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Abstract. In this paper the generalized Minkowski sets are defined and characterized. On the other hand, the
Motzkin decomposable sets, along with their epigraphic versions are considered and characterized in new ways.
Among them, the closed convex sets with one single minimal face, i.e. translated closed convex cones, along with
their epigraphic counterparts are particularly studied. Finally, the generalized Minkowski sets along with the class
of closed convex sets with full Pareto like relative boundary are considered and studied. The latter ones are called
Pareto bordered sets and their epigraphic counterparts are also considered and studied. It turns out that the Pareto
bordered sets are generalized Minkowski.
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1. INTRODUCTION

Every compact convex subset of the Euclidean space is, according to the Minkowski theo-
rem [8], the convex hull of the set of its extreme points (see also [2, p.52] and [3, Theorem
2.7.2]). However, the class of all closed convex sets that are representable as their own sets of
extreme points is significantly much larger and we called them Minkowski sets. Indeed, there
are many unbounded Minkowski sets and we characterized them in [6]. For such subsets the
extreme points are obviously minimal and lowest dimensional faces as well. In this paper we
first prove that a face of a closed convex subset of the Euclidean space is minimal if and only
if it is lowest dimensional. Such faces are also shown to be lineality invariant, and several
other properties of them are proved. We next enlarge the class of Minkowski sets to the one
of generalized Minkowski sets, which are intensively studied here. This latter class consists of
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all closed convex subsets of the Euclidean space that are representable as the convex hull of
the union of their minimal (for the inclusion) faces (or, equivalently, the union of their lowest
dimensional faces, according to Corollary 2.4 below). The Minkowski sets (see [6]) are obvi-
ously particular examples of such closed convex sets. On the other hand, every Minkowski set
C can produce extra sets with the above property simply by considering C+U , where U is a
suitable subspace. We will prove that, in fact, every set with the above property is the sum of a
Minkwoski set with a subspace. We will also consider the lower semicontinuous (l.s.c., in brief)
proper convex functions from Rn to R∪{+∞} whose epigraphs are Motzkin decomposable or
generalized Minkowski sets and obtain characterizations of such classes of functions from those
of the corresponding classes of sets.

The paper is organized as follows: In the second section we prove several characterizations
of the lowest dimensional faces of a closed convex subset of the Euclidean space. This is done
by proving several helpful statements before. The equivalence between the minimality of a face
of a closed convex set and its quality to be lowest dimensional appears as a corollary afterwards.
The third section is devoted to new characterizations of Motzkin decomposable sets and their
epigraphic versions. We recall that a set C⊆Rn is said to be Motzkin decomposable [4] if there
exist a compact convex set K and a closed convex cone D such that C =K+D. Note that several
characterizations of Motzkin decomposable sets were given earlier in [5]. The particular case of
translated closed convex cones is also studied by highlighting their property to have one single
(i.e., unique) minimal face. Actually, this property characterizes closed convex cones. Finally,
in the last section the generalized Minkowski sets along with the class of the closed convex sets
whose Pareto like sets cover their relative boundaries are considered and studied. Such sets are
called Pareto bordered sets and they are showed to be generalized Minkowski sets whenever
their lin-orthogonal sections are at least two dimensional.

2. DEFINITIONS AND PRELIMINARY RESULTS

Throughout the whole paper, 0+C := {y ∈ Rn : y+C ⊆ C} stands for the recession cone
of a closed convex set C. Recall that 0+C is a convex cone [10, Theorem 18.1] and lin C :=
0+C∩ (−0+C) is a subspace of Rn called the lineality of C.

Recall that the polar cone of a set S⊆ Rn is

S0 := {x∗ ∈ Rn : 〈x∗,x〉 ≤ 0 ∀x ∈ S} ,
and the barrier cone barr(C) of C consists of those vectors x∗ ∈ Rn for which there exists
αx∗ ∈ R with the property 〈c,x∗〉 ≤ αx∗ , for every c ∈C. In other words,

barr(C) :=
{

x∗ ∈ Rn | sup
c∈C
〈c,x∗〉<+∞

}
.

It is well known that barr(C) is a convex cone and [barr(C)]0 = 0+C.

Definition 2.1. A vector x∗ is said to be normal to a convex set C ⊆ Rn at a point x ∈ C if
〈c−x,x∗〉 ≤ 0, for all c ∈C. The set of vectors normal to C at x is a closed convex cone denoted
by NC(x) and is called the normal cone to C at x.

Note that the normal cone to C at every interior point of C reduces to {0}. We extend the,
possibly multivalued, mapping NC : C ⇒Rn to the whole space Rn by setting NC(x) := /0 when-
ever x ∈ Rn \C. For A ⊆ Rn, we consider the set NC(A) := ∪x∈CNC(x). We call NC(Rn) the
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total normal cone of C; clearly, it is the union of the normal cones to C at all points of C. Note
that the total normal cone need not be convex.

