Consider the set M ⊂ R2 as defined below:

M := {z = (z1,z2) ∈ R2,z1,z2 > 0}.

One can verify that M is a Hadamard manifold (see, [26]). Let y = (y1,y2) ∈M be arbitrary.
The Riemannian metric associated to M is given by 〈û, ŵ〉y = 〈G (y)û, ŵ〉, ∀û, ŵ∈ TyM =R2,
where 〈·, ·〉 denotes the standard inner product on R2 and

G (z) =

( 1
z2

1
0

0 1
z2

2

)
.

Moreover, the exponential function denoted by expy : TyM →M for any arbitrary choice of

ŵ ∈ TyM is defined as expy(ŵ) = (x1e
ŵ1
y1 ,x2e

ŵ2
y2 ). Similarly, exp−1

y : M → TyM is the inverse

of the exponential function for any y ∈M and is defined as exp−1
y (z) =

(
y1 ln z1

y1
,y2 ln z2

y2

)
.

Consider the following (NMFPPEC) on the manifold M :

(P) Minimize
(
A1(z)
B1(z)

,
A1(z)
B1(z)

)
:=
(
|z1− e|

z1
,
logz2

2

)
,

subject to

Ψ(z) := 1− lnz1− lnz2 ≤ 0,

C(z) := lnz1−1≥ 0,

D(z) := lnz2−1≥ 0,

C(z)D(z) := (lnz1−1)(lnz2−1) = 0.

Clearly, the functions A j,B j : M → R,( j = 1,2), Ψ : M → R, C : M → R, D : M → R are
locally Lipschitz functions defined on M . We use the symbol F to signify the set containing
every feasible solution of the problem (P). That is, we have:

F = {z ∈M : z1 = e, z2 ≥ e, or, z1 ≥ e, z2 = e} .
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Choose the feasible solution ŷ = (e,e) ∈ F . Consequently, we get the following:

∂c (A1(ŷ)) =
{(

e2,0
)T
}
,

∂c (B1(ŷ)) =
{(

e2,0
)T
}
,

∂c (A2(ŷ)) =
{
(0,e)T

}
,

∂c (B2(ŷ)) =
{
(0,0)T

}
,

∂cΨ(ŷ) =
{
(−e,−e)T

}
,

∂cC(ŷ) =
{
(e,0)T

}
,

∂cD(ŷ) =
{
(0,e)T

}
.

One can easily verify that the feasible solution ŷ = (e,e) ∈ F is indeed, a Pareto efficient so-
lution of (P). Furthermore, (GGCQ) holds at ŷ. Let us now pick some real numbers α1 =
1
2 ,α2 =

1
2 , σΨ = 0, σC = e

2 , σD = 1
2 . Further we choose (e2,0)T ∈ ∂cA1(ŷ), (0,e)T ∈ ∂cA2(ŷ),

(e2,0)T ∈ ∂cB1(ŷ), (0,0)T ∈ ∂cB2(ŷ), (−e,−e)T ∈ ∂cΨ(ŷ), (e,0)T ∈ ∂cC(ŷ), (0,e)T ∈ ∂cD(ŷ).
Then, we can verify that the following relation is satisfied:

(0,0) ∈
2

∑
j=1

α j

[
∂cA j(ŷ)−χ j∂cB j(ŷ)

]
+σ

Ψ
∂cΨ(ŷ)−

[
σ
C
∂cC (ŷ)+σ

D
∂cD (ŷ)

]
,

A j(ŷ)−χ jB j(ŷ) = 0, ∀ j ∈ {1,2}.

Hence, every assumption and conclusion of Theorem 3.10 for the problem (P) is justified.

4. MOND-WEIR TYPE DUAL MODEL FOR FOR (NMFFPEC)

Let w ∈M be arbitrary. Further, let α j ∈ R, α j > 0 ( j ∈ I), σΨ
j ∈ R ( j ∈ IΨ), σθ

j ∈ R
( j ∈ Iθ ), σC

j ∈ R ( j ∈ T ), σD
j ∈ R ( j ∈ T ). Then, related to the primal (NMFPPEC), the

corresponding Mond-Weir type dual model (abbreviated as, (DP-MW)) is formulated as given
below:

(DP-MW) Maximize L (w) :=
(
A1(w)
B1(w)

,
A2(w)
B2(w)

, . . . ,
Al(w)
Bl(w)

)
, (4.1)

subject to

0 ∈ ∑
j∈I

α j

[
∂cA j(w)−χ j∂cB j(w)

]
+ ∑

j∈IΨ

σ
Ψ
j ∂cΨ j (w)+

∑
j∈Iθ

σ
θ
j ∂cθ j (w)− ∑

j∈T

[
σ
C
j ∂cC j (w)+σ

D
j ∂cD j (w)

]
,

∑
j∈IΨ

σ
Ψ
j Ψ j(w)≥ 0, ∑

j∈Iθ

σ
θ
j θ j(w)≥ 0, ∑

j∈T
σ
C
j C j(w)≤ 0, ∑

j∈T
σ
D
j D j(w)≤ 0, (4.2)
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where
A j(w)−χ jB j(w) = 0, ∀ j ∈ I,

σ
Ψ
j ≥ 0, ∀ j ∈A Ψ,

σ
C
j = 0, ∀ j ∈R+0,

σ
D
j = 0, ∀ j ∈R0+,

∀ j ∈R00, either, σ
C
j > 0, σ

D
j > 0 or, σ

C
j σ

D
j = 0.

(4.3)

The set containing every feasible element of (DP-MW) is signified by the symbol FM.
In the next theorem, a weak duality result relating our considered primal problem (MPPEC)

and (DP-MW) is derived.

Theorem 4.1. Let z ∈ F and (w,α,σ) ∈ FM be arbitrary. Suppose that the function P as
defined below

P(z) :=A j(z)−χ jB j(z), where,

χ j :=
A j(w)
B j(w)

, ∀ j ∈ I, z ∈M ,

is geodesic convex at the element z. Further, suppose that each of the functions Ψ j
(

j ∈A Ψ
)
,

θ j
(

j ∈ Iθ
+

)
, −θ j

(
j ∈ Iθ

−
)
, −C j ( j ∈ R+

0+∪R
+0
00 ∪R

++
00 ), −D j ( j ∈ R+

+0∪R
0+
00 ∪R

++
00 ) are

geodesic convex functions at z. Moreover, we assume that

R−0+∪R
−
+0∪R

−0
00 ∪R

0−
00 = /0.

Then

L (z)⊀L (w).

Proof. Given that z ∈F and (w,α,σ) ∈FM are arbitrary feasible elements of (NMFPPEC) and
(DP-MW), respectively. By reductio ad absurdum, we suppose that L (z) ≺ L (w). Conse-
quently, the following inequalities can be obtained:

A j(z)
B j(z)

<
A j(w)
B j(w)

, ∀ j ∈ I. (4.4)

From (4.4), we get the following inequalities:

A j(z)−χ jB j(z)<A j(w)−χ jB j(w), ∀ j ∈ I.

In view of the definition of the function P in the hypothesis of the theorem, we infer that

P j(z)< P j(w), ∀ j ∈ I.

Since for every j ∈ I, the functions P j are strictly geodesic convex at y, we get the following
inequalities: 〈

ξ
P
j , exp−1

w (z)
〉
< 0, ∀ξ P

j ∈ ∂cP j, ∀ j ∈ I. (4.5)
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From the feasibility conditions of the problem (NMFPPEC), the following inequalities can be
obtained:

Ψ j (z)≤ 0 = Ψ j (w) , ∀ j ∈A Ψ (w) ,

θ j (z)≤ 0 = θ j (w) , ∀ j ∈ Iθ
+,

−θ j (z)≤ 0 =−θ j (w) , ∀ j ∈ Iθ
−,

−C j (z)≤ 0 =−C j (w) , ∀ j ∈R0+∪R00,

−D j (z)≤ 0 =−D j (w) , ∀ j ∈R+0∪R00,

Since for every j ∈A Ψ(w), the functions Ψ j are geodesic convex at the element w, we get the
following 〈

ξ
Ψ
j , exp−1

w (z)
〉
≤ 0, ∀ξ Ψ

j ∈ ∂cΨ j (w) , ∀ j ∈A Ψ. (4.6)

Similarly, in light of the geodesic convexity hypothesis on the functions θ j
(

j ∈ Iθ
+

)
, −θ j(

j ∈ Iθ
−
)
,−C j ( j ∈R+

0+∪R
+0
00 ∪R

++
00 ),−D j ( j ∈R+

+0∪R
0+
00 ∪R

++
00 ), we have the following:〈

ξ
θ
j , exp−1

z (z)
〉
≤ 0, ∀ξ θ

j ∈ ∂cθ j(w), ∀ j ∈ Iθ
+,〈

ξ
θ
j , exp−1

w (z)
〉
≥ 0, ∀ξ θ

j ∈ ∂cθ j(w), ∀ j ∈ Iθ
−,〈

ξ
C
j , exp−1

w (z)
〉
≥ 0, ∀ξ C

j ∈ ∂cC j(w), ∀ j ∈R+
0+∪R

+0
00 ∪R

++
00 ,〈

ξ
D
j , exp−1

w (z)
〉
≥ 0, ∀ξD

j ∈ ∂cD j(w), ∀ j ∈R+
+0∪R

0+
00 ∪R

++
00 .

Moreover, we have R−0+ ∪R
−
+0 ∪R

−0
00 ∪R

0−
00 = /0. As a result, we arrive at the following

inequalities: 〈
∑

j∈A Ψ

σ
Ψ
j ξ

Ψ
j , exp−1

w (z)
〉
≤ 0,〈

∑
j∈Iθ

σ
θ
j ξ

θ
j , exp−1

w (z)
〉
≤ 0,〈

∑
j∈T

σ
C
j ξ

C
j , exp−1

w (z)
〉
≥ 0,〈

∑
j∈T

σ
D
j ξ

D
j , exp−1

w (z)
〉
≥ 0.