For a l.s.c. proper convex function f : Rn→ R∪{+∞} , one has the equality ∂ f ∗ = (∂ f )−1,
i.e.

x∗ ∈ ∂ f (x)⇔ x ∈ ∂ f ∗(x∗), (2.1)

where f ∗ stands for the conjugate function of f and ∂ f (x) for the subdifferential of f at x.
Recall that f ∗ and ∂ f are defined by

f ∗(x∗) := sup
x
{〈x,x∗〉− f (x)},

∂ f (x) := {x∗ | f (y)≥ f (x)+ 〈x∗,y− x〉,∀y}.

For example, the support function σC of C is the conjugate δ ∗
C

of the indicator function δC of
C. Recall that these two functions are defined by

σC : Rn −→ R∪{+∞}, σC(x
∗) := sup

c∈C

〈c,x∗〉,

δC : Rn −→ R∪{+∞},δC(x) :=
{

0 if c ∈C
+∞ if c 6∈C.

We also observe that

dom(σC) := {x∗ ∈ Rn | σC(x
∗)<+∞}= barr(C).

and
dom(∂σC) := {x∗ ∈ Rn | ∂σC 6= /0}= NC(Rn),

as
∂δC = NC;

moreover, as a consequence of (2.1), if C is convex and closed, then

x∗ ∈ NC(x)⇔ x ∈ ∂σC(x
∗).

We denote by ext(A) the set of extreme points of A⊆ Rn.

Theorem 2.2. Let C ⊆ Rn be a nonempty closed convex set, U ⊆ Rn be a supplementary sub-
space to lin C (i.e., a linear subspace such that U ⊕ lin C = Rn), and F be a nonempty face of
C. The following statements are equivalent:

(1) F is lowest dimensional.
(2) F is an affine variety.
(3) F = x+ lin C for some x ∈C.
(4) F ∩U is a singleton.
(5) F ∩U is the singleton of an extreme point of C∩U.
(6) F = x+ lin C for some x ∈ ext(C∩U).

We postpone the proof of Theorem 2.2 to the end of this section.

Remark 2.3. In fact, 6 implies that F is a face of C. To see this, we consider two points p,q∈C
such that (1− t)p + tq ∈ x + lin C for some t ∈ (0,1) and the decomposition p = pU + pl
and q = qU + ql , where pU ,qU ∈ U and pl,ql ∈ lin C, due to the direct sum decomposition
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U ⊕ lin C = Rn. Note that pU = p− pl, qU = q−ql ∈C+ lin C =C, namely pU ,qU ∈C∩U,
and therefore

(1− t)pU + tqU = (1− t)p+ tq− ((1− t)pl + tql) ∈ x+ lin C− lin C = x+ lin C.

Consequently,

(1− t)pU + tqU ∈C∩U ∩ (x+ lin C)⊆U ∩ (x+ lin C) = {x}

(the latter equality following from the fact that x ∈U), which shows that pU ,qU = x, as x is an
extreme point of C∩U . Thus

p = x+ pl , q = x+ql ∈ x+ lin C,

which completes the proof that F is a face of C.

Corollary 2.4. A face F of the closed convex set C ⊆ Rn is lowest dimensional if and only if F
is minimal.

Proof. If F is lowest dimensional, then F is obviously minimal, as a proper face of F would have
dimension strictly smaller than dim F . Conversely, assume that F is minimal and not lowest
dimensional, i.e. F is not an affine variety, according to Theorem 2.2. Since F is minimal, it
is not a closed half of any affine variety either, as every halfflat has a proper face. According
to [13, Theorem 2.6.12], F = conv rbd F and the inequality dim Fa < dim F holds for every
a ∈ rbd F , where Fa is the smallest face of F containing a, i.e. the intersection of all faces of F
that contain a (see [13, Corollary 2.6.11]). This shows that F is not minimal, as it has a proper
face Fa. We have thus obtained a contradiction. �

We will denote by MF (C) the union of the minimal (equivalently, lowest dimensional) faces
of a closed convex set C ⊆ Rn.

Corollary 2.5. Let C ⊆ Rn be a nonempty closed convex set and U ⊆ Rn be a supplementary
subspace to lin C . Then

MF (C) = ext(C∩U)+ lin C.

In particular,
MF (C) = ext(C∩ (lin C)⊥)+ lin C.

In order to prove Theorem 2.2, we need some preliminary results.

Proposition 2.6. If F is a nonempty face of a closed convex set C ⊆ Rn, then

lin F = lin C.

Proof. The inclusion ⊆ is obvious, as one has 0+(F) ⊆ 0+(C) (see [10, Theorem 8.3, p. 63]).
To prove the opposite inclusion, let d ∈ lin C and take x ∈ F. Since x = 1

2 (x+d + x−d) and
x+ d,x− d ∈C, we have x+ d,x− d ∈ F, which shows that both d and −d belong to 0+(F),
that is, d ∈ lin F, and the equality lin F = lin C is completely proved. �

Corollary 2.7. If F is a nonempty face of a closed convex set C ⊆ Rn, then F contains lC-
dimensional affine varieties, where lC = dim(lin C). In particular dimF ≥ dim(lin C).
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Lemma 2.8. Let C ⊆ Rn be a nonempty closed convex set and U ⊆ Rn be a supplementary
subspace to lin C. A nonempty face F of C is lowest dimensional if and only if it is an lC-
dimensional affine variety of Rn parallel with lin C. In such a case the intersection F ∩U is a
singleton, say {xF}, with xF being an extreme point of C∩U, and F = xF + lin C.