(4.7)

We have α j > 0 for every j ∈ I. Then adding each of the inequalities in (4.5) and (4.7), the
following inequality can be obtained for every ξA

j ∈ ∂cA j(w), ξB
j ∈ ∂cB j(w), ξ Ψ

j ∈ ∂cΨ j(z),
ξ θ

j ∈ ∂cθ j(w), ξ C
j ∈ ∂cC j(w), ξD

j ∈ ∂cD j(w):〈
∑
j∈I

α j

[
ξ
A
j −χ jξ

B
j

]
+ ∑

j∈A Ψ

σ
Ψ
j ξ

Ψ
j + ∑

j∈Iθ

σ
θ
j ξ

θ
j

− ∑
j∈T

[
σ
C
j ξ

C
j (w)+σ

D
j ξ

D
j

]
, exp−1

w (z)
〉
< 0,
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which contradicts the fact that w is a feasible element of (MWP). Hence, the proof is complete.
�

In the next corollary, we derive another weak duality relation relating our primal problem
(NMFPPEC) and (DP-MW). The proof of the corollary follows in similar lines as the proof of
Theorem 4.1.

Corollary 4.2. Let z ∈ F and (w,α,σ) ∈ FM be arbitrary. Suppose that the function P as
defined below

P(z) :=A j(z)−χ jB j(z), where,

χ j :=
A j(w)
B j(w)

, ∀ j ∈ I, z ∈M ,

is strictly geodesic convex at the element w. Further, suppose that each of the functions Ψ j(
j ∈A Ψ

)
, θ j

(
j ∈ Iθ

+

)
, −θ j

(
j ∈ Iθ

−
)
, −C j ( j ∈R+

0+∪R
+0
00 ∪R

++
00 ), −D j ( j ∈R+

+0∪R
0+
00 ∪

R++
00 ) are geodesic convex functions at w. Moreover, we assume that

R−0+∪R
−
+0∪R

−0
00 ∪R

0−
00 = /0.

Then
L (z)�L (w).

In the next theorem, a strong duality relation relating our considered primal problem (MPPEC)
and the Mond-Weir dual problem (DP-MW) is deduced.

Theorem 4.3. Let z ∈ F be any arbitrary Pareto efficient solution of (NMFPPEC) at which
(GGCQ) holds. Then there exist some α j ∈ R, α j > 0 ( j ∈ I), σΨ

j ∈ R ( j ∈ IΨ), σθ
j ∈ R

( j ∈ Iθ ), σC
j ∈ R ( j ∈ T ), σD

j ∈ R ( j ∈ T ) such that (z,α,σ) ∈ FM. Moreover, we have

A(z)
B(z)

= L (z,α,σ).

Then the following statements hold true:

(a) Suppose that each of the hypothesis stated in Theorem 4.1 holds. Then (z,α,σ) is a
weak Pareto efficient solution of (DP-MW).

(b) Suppose that each of the hypotheses stated in the Corollary 4.2 holds. Then (z,α,σ) is
a Pareto efficient solution of (DP-MW).

Proof. According to the provided hypothesis, we have that z∈F is any arbitrary Pareto efficient
solution of (NMFPPEC) and (GGCQ) holds at z. In light of Theorem 3.10, we obtain some real
multipliers α j ∈ R, α j > 0 ( j ∈ I), σΨ

j ∈ R ( j ∈ IΨ), σθ
j ∈ R ( j ∈ Iθ ), σC

j ∈ R ( j ∈ T ),
σD

j ∈ R ( j ∈ T ) such that

0 ∈ ∑
j∈I

α j

[
∂cA j(z)−χ j∂cB j(z)

]
+ ∑

j∈IΨ

σ
Ψ
j ∂cΨ j (z)+ ∑

j∈Iθ

σ
θ
j ∂cθ j (z)

− ∑
j∈T

[
σ
C
j ∂cC j (y)+σ

D
j ∂cD j (z)

]
,

A j(z)−χ jB j(z) = 0, ∀ j ∈ I,

(4.8)



DUALITY FOR (NMFPPEC) ON HADAMARD MANIFOLDS 15

σ
Ψ
j ≥ 0, σ

Ψ
j Ψ j (y) = 0, ∀ j ∈ IΨ,

σ
C
j free, ∀ j ∈R0+, σ

C
j ≥ 0, ∀ j ∈R00, σ

C
j = 0, ∀ j ∈R+0,

σ
D
j free, ∀ j ∈R+0, σ

D
j ≥ 0, ∀ j ∈R00, σ

D
j = 0, ∀ j ∈R0+.

(4.9)

Consequently, it follows that
(z,α,σ) ∈ FM,

and
A(z)
B(z)

= L (z,α,σ).

(a) By reductio ad absurdum, we suppose that (z,α,σ) is not a weak Pareto efficient so-
lution of (DP-MW). As a result, one can find some (u,α,σ) ∈ FM, which satisfies the
following:

L (z)≺L (u),

which contradicts Theorem 4.1. Hence, the proof is complete.
(b) By reductio ad absurdum, we suppose that (z,α,σ) is not a Pareto efficient solution of

(DP-MW). As a result, one can find some (u,α,σ) ∈FM, which satisfies the following:

L (z)�L (u),

which contradicts Corollary 4.2. Hence, the proof is complete.

�

In the next theorem, a strict converse duality relation relating our considered primal problem
(NMFPPEC) and (DP-MW) is established.

Theorem 4.4. Suppose that y ∈ F be any Pareto efficient solution of (NMFPPEC) at which
(GGCQ) holds. Let (w,α,σ) be a feasible element of (DP-MW), such that L (y) � L (w).
Suppose that each of the hypotheses stated in Corollary 4.2 holds. then y = w.