Proof. Assume that F is a lowest dimensional face of the closed convex set C. Then F has no
proper faces and empty relative boundary therefore. In other words the boundary of F in aff(F)
is empty, which shows, due to the connectedness of aff(F), that F = aff(F) (see e.g [12, p. 86]).
Thus F = x+V for some x ∈ F and some subspace V of Rn. Since

F +V = x+V +V = x+V = F,

we have V ⊆ 0+C as well as V =−V ⊆−0+C, namely

V ⊆ 0+C∩ (−0+C) = lin C.

To prove the converse inclusion, let d ∈ lin C. Then we have x+ d,x− d ∈ C; hence, since
1
2 (x+d)+ 1

2 (x−d) ∈ F and F is a face, we have x+d ∈ F = x+V, that is, d ∈V. This shows
that V = lin C.

Conversely, if the face F of C is an lC-dimensional affine variety of Rn parallel with lin C,
then it is obviously lowest dimensional due to Corollary 2.7.

The intersection F ∩U is obviously a singleton, say {xF}, and one has F = xF + lin C. In
order to justify the extreme property of xF , assume that xF = (1− t)p+ tq for some p,q ∈C∩U
and some t ∈]0,1[. Since xF ∈ F and F is a face of C, it follows that p,q ∈ F = xF + lin C. Thus
p = xF + pl and q = xF +ql for some pl ,ql ∈ lin C. On the other hand,

pl = p− xF , ql = q− xF ∈U.

as p,q,xF ∈U . Thus pl ,ql ∈U ∩ lin C, which shows that pl = ql = 0 and therefore p = xF =
q. �

Proof of Theorem 2.2. The equivalence [1 ⇔ 3] and the implication [1 =⇒ 5] follow from
Lemma 2.8.

[2 =⇒ 3]. Assume that F = x+V for some x ∈ F and a subspace V of Rn. Since V = lin F,
statement 3 follows via Proposition 2.6.

The implications [3 =⇒ 2], [5 =⇒ 4] and [6 =⇒ 3] are obvious.
The implications [4 =⇒ 3] and [5 =⇒ 6] follow from the equality

F = (F ∩U)+ lin F.

�

3. CLOSED CONVEX SETS WITH A SINGLE MINIMAL FACE AND MOTZKIN

DECOMPOSABLE SETS

In this section we first characterize the closed convex translated cones along with their epi-
graphic counterpats in terms of their minimal faces. The Motzkin decomposable sets along with
the Motzkin decomposable functions are characterized afterwards.
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Remark 3.1. A closed convex cone K has one single minimal face. Its single minimal face
is lin K. Indeed we first observe that 0 is the only extreme point of K ∩ (lin K)⊥. Therefore
lin K = 0+ lin K is the only minimal face of K, due to Theorem 2.2(6). Note that a translated
closed convex cone has the same property.

Proposition 3.2. If a closed convex set C ⊆ Rn has one single minimal face F, then this face is
contained in any face of C. In other words, F is the intersection of all faces of C.

Proof. It is an immediate consequence of the fact that every face of C contains a minimal face.
�

Proposition 3.3. A nonempty closed convex set C⊆Rn has one single minimal face if and only
if it is a closed convex cone or a translated closed convex cone.

Proof. The obvious implication is Remark 3.1. We now assume that the closed convex set C
has one single minimal face. We assume that the origin of Rn belongs to the minimal face F of
C, as otherwise we translate the set with the opposite of a vector in F . We will prove that, under
this assumption, C is actually a cone. In what follows we will use an inductive argument on the
dimension of C to show that the positive multiples of the vectors in C remain in C. Indeed, if C
is 0-dimensional, i.e. C = {0}, then it is obviously a cone. We now assume that dimC ≥ 1 and
the proper faces of C, which have a strictly smaller dimension, are cones. If x ∈C would be a
point such that tx 6∈C for some t > 0, then sx ∈ rbd C, where s = sup{λ > 0 | λx ∈C} ≥ 1, i.e
sx belongs to a proper face of C, which is, by the inductive hypothesis, a cone. In particular,
tx = ts−1(sx) belongs to that proper face and therefore to C, which is absurd. �

Remark 3.4. The epigraph of a function f : Rn −→ R∪{+∞} is a nonempty closed convex
cone if and only if f is in the orbit of a l.s.c. proper sublinear function φ : Rn −→ R∪{+∞}
with respect to the action

(Rn×R)×RRn
−→ RRn

,((u,v),φ) 7→ (u,v)⊕φ ,

where ((u,v)⊕φ)(x) := φ(x+u)− v. Note that

epi((u,v)⊕φ) = epi φ − (u,v),

for all ((u,v),φ) ∈ (Rn×R)×RRn
. For the notions of group actions and orbits, we refer to

[11].