Proof. According to the provided hypothesis, we have that y ∈ F be any weak Pareto efficient
solution of (NMFPPEC) at which (GGCQ) holds.
By reductio ad absurdum, we suppose that y 6= w. As a result, in light of Theorem 4.3, we can
get α j ∈ R, α j > 0 ( j ∈ I), σΨ

j ∈ R ( j ∈ IΨ), σθ
j ∈ R ( j ∈ Iθ ), σC

j ∈ R ( j ∈ T ), σD
j ∈ R

( j ∈ T ) such that (y,α,σ) ∈ FM. Moreover, we have

A(y)
B(y)

= L (y,α,σ).

On the other hand, in view of the conclusions of the strong duality theorem (Theorem 4.3),
we can infer that (y,α,σ) is a Pareto efficient solution for (NMFPPEC). Since y ∈ F and
(w,α,σ) ∈ FMW , then from Theorem 4.3, we get

L (y)�L (w),

which is a contradiction. Hence, the proof is complete. �

Remark 4.5. (1) If M = Rn, then Theorem 4.1 and Theorem 4.3 generalize Theorem 6
and Theorem 7 deduced in [31] from multiobjective (MPEC) to (NMFPPEC).
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(2) The weak, strong as well as strict converse duality relations (Theorem 4.1, Theorem
4.3 and Theorem 4.4) extend Theorem 4.1, Theorem 4.2 and Theorem 4.3, respectively,
deduced in [41] for a wider category of optimization problems, that is, (NMFPPEC).

Example 4.6. Consider the (NMFPPEC) (Problem (P)) defined in Example 3.11 on the man-
ifold M . We use the symbol F to signify the set containing every feasible solution of the
problem (P). That is, we have:

F = {z ∈M ,z1 = e,z2 ≥ e, or, z1 ≥ e,z2 = e} .

Let w ∈M be arbitrary. Further, let α j ∈ R, α j > 0 ( j ∈ {1,2}), σΨ ∈ R, σC ∈ R, σD ∈ R.
Then, related to the primal (P), the corresponding Mond-Weir type dual model (abbreviated as,
(DP-MW)) is formulated as given below:

(DP-MW) Maximize L (w) =
(
A1(w)
B1(w)

,
A2(w)
B2(w)

)
:=
(
|w1− e|

e
,
logw2

2

)
,

subject to

0 ∈
2

∑
j=1

α j

[
∂cA j(w)−χ j∂cB j(w)

]
+σ

Ψ
∂cΨ(w)−

[
σ
C
∂cC (w)+σ

D
∂cD (w)

]
,

σ
Ψ

Ψ(w)≥ 0, σ
CC(w)≤ 0, σ

DD(w)≤ 0,
where

A j(w)−χ jB j(w) = 0, ∀ j ∈ {1,2}. (4.10)
Choose the feasible solution ŷ = (e,e) ∈ F . Consequently, we get the following:

∂cA1(ŷ) =
{(

e2,0
)T
}
,

∂cB1(ŷ) =
{(

e2,0
)T
}
,

∂cA2(ŷ) =
{
(0,e)T

}
,

∂cB2(ŷ) =
{
(0,0)T

}
,

∂cΨ(ŷ) =
{
(−e,−e)T

}
,

∂cC(ŷ) =
{
(e,0)T

}
,

∂cD(ŷ) =
{
(0,e)T

}
.

One can easily verify that the feasible solution ŷ = (e,e) ∈ F is indeed, a Pareto efficient so-
lution of (P). Furthermore, (GGCQ) holds at ŷ. Let us now pick some real numbers α1 =
1
2 ,α2 =

1
2 , σΨ = 0, σC = e

2 , σD = 1
2 . Further we choose (e2,0)T ∈ ∂cA1(ŷ), (0,e)T ∈ ∂cA2(ŷ),

(e2,0)T ∈ ∂cB1(ŷ), (0,0)T ∈ ∂cB2(ŷ), (−e,−e)T ∈ ∂cΨ(ŷ), (e,0)T ∈ ∂cC(ŷ), (0,e)T ∈ ∂cD(ŷ).
Then, we can verify that the following relation is satisfied:

(0,0) ∈
2

∑
j=1

α j

[
∂cA j(ŷ)−χ j∂cB j(ŷ)

]
+σ

Ψ
∂cΨ(ŷ)−

[
σ
C
∂cC (ŷ)+σ

D
∂cD (ŷ)

]
,

A j(ŷ)−χ jB j(ŷ) = 0, ∀ j ∈ {1,2}.
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Thus, we see that ŷ is a feasible element of (DP-MW). Further, every assumption of strong
duality theorem is satisfied. One can verify that (ŷ,α,σ) is a Pareto efficient solution of (DP-
MW).

5. WOLFE TYPE DUAL MODEL FOR (NMFFPEC)

In the following lemma, we establish a different variant of the necessary criteria of Pareto
efficiency for (NMFPPEC) derived in Theorem 3.10, that will be helpful to formulate the Wolfe
type dual model for (NMFPPEC).