From Remark 3.4 and Proposition 3.3, one obtains the following result.

Corollary 3.5. Let f : Rn −→ R∪{+∞} be a l.s.c. proper convex function. Then there exist
u ∈ Rn and v ∈ R such that f (·+u)− v is sublinear if and only if epi f has one single minimal
face.

We say that a nonempty closed convex set C⊆Rn is Motzkin decomposable (M-decomposable
in short) if there exist a decomposition C =C0+K, with the set C0⊆Rn being convex and com-
pact and K being a closed convex cone. Then we say that C0 and K are the compact and conic
components, respectively, of that decomposition. The conic component is uniquely determined,
namely, one has K = 0+ (C) . The original Motzkin Theorem [9] asserts that every polyhedral
convex set is the sum of a polytope and a polyhedral convex cone, namely it is M-decomposable.
From the following characterization of Motzkin decomposable sets, we will obtain a new char-
acterization of closed convex cones.
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Proposition 3.6. For a nonempty closed convex set C ⊆ Rn and a compact convex set C0 ⊆C,
the following statements are equivalent:

(1) C is Motzkin decomposable and C0 is a compact component of C.
(2) NC (Rn) = NC (C0) .

Proof. [1 =⇒ 2] Let x∗ ∈ NC (Rn) . Then x∗ ∈ NC (x) for some x ∈C. By 1, there exist c0 ∈C0
and d ∈ 0+ (C) such that x = c0 + d. For every c ∈ C, since c+ d ∈ C we have 〈x∗,c− c0〉 =
〈x∗,c+d− x〉≤ 0. This shows that x∗ ∈NC (c0) , which proves that NC (Rn)⊆NC (c0)⊆NC (C0) .
Since the inclusion NC (C0)⊆ NC (Rn) is obvious, we obtain 2.

[2 =⇒ 1] From the well known equality

C = {x ∈ Rn : 〈x∗,x〉 ≤ δ
∗
C (x∗) ∀x∗ ∈ NC (Rn)}

(see [10, Theorem 13.1]), using that δ ∗C (x∗) = δ ∗C0
(x∗) for every x∗ ∈ NC (C0) , by 2 we obtain

C =
{

x ∈ Rn : 〈x∗,x〉 ≤ δ
∗
C0
(x∗) ∀x∗ ∈ NC (C0)

}
. (3.1)

Since δ ∗C0
is continuous, we can replace NC (C0) with its closure in (3.1); therefore, by cl NC (C0)=

cl NC (Rn) = cl barr(C) = (barr(C))00 = (0+ (C))
0
, we obtain

C =
{

x ∈ Rn : 〈x∗,x〉 ≤ δ
∗
C0
(x∗) ∀x∗ ∈

(
0+ (C)

)0
}
.

Observe that this equality can be equivalently written

C =
{

x ∈ Rn : 〈x∗,x〉 ≤ δ
∗
C0
(x∗)+δ

(0+(C))0 (x∗) ∀x∗ ∈ Rn
}
. (3.2)

Hence, since δ
(0+(C))0 = δ ∗0+(C) and δ ∗C0

+δ ∗0+(C) = δ ∗C0+0+(C), equality (3.2) yields

C =
{

x ∈ Rn : 〈x∗,x〉 ≤ δ
∗
C0+0+(C) (x

∗) ∀x∗ ∈ Rn
}
=C0 +0+ (C) ,

which proves 1. �

Corollary 3.7. A closed convex set C ⊆ Rn is a cone with vertex x0 ∈ C (that is, C− x0 is a
cone) if and only if NC(Rn) = NC(x0).

Proof. Apply Proposition 3.6 with C0 := {x0} . �

The following corollary is a counterpart to Corollary 3.7 for functions.

Corollary 3.8. For a l.s.c. proper convex function f : Rn −→R∪{+∞} and a point u ∈ dom f
such that dom f −u is a cone, there exists v ∈ R such that f (·+u)− v is sublinear if and only
if ∂ f (Rn) = ∂ f (u) .

Proof. Let g := f (·+u)−v. Since dom g = dom f −u and ∂g(x) = ∂ f (x+u) for every x∈Rn,
we assume, without loss of generality, that u= 0 and v= 0, so that dom f is a cone and f (0)= 0.
If f is sublinear, from the well known (and easy to prove) equality

∂ f (x) = ∂ f (0)∩{x∗ ∈ Rn : 〈x∗,x〉= f (x)} ,
which holds for every x ∈ Rn, it immediately follows that ∂ f (Rn) = ∂ f (0) .