Theorem 5.1. Let y∈F be any Pareto efficient solution of (NMFPPEC). Suppose that (GGCQ)
holds at y. Then we can obtain some real Lagrange multipliers ε j ∈ R (ε j > 0, j ∈ I), σ

Ψ
j ∈ R

( j ∈ IΨ), σ
θ
j ∈ R ( j ∈ Iθ ), σ

C
j ∈ R ( j ∈ T ) and σ

D
j ∈ R ( j ∈ T ), which satisfy the following:

0 ∈∑
i∈I

εiBi(y)
[

∂cAi(y)+ ∑
j∈IΨ

σ
Ψ
j ∂cΨ j(y)+ ∑

j∈Iθ

σ
θ
j ∂cθ j(y)

− ∑
j∈T

(
σ
C
j ∂cC j(y)+σ

D
j ∂cD j(y)

)]
−∑

i∈I
εi gradBi(y)

[
Ai(y)

+ ∑
j∈IΨ

σ
Ψ
j Ψ j (y)+ ∑

j∈Iθ

σ
θ
j θ j (y)− ∑

j∈T

(
σ
C
j C j (y)+σ

D
j D j (y)

)]
,

σ
Ψ
j ≥ 0, σ

Ψ
j Ψ j (y) = 0, ∀ j ∈ IΨ,

σ
C
j free, ∀ j ∈R0+, σ

C
j ≥ 0, ∀ j ∈R00, σ

C
j = 0, ∀ j ∈R+0,

σ
D
j free, ∀ j ∈R+0, σ

D
j ≥ 0, ∀ j ∈R00, σ

D
j = 0, ∀ j ∈R0+.

Proof. According to the provided hypotheses, y is a Pareto efficient solution for (MFPPEC) at
which (GGCQ) holds. In view of Theorem 3.10, one can obtain some real numbers α j ∈ R
(α j > 0, j ∈ I), σΨ

j ∈ R ( j ∈ IΨ), σθ
j ∈ R ( j ∈ Iθ ), σC

j ∈ R ( j ∈ T ) and σD
j ∈ R ( j ∈ T ),

which satisfy the following:

0 ∈ ∑
j∈I

α j

[
∂cA j(y)−χ j∂cB j(y)

]
+ ∑

j∈IΨ

σ
Ψ
j ∂cΨ j (y)+ ∑

j∈Iθ

σ
θ
j ∂cθ j (y)

− ∑
j∈T

[
σ
C
j ∂cC j (y)+σ

D
j ∂cD j (y)

]
,

(5.1)

A j(y)−χ jB j(y) = 0, ∀ j ∈ I,

σ
Ψ
j ≥ 0, σ

Ψ
j Ψ j (y) = 0, ∀ j ∈ IΨ,

σ
C
j free, ∀ j ∈R0+, σ

C
j ≥ 0, ∀ j ∈R00, σ

C
j = 0, ∀ j ∈R+0,

σ
D
j free, ∀ j ∈R+0, σ

D
j ≥ 0, ∀ j ∈R00, σ

D
j = 0, ∀ j ∈R0+.

Let us now define ε j ( j ∈ I) in the following manner:

ε j :=
α j

B j(y)
, ∀ j ∈ I.
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Consequently, from (5.1), we can get the following:

0 ∈ ∑
j∈I

ε jB j(y)
[

∂cA j(y)−
A j(y)
B j(y)

∂cB j(y)
]
+ ∑

j∈IΨ

σ
Ψ
j ∂cΨ j (y)

+ ∑
j∈Iθ

σ
θ
j ∂cθ j (y)− ∑

j∈T

[
σ
C
j ∂cC j (y)+σ

D
j ∂cD j (y)

]
.

(5.2)

From (5.2), the following equation can be obtained:

0 ∈ ∑
j∈I

ε jB j(y)∂cA j(y)+ ∑
j∈IΨ

σ
Ψ
j ∂cΨ j (y)+ ∑

j∈Iθ

σ
θ
j ∂cθ j (y)

− ∑
j∈T

(
σ
C
j ∂cC j (y)+σ

D
j ∂cD j (y)

)
−∑

j∈I
ε jA j(y)∂cB j(y).

(5.3)

Further, let us define the following:

σ
Ψ
j :=

σΨ
j

∑i∈I εiBi(y)
, ∀ j ∈ IΨ,

σ
θ
j :=

σθ
j

∑i∈I εiBi(y)
, ∀ j ∈ Iθ ,

σ
C
j :=

σC
j

∑i∈I εiBi(y)
, ∀ j ∈ T ,

σ
D
j :=

σD
j

∑i∈I εiBi(y)
, ∀ j ∈ T .

Then from the feasibility conditions of (NMFPPEC) and the definition of indices, the required
relations follow. �

Suppose that w ∈M is any arbitrary element. Further, let α j ∈ R, α j > 0 ( j ∈ I), σΨ
j ∈ R

( j ∈ IΨ), σθ
j ∈R ( j ∈ Iθ ), σC

j ∈R ( j ∈ T ), σD
j ∈R ( j ∈ T ). Let e = (1,1, . . . ,1) ∈Rr be the

unit vector having r components. Then, related to the primal (NMFPPEC), the corresponding
Wolfe-type dual model (abbreviated as, (DP-W)) is formulated as given below:

(DP-W) Maximize L(w,α,σ) := (L1(w,α,σ),L2(w,α,σ), . . . ,Lr(w,α,σ)) ,

subject to

0 ∈∑
i∈I

αiBi(w)
[

∂cAi(w)+ ∑
j∈IΨ

σ
Ψ
j ∂cΨ j(w)+ ∑

j∈Iθ

σ
θ
j ∂cθ j(w)