Conversely, assume that the latter equality holds. Using the well known and easy to prove
formula

Nepi f (x, f (x)) =
(
Ndom f (x)×{0}

)
∪R+ (∂ f (x)×{−1}) ,
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which holds for every x ∈ dom f , and Corollary 3.7, we obtain

Nepi f
(
Rn+1) =

⋃
x∈dom f

((
Ndom f (x)×{0}

)
∪R+ (∂ f (x)×{−1})

)
=

(
Ndom f (Rn)×{0}

)
∪R+ (∂ f (Rn)×{−1})

=
(
Ndom f (0)×{0}

)
∪R+ (∂ f (0)×{−1}) = Nepi f (0,0) .

Hence, by Corollary 3.7, the set epi f is a cone, and therefore f is sublinear. �

A necessary condition for a nonempty closed convex set to be Motzkin decomposable is
provided next.

Proposition 3.9. If a nonempty closed convex set C ⊆ Rn is Motzkin decomposable, then

NC(Rn) =
(
0+ (C)

)0
. (3.3)

Proof. We first observe that the inclusion ⊆ in (3.3) holds for every closed convex set C. As-
sume now that C is Motzkin decomposable and C0 is a compact component of C, and let
x∗ ∈ (0+ (C))

0
. Since C0 is compact, we have x∗ ∈ NC0(x) for some x ∈ C0. Then, for every

c ∈C0 and d ∈ 0+ (C) , we have

〈x∗,c+d〉= 〈x∗,c〉+ 〈x∗,d〉 ≤ 〈x∗,x〉 ,
which shows that x∗ ∈ NC(x)⊆ NC(Rn), thus completing the proof of (3.3). �

The converse of Proposition 3.9 does not hold true; indeed, using Corollary 3.11 below, one
can see that [4, Example 14] provides a counterexample.

We recall that a nonempty closed convex set is said to be hyperbolic [1] if it is contained in
some Motzkin decomposable set with the same recession cone.

Proposition 3.10. For a nonempty closed convex set C ⊆ Rn, the following statements are
equivalent:

(1) NC(Rn) = (0+ (C))
0
.

(2) NC(Rn) is closed.

Proof. Implication [1 =⇒ 2] is obvious.
[2 =⇒ 1] By 2, the Gauss range of C, that is, the intersection of NC(Rn) with the unit sphere,

is closed. Hence, by [7, Theorem 18], the set C is hyperbolic, which, in view of [1, Proposition
5], means that barr(C) = (0+ (C))

0 ; on the other hand, the inclusions NC(Rn) ⊆ barr(C) ⊆
cl NC (Rn) combined with 2 yield barr(C) = NC(Rn). From these two equalities, 1 immediately
follows. �

Combining Proposition 3.10 with [7, Lemma 19 and Theorem 18], one obtains the following
corollary. Recall that a hyperplane H is said to be asymptotic to the closed convex set C ⊆ Rn

if H ∩C = /0 and the gap between H and C is 0 (that is, inf{h− c : h ∈ H, c ∈C}= 0).

Corollary 3.11. For a nonempty closed convex set C ⊆Rn, the following statements are equiv-
alent:

(1) NC(Rn) = (0+ (C))
0
.
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(2) C is hyperbolic and has no asymptotic hyperplane.

As defined in [10], the recession function f 0+ : Rn −→ R∪{+∞} of a l.s.c. proper convex
function f : Rn −→ R∪{+∞} is the l.s.c. proper sublinear function defined by epi f 0+ =
0+ (epi f ) . We omit the easy proof of the following Proposition.

Proposition 3.12. If s : Rn −→ R∪{+∞} is a l.s.c. proper sublinear function, then

(epi s)0 =
(
(dom s)0×{0}

)
∪R+ (∂ s(0)×{−1}) .

Applying Proposition 3.9 to the epigraph of a l.s.c. proper convex function yields the follow-
ing corollary.

Corollary 3.13. If a l.s.c. proper convex function f : Rn −→ R∪{+∞} is Motzkin decompos-
able, then (dom f 0+)0

= Ndom f (Rn) and ∂ f 0+ (0) = ∂ f (Rn).

Proof. According to [7, Lemma 27], we have

Nepi f
(
Rn+1)= (Ndom f (Rn)×{0}

)
∪R+ (∂ f (Rn)×{−1}) .

Hence, the conclusion easily follows from combining Proposition 3.9, applied to C := epi f ,
with Proposition 3.12, applied to s := f 0+. �

4. GENERALIZED MINKOWSKI SETS

In this section we introduce the notions of generalized Minkowski set and generalized Minkowski
function and provide several characterizations of such new notions. In this respect, several aux-
iliary results are also proved.

Definition 4.1. A nonempty closed convex set C ⊆ Rn which is the convex hull of the union of
its minimal faces is called a generalized Minkowski set, that is, if

C = conv MF (C) . (4.1)

Definition 4.2. A l.s.c. proper convex function f : Rn → R∪{+∞} which has a generalized
Minkowski epigraph is called a generalized Minkowski function.

Theorem 4.3. Let C ⊆ Rn be a nonempty closed convex set and U ⊆ Rn be a supplementary
subspace to lin C. Then, C is a generalized Minkowski set if and only if C∩U is a Minkowski
set.

In particular, C is a generalized Minkowski set if and only if the orthogonal slice C∩(lin C)⊥

is a Minkowski set.

Proof. Assume that C∩U is a Minkowski set. This quality of C∩U combined with [10, p. 65]
and the additivity of the conv operator and Corollary 2.5 leads us to

C = (C∩U)+ lin C = conv ext(C∩U)+ lin C
= conv ext(C∩U)+ conv lin C
= conv(ext(C∩U)+ lin C)
= conv MF (C) .
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Conversely, assume that C = conv MF (C) and let x ∈ C∩U . Since x ∈ C, it follows that
x = λ1x1 + · · ·+λmxm for some λ1, . . . ,λm ∈ [0,1] such that λ1 + · · ·+λm = 1 and some x1 ∈
F1, . . . ,xm ∈ Fm, where

F1 = xF1 + lin C, . . . ,Fm = xFm + lin C

are lowest dimensional faces of C and xF1, . . . ,xFm ∈ ext(C∩U) (see Theorem 2.2). Conse-
quently, we have x1 = xF1 + pl1

, . . . ,xm = xFm + plm
for some pl1, . . . , plm ∈ lin C and therefore

x = λ1xF1 + · · ·+λmxFm +λ1 pl1
+ · · ·+λm plm

, namely

U3 x−λ1xF1−·· ·−λmxFm = λ1 pl1
+ · · ·+λm plm

∈ lin C,

which shows that λ1 pl1
+ · · ·+λm plm

∈U ∩ (lin C) = {0} and therefore

x = λ1xF1 + · · ·+λmxFm ∈ conv ext(C∩U) .

Thus, the inclusion C∩U ⊆ conv ext(C∩U) is now completely done, and the opposite inclusion
is obvious. �

We now recall that the linearity space of a l.s.c. proper convex function f : Rn −→R∪{+∞}
is

lin f :=
{

d ∈ Rn : f 0+ (−d) =− f 0+ (d)
}
.

The subspace lin f consists of those directions in which f is affine. By [10, Theorem 4.8], the
recession function f 0+ is linear on lin f and, in view of [10, Theorem 8.8], one has

graph
(

f 0+
)
| lin f = lin epi f . (4.2)

Taking all this into account, one easily obtains the following corollary.

Corollary 4.4. Let f : Rn −→ R∪{+∞} be a l.s.c. proper convex function and U be a supple-
mentary subspace to lin f . Then, f is a generalized Minkowski function if and only if f|U is a
Minkowski function.

In particular, f is a generalized Minkowski function if and only if f|(lin f )⊥ is a Minkowski
function.

Proof. Observe first that U ×R is a supplementary subspace to graph ( f 0+)| lin f . Hence, by
(4.2) and the equality (epi f )∩ (U×R) = epi f|U , it suffices to apply Theorem 4.3. �

According to the following result, the set of minimizers of a generalized Minkowski function
is (if nonempty) a generalized Minkowski set.

Proposition 4.5. If f : Rn −→ R∪{+∞} is generalized Minkowski, then argmin f is either
empty or a generalized Minkowski set.

Proof. We assume that argmin f 6= /0. Let x ∈ argmin f . Since epi f is a generalized Minkowski
set and containd the point (x, f (x)) , there exist minimal faces Fi, i = 1, ..k, of epi f , (xi,αi)∈ Fi
and λi > 0 such that

k

∑
i=1

λi = 1 and (x, f (x)) =
k

∑
i=1

λi (xi,αi) .
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Hence, using the inequalities f (x) ≤ αi, we can easily deduce that αi = f (x) , so that xi ∈
argmin f . Since argmin f ×{ f (x)} is a face of epi f and, as we have just seen,

Fi∩ (argmin f ×{ f (x)}) 6= /0

(because (xi, f (x)) ∈ Fi∩ (argmin f ×{ f (x)})), from the minimality of Fi it follows that Fi ⊆
argmin f ×{ f (x)} . Using this inclusion, one can easily prove that πRn (Fi)∩ argmin f (with
πRn denoting the projection mapping from Rn×R onto Rn) is a minimal face of argmin f (for
the minimality, observe that if G⊆ πRn (Fi)∩argmin f is a face of argmin f , then G×{ f (x)} is
a face of epi f and G×{ f (x)} ⊆ Fi, so that the minimality of Fi yields G×{ f (x)}= Fi, from
which one gets

πRn (Fi)∩ argmin f = G∩ argmin f = G,

thus proving the minimality of πRn (Fi)∩ argmin f ). Therefore, the equality

x =
k

∑
i=1

λixi

shows that x belongs to the convex hull of the union of the minimal faces of argmin f , which
concludes the proof. �

Corollary 4.6. If f :Rn−→R∪{+∞} is Minkowski, then argmin f is either empty or a Minkowski
set.