− ∑
j∈T

(
σ
C
j ∂cC j(w)+σ

D
j ∂cD j(w)

)]
−∑

i∈I
αi gradBi(w)

[
Ai(w)

+ ∑
j∈IΨ

σ
Ψ
j Ψ j (w)+ ∑

j∈Iθ

σ
θ
j θ j (w)− ∑

j∈T

(
σ
C
j C j (w)+σ

D
j D j (w)

)]
,

where, for every j ∈ I, the function L j(w,α,σ) is defined as:

L j(w,α,σ) :=
A j(w)+∑ j∈IΨ σΨ

j Ψ j(w)+∑ j∈Iθ σθ
j θ j(w)−∑ j∈T

[
σC

j C j(w)+σD
j D j(w)

]
B j(w)

,
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and
σ

Ψ
j ≥ 0, ∀ j ∈A Ψ,

σ
C
j = 0, ∀ j ∈R+0,

σ
D
j = 0, ∀ j ∈R0+,

∀ j ∈R00, either, σ
C
j > 0, σ

D
j > 0 or, σ

C
j σ

D
j = 0.

We use the notation FW to signify the set containing every feasible solution of the problem
(DP-W). For the sake of convenience, we now construct an auxiliary function Ω : M → R in
the following manner:

Ω(·) :=∑
i∈I

αiBi(w)
[
Ai(·)+ ∑

j∈IΨ

σ
Ψ
j Ψ j(·)+ ∑

j∈Iθ

σ
θ
j θ j(·)− ∑

j∈T

(
σ
C
j C j(·)+σ

D
j D j(·)

)]
−∑

i∈I
αiBi(·)

[
Ai(w)+ ∑

j∈IΨ

σ
Ψ
j Ψ j (w)+ ∑

j∈Iθ

σ
θ
j θ j (w)− ∑

j∈T

(
σ
C
j C j (w)+σ

D
j D j (w)

)]
,

where, w ∈ Fw. Throughout the remaining portion of the section, we shall always assume that

A j(w)+ ∑
j∈IΨ

σ
Ψ
j Ψ j(w)+ ∑

j∈Iθ

σ
θ
j θ j(w)− ∑

j∈T

[
σ
C
j C j(w)+σ

D
j D j(w)

]
≥ 0,

B j(w)> 0,

for every j ∈ I.
The weak duality relation relating our considered primal problem (NMFPPEC) and Wolfe dual
model (DP-W) is established in the following theorem.

Theorem 5.2. Suppose that z ∈ F and (w,α,σ) ∈ FW are arbitrary elements. Further, assume
that the function Ω is geodesic convex at w. Then we have the following

A(z)
B(z)

⊀ L(w,α,σ).

Proof. From the feasibility conditions of the problem (DP-W), we have that:

0 ∈∑
i∈I

αiBi(w)
[

∂cAi(w)+ ∑
j∈IΨ

σ
Ψ
j ∂cΨ j(w)+ ∑

j∈Iθ

σ
θ
j ∂cθ j(w)

− ∑
j∈T

(
σ
C
j ∂cC j(w)+σ

D
j ∂cD j(w)

)]
−∑

i∈I
αi gradBi(w)

[
Ai(w)

+ ∑
j∈IΨ

σ
Ψ
j Ψ j (w)+ ∑

j∈Iθ

σ
θ
j θ j (w)− ∑

j∈T

(
σ
C
j C j (w)+σ

D
j D j (w)

)]
.

By reductio ad absurdum, we suppose that

A(z)
B(z)

≺ L(w,α,σ).

Consequently, we have the following inequality for every j ∈ I:

A j(z)
B j(z)

<
A j(w)+∑ j∈IΨ σΨ

j Ψ j(w)+∑ j∈Iθ σθ
j θ j(w)−∑ j∈T

[
σC

j C j(w)+σD
j D j(w)

]
B j(w)

.
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Given that αi > 0 for every i ∈ I. Then, we get the following:

∑
j∈I

α j
(
A j(z)B j(w)

)
< ∑

j∈I
α jB j(z)

(
A j(w)+ ∑

j∈IΨ

σ
Ψ
j Ψ j (w)+ ∑

j∈Iθ

σ
θ
j θ j (w)−

∑
j∈T

(
σ
C
j C j (w)+σ

D
j D j (w)

))
.

Equivalently, we can rewrite the above inequality in the following manner:

∑
j∈I

α jB j(w)
[
A j(z)+ ∑

j∈IΨ

σ
Ψ
j Ψ j (z)+ ∑

j∈Iθ

σ
θ
j θ j (z)− ∑

j∈T

(
σ
C
j C j (z)+σ

D
j D j (z)

)]
−∑

j∈I
α jB j(z)

[
A j(w)+ ∑

j∈IΨ

σ
Ψ
j Ψ j (w)+ ∑

j∈Iθ

σ
θ
j θ j (w)− ∑

j∈T

(
σ
C
j C j (w)+σ

D
j D j (w)

)]
< ∑

j∈I
α jB j(w)

[
∑

j∈IΨ

σ
Ψ
j Ψ j (z)+ ∑

j∈Iθ

σ
θ
j θ j (z)− ∑

j∈T

(
σ
C
j C j (z)+σ

D
j D j (z)

)]
.