Proof. If argmin f 6= /0, then, by Proposition 4.5, the set argmin f is generalized Minkowski,
so it suffices to observe that the minimal faces of argmin f are singletons, which is equivalent
to saying that lin argmin f = {0} . But this follows from the inclusion lin argmin f ×{0} ⊆
lin epi f = {0} , the latter equality being a consequence of the fact that epi f contains no lines,
as it is a Minkowski set. �

Another consequence of Theorem 4.3 is the next result.

Theorem 4.7. Let C⊆Rn be a nonempty closed convex set. Then, C is a generalized Minkowski
set if and only if there exist a Minkowski set C0 ⊆ Rn, a supplementary subspace V ⊆ Rn to
aff C0− aff C0 and a linear subspace L⊆V such that

C =C0 +L. (4.3)

Corollary 4.8. In particular, C is a generalized Minkowski set if and only if there exist a
Minkowski set C0 ⊆ Rn and a linear subspace L⊆ (aff C0− aff C0)

⊥ such that

C =C0 +L.

Proof. If C is a generalized Minkwoski set, then (4.3) holds with

C0 :=C∩ (lin C)⊥, V = (aff C0− aff C0)
⊥ and L := lin C.

Indeed, by Theorem 4.3, the set C∩ (lin C)⊥ is Minkowski and, on the other hand, we have

aff
(

C∩ (lin C)⊥
)
− aff

(
C∩ (lin C)⊥

)
⊆ (lin C)⊥− (lin C)⊥ = (lin C)⊥,

and hence lin C = (lin C)⊥⊥ ⊆ (aff C0− aff C0)
⊥ .
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Conversely, assume that (4.3) holds for some Minkowski set C0 ⊆ Rn, some supplementary
subspace V ⊆ Rn to aff C0− aff C0 and some subspace L ⊆ V. By applying a translation if
necessary, we assume, without loss of generality, that 0 ∈ C0. Then, aff C0− aff C0 = aff C0.
We will now prove that

L⊆ lin C ⊆V. (4.4)

The first inclusion being obvious, we will only prove the second one. To this aim, let d ∈ lin C.
Denoting by π the projection mapping onto aff C0 corresponding to the direct sum V ⊕aff C0 =
Rn, we have

π (d) ∈ π (lin C)⊆ lin π (C) = lin C0 = {0} ;

we have here used the equality π (C) =C0. Thus, π (d) = 0, that is, d ∈V, which completes the
proof of (4.4). We deduce that lin C∩ aff C0 ⊆V ∩ aff C0 = {0} ; consequently, aff C0 ⊆U for
some supplementary subspace U to lin C. We have C∩U =(C0 +L)∩U =C0, the latter equality
being an easy consequence of the inclusions C0⊆ aff C0⊆U and U∩L⊆U∩aff C0⊆U = {0} .
To complete the proof, it suffices to apply Theorem 4.3. �

Remark 4.9. The condition that L is contained in a supplementary space to aff C0− aff C0 is
essential for the validity of the ”if” statement of Theorem 4.7, as can be seen by considering,
e.g., the convex hull C0 of a parabola in R2 and the line L through the origin orthogonal to the
axis of the parabola.

Let V be a subspace of Rn. Recall that a set S⊆ Rn is said to be V -invariant if S+V = S.

Remark 4.10. Let U be a supplementary subspace to V. One can easily prove the equivalence

S is V -invariant ⇔ (S∩U)+V = S.

Indeed, if S is V -invariant, then (S∩U)+V ⊆ S+V = S, and, for the opposite inclusion, con-
sider an element s ∈ S, use the direct sum decomposition

U⊕V = Rn

to write
s = sU + sV , with sU ∈U and sV ∈V, (4.5)

and observe that
sU = s− sV ∈ S−V = S+V = S.

Conversely, if (S∩U)+V = S and s ∈ S is decomposed as in (4.5), by the uniqueness of this
decomposition one has sU ∈ S∩U, and hence

s+V = sU + sV +V = sU +V ⊆ (S∩U)+V = S,

which proves that S+V = S, as the inclusion ⊇ is obvious.
In particular, one has

S is V -invariant ⇔
(

S∩V⊥
)
+V = S.

Lemma 4.11. Let C ⊆ Rn be a nonempty closed convex set and U ⊆ Rn be a supplementary
subspace to lin C. If S⊆C is a (lin C)-invariant set such that conv S =C, then

conv(S∩U) =C∩U. (4.6)
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In particular,
conv

(
S∩ (lin C)⊥

)
=C∩ (lin C)⊥.

Proof. By Remark 4.10, we have

(C∩U)+ lin C = C = conv S = conv((S∩U)+ lin C)

= conv(S∩U)+ conv(lin C)

= conv(S∩U)+ lin C,

and hence we obtain (4.6). �

Lemma 4.12. Let C ⊆ Rn be a nonempty closed convex set and U ⊆ Rn be a supplementary
subspace to lin C. If C∩U is a Minkowski set, then

conv MF (C) =C.