(5.4)
We now note that α j > 0 and B j > 0 for every j ∈ I. Combining these with the feasibility
conditions of (NMFPPEC), we infer that

∑
j∈I

α jB j(w)
[

∑
j∈IΨ

σ
Ψ
j Ψ j (z)+ ∑

j∈Iθ

σ
θ
j θ j (z)− ∑

j∈T

(
σ
C
j C j (z)+σ

D
j D j (z)

)]
≤ 0. (5.5)

From inequalities (5.4), (5.5) and in view of the definition of function Ω, we have the following:

Ω(z)< 0 = Ω(w).

By invoking the geodesic convexity assumption on Ω at w, we get

〈ξ Ω,exp−1
w (z)〉w < 0, ∀ξ Ω ∈ ∂cΩ(w).

which contradicts the fact that w ∈ FW . Thus, the proof is complete. �

In the next corollary, we present another weak duality relation relating our considered primal
problem (NMFPPEC) and (DP-W). The proof of the corollary follows in similar lines as the
proof of Theorem 5.2.

Corollary 5.3. Suppose that z∈F and (w,α,σ)∈FW are arbitrary elements. Further, assume
that the function Ω is strictly geodesic convex at z. Then we have the following

A(z)
B(z)

� L(w,α,σ).

In the next theorem, a strong duality relation relating our considered primal problem (NMF-
PPEC) and Wolfe dual problem (DP-W) is established.

Theorem 5.4. Let z ∈ F be any arbitrary Pareto efficient solution of (NMFPPEC) at which
(GGCQ) holds. Then, some real numbers α j ∈ R, α j > 0 ( j ∈ I), σΨ

j ∈ R ( j ∈ IΨ), σθ
j ∈ R

( j ∈ Iθ ), σC
j ∈ R ( j ∈ T ), σD

j ∈ R ( j ∈ T ) exist, such that (z,α,σ) ∈ FW . Furthermore, the
corresponding values of the objective functions of (NMFPPEC) and (DP-W) are equal, that is:

A(z)
B(z)

= L(z,α,σ).
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The following assertions hold true.
(a) Suppose that each of the hypothesis stated in Theorem 5.2 hold true. Then (z,α,σ) is a

weak Pareto efficient solution of (DP-W).
(b) Suppose that each of the hypothesis stated in the Corollary 5.3 hold true. Then (z,α,σ)

is a Pareto efficient solution of (DP-W).

Proof. According to the provided hypothesis, we have that z∈F is any arbitrary Pareto efficient
solution of (NMFPPEC) and (GGCQ) holds at z.
As a result, in light of Theorem 3.10, we obtain some real multipliers α j ∈ R, α j > 0 ( j ∈ I),
σΨ

j ∈R ( j ∈ IΨ), σθ
j ∈R ( j ∈ Iθ ), σC

j ∈R ( j ∈ T ), σD
j ∈R ( j ∈ T ), satisfying the following

0 ∈∑
i∈I

αiBi(w)
[

∂cAi(w)+ ∑
j∈IΨ

σ
Ψ
j ∂cΨ j(w)+ ∑

j∈Iθ

σ
θ
j ∂cθ j(w)

− ∑
j∈T

(
σ
C
j ∂cC j(w)+σ

D
j ∂cD j(w)

)]
−∑

i∈I
αi gradBi(w)

[
Ai(w)

+ ∑
j∈IΨ

σ
Ψ
j Ψ j (w)+ ∑

j∈Iθ

σ
θ
j θ j (w)− ∑

j∈T

(
σ
C
j C j (w)+σ

D
j D j (w)

)]
,

and,
σ

Ψ
j ≥ 0, σ

Ψ
j Ψ j (y) = 0, ∀ j ∈ IΨ,

σ
C
j free, ∀ j ∈R0+, σ

C
j ≥ 0, ∀ j ∈R00, σ

C
j = 0, ∀ j ∈R+0,

σ
D
j free, ∀ j ∈R+0, σ

D
j ≥ 0, ∀ j ∈R00, σ

D
j = 0, ∀ j ∈R0+.

Consequently, it follows that
(z,α,σ) ∈ FW ,

and
A(z)
B(z)

= L(z,α,σ).

(a) By reductio ad absurdum, we suppose that (z,α,σ) is not a weak Pareto efficient so-
lution of (DP-W). As a result, one can find some (u,α,σ) ∈ FW , which satisfies the
following:

L(z)≺ L(u).
This contradicts the consequences of Theorem 5.2.

(b) By reductio ad absurdum, we suppose that (z,α,σ) is not a Pareto efficient solution of
(DP-W). As a result, one can find some (u,α,σ) ∈ FW , which satisfies the following:

L(z)� L(u).
This contradicts the consequences of Corollary 5.3.

Hence, the proof is complete. �

In the next theorem, a strict converse duality relation relating our considered primal problem
(MPPEC) and Wolfe dual problem (DP-W) is established.

Theorem 5.5. Suppose that y ∈ F is any Pareto efficient solution of (NMFPPEC) at which
(GGCQ) holds. Let (w,α,σ) be a feasible element of (DP-W), such that L(y)�L(w). Suppose
that each of the hypotheses stated in Corollary 4.2 holds. then y = w.
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Proof. According to the provided hypothesis, we have that y ∈ F be any weak Pareto efficient
solution of (NMFPPEC) at which (GGCQ) holds. By reductio ad absurdum, we suppose that
y 6=w. As a result, in light of Theorem 4.3, we can get α j ∈R, α j > 0 ( j ∈I), σΨ

j ∈R ( j ∈IΨ),
σθ

j ∈ R ( j ∈ Iθ ), σC
j ∈ R ( j ∈ T ), σD

j ∈ R ( j ∈ T ) such that (y,α,σ) ∈ FM. Moreover, we

have A(y)
B(y) = L(y,α,σ). On the other hand, in view of the conclusions of the strong duality

theorem (Theorem 4.3), we can infer that (y,α,σ) is a Pareto efficient solution for (NMFPPEC).
Since y ∈ F and (w,α,σ) ∈ FMW , then we have from Theorem 4.3 L(y) � L(w), which is a
contradiction. Hence, the proof is complete. �

Remark 5.6. (1) If M = Rn, then Theorems 5.2 and 5.4 generalize Theorem 4 and Theo-
rem 5 deduced in [31] from multiobjective (MPEC) to (NMFPPEC).

(2) Theorems 5.2, 5.4 and 5.5 extend Theorem 3.1, Theorem 3.2 and Theorem 3.3, respec-
tively, deduced in [41] for a wider category of optimization problems, that is, (NMF-
PPEC).

Example 5.7. Consider the (NMFPPEC) (Problem (P)) defined in Example 3.11 on the man-
ifold M . We use the symbol F to signify the set containing every feasible solution of the
problem (P). That is,

F = {z ∈M ,z1 = e,z2 ≥ e, or, z1 ≥ e,z2 = e} .

Let w ∈M be arbitrary. Further, let α j ∈ R, α j > 0 ( j ∈ {1,2}), σΨ ∈ R, σC ∈ R, σD ∈ R.
Then, related to primal (P), the corresponding Wolfe type dual model (abbreviated as, (DP-W))
is formulated as given below:

(DP-W) Maximize L(w) = (L1(w),L2(w)) ,

subject to

0 ∈ ∑
i∈{1,2}

αiBi(w)
[

∂cAi(w)+σ
Ψ

∂cΨ(w)−
(

σ
C
∂cC(w)+σ

D
∂cD(w)

)]
− ∑

i∈{1,2}
αi gradBi(w)

[
Ai(w)+σ

Ψ
Ψ j (w)−

(
σ
CC (w)+σ

DD (w)
)]

.

Choose the feasible solution ŷ = (e,e) ∈ F . Consequently, we get the following:

∂cA1(ŷ) =
{(

e2,0
)T
}
,

∂cB1(ŷ) =
{(

e2,0
)T
}
,

∂cA2(ŷ) =
{
(0,e)T

}
,

∂cB2(ŷ) =
{
(0,0)T

}
,

∂cΨ(ŷ) =
{
(−e,−e)T

}
,

∂cC(ŷ) =
{
(e,0)T

}
,

∂cD(ŷ) =
{
(0,e)T

}
.
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One can easily verify that the feasible solution ŷ = (e,e) ∈ F is indeed, a Pareto efficient so-
lution of (P). Furthermore, (GGCQ) holds at ŷ. Let us now pick some real numbers α1 =
1
2 ,α2 =

1
2 , σΨ = 0, σC = e

2 , σD = 1
2 . Further we choose (e2,0)T ∈ ∂cA1(ŷ), (0,e)T ∈ ∂cA2(ŷ),

(e2,0)T ∈ ∂cB1(ŷ), (0,0)T ∈ ∂cB2(ŷ), (−e,−e)T ∈ ∂cΨ(ŷ), (e,0)T ∈ ∂cC(ŷ), (0,e)T ∈ ∂cD(ŷ).
Then, we can verify that ŷ is a feasible element of (DP-MW).
Further, every assumption of the strong duality theorem is satisfied. One can verify that (ŷ,α,σ)
is a Pareto efficient solution of (DP-W).

6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this article, we have explored a category of (NMFPPEC) in the setting of Hadamard man-
ifolds. (GGCQ) for (NMFPPEC) and KKT type necessary criteria of Pareto efficiency for
(NMFPPEC) are presented. Mond-Weir as well as Wolfe type dual models related to (NMF-
PPEC) are formulated. Weak, strong, and strict converse duality results are derived relating
(NMFPPEC) and the respective dual models. Suitable non-trivial examples have been furnished
to demonstrate the significance of the results established in this article.

The various results that are derived in this article extend as well as generalize some well-
known results from the literature. In particular, we have extended the corresponding results
presented by Ghosh et al. [12] smooth multiobjective fractional programming problems with
equilibrium constraints to (NMFPPEC). Moreover, the duality results derived in the present
article extend and generalize similar results derived by Singh and Mishra [31] for a more gen-
eral class of optimization problems in the setting of Hadamard manifolds. Further, the results
of this paper extend corresponding results of [41] for a wider category of problems, namely,
(NMFPPEC).

For future research, investigating optimality conditions for nonsmooth multiobjective frac-
tional programming problems with vanishing constraints would be an interesting problem. This
would be our future course of study.
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[1] N. Abdulaleem, S. Treanţă, Optimality conditions and duality for E-differentiable mul-
tiobjective programming involving V-E-type I functions, OPSEARCH, 2023. DOI:
https://doi.org/10.1007/s12597-023-00674-9
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