Proof. By Corollary 2.5, we have

conv MF (C) = conv(ext(C∩U)+ lin C)

= conv(ext(C∩U))+ conv lin C

= (C∩U)+ lin C =C.

�

Proposition 4.13. For a nonempty closed convex set C ⊆ Rn, the following statements are
equivalent:

(1) C is generalized Minkowski.
(2) There exists a smallest (lin C)-invariant set S⊆C such that conv S =C.
(3) There exists a minimal (lin C)-invariant set S⊆C such that conv S =C.

In 2 and 3, one has S = MF (C).

Proof. 1 ⇒ 2. Since the closed convex set C∩ (lin C)⊥ is Minkowski, according to Theorem
4.3, it follows that ext

(
C∩ (lin C)⊥

)
is, according to [6, Proposition 3.1], the smallest set whose

convex hull equals C∩(lin C)⊥. By Corollary 2.5, the set MF (C) is (lin C)-invariant. Let S⊆C
be a (lin C)-invariant set such that conv S =C. From Lemma 4.11, it follows that

ext
(

C∩ (lin C)⊥
)
⊆ S∩ (lin C)⊥,

which, by Remark 4.10, implies that

MF (C) = ext
(

C∩ (lin C)⊥
)
+ lin C ⊆

(
S∩ (lin C)⊥

)
+ lin C = S.

Since, by Lemma 4.12, we have conv MF (C)=C, in view of (4.1) the set MF (C) is the smallest
(lin C)-invariant subset of C whose convex hull equals C.
2⇒ 3. Obvious.
3⇒ 1. By Lemma 4.11, we have conv(S∩(lin C)⊥) =C∩(lin C)⊥. We will actually prove that
S∩ (lin C)⊥ is minimal among the (lin C)-invariant sets whose convex hulls equal C∩ (lin C)⊥.
Indeed, if conv S1 =C∩ (lin C)⊥ for some (lin C)-invariant set S1 ⊆ S∩ (lin C)⊥, then

conv(S1 + lin C) = conv S1 + conv lin C =
(

C∩ (lin C)⊥
)
+ conv lin C

=
(

C∩ (lin C)⊥
)
+ lin C =C
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and S1 + lin C ⊆
(
S∩ (lin C)⊥

)
+ lin C = S. But since S1 + lin C is (lin C)-invariant and S is a

minimal (lin C)-invariant set with conv S =C, it follows that S1 = S1 + lin C = S. Thus

S∩ (lin C)⊥ = S1∩ (lin C)⊥ = S1,

which proves the minimality of S∩ (lin C)⊥. According to [6, Proposition 3.1], it follows that
the set C∩ (lin C)⊥ is Minkowski; therefore, by Lemma 4.12, we have conv MF (C) =C. �

5. THE ROLE OF PARETO BORDERED SETS IN THIS SETTING

For a nonempty closed convex set C ⊆ Rn, we will denote by M(C) the Pareto like set of C :

M(C) := {x ∈C : (x−0+C)∩C ⊆ x+0+C}
= {x ∈C : (x−0+C)∩C = x+ lin C}.

Definition 5.1. A nonempty closed convex set C ⊆ Rn with the properrty M(C) = rbd(C) will
be called a Pareto bordered set.

In [6], we paid some special attention to Pareto bordered sets, but we did not use the term
”Pareto bordered” there.

”is not an affine variety, then since aff C

Remark 5.2. As already observed in the proof of Lemma 2.8, since every nonempty closed
convex set C is connected, one has rbd(C) 6= /0 if and only if C 6= aff C, that is, if and only if C is
not an affine variety. On the other hand, if C is an affine variety, then M(C) =C; consequently,
if C is Pareto bordered, then rbd(C) 6= /0.

Remark 5.3. ([6, Proposition 4.4]) If C ⊆ Rn is a closed convex set, then M(C) is (lin C)-
invariant.

Definition 5.4. A l.s.c. proper convex function f : Rn→R∪{+∞}which has a Pareto bordered
epigraph is called a Pareto bordered function.

According to the following result, the set of minimizers of a Pareto bordered function is (if
nonempty) a Pareto bordered set.

Proposition 5.5. If f : Rn −→R∪{+∞} is Pareto bordered, then argmin f is either empty or a
Pareto bordered set.

Proof. We assume that argmin f 6= /0. Let

x ∈ rbd(argmin f ) and d ∈ 0+ (argmin f ) be such that x−d ∈ argmin f .

The latter condition means that f (x−d) = f (x) , so that

(x, f (x))− (d,0) = (x−d, f (x)) ∈ epi f .

Since (x, f (x)) ∈ rbd(epi f ) and (d,0) ∈ 0+ (epi f ) , given the Pareto bordered character of
epi f we obtain

(x, f (x))− (d,0) ∈
(
(x, f (x))−0+ (epi f )

)
∩ epi f ⊆ (x, f (x))+0+ (epi f ) ,

from which we deduce that −(d,0) ∈ 0+ (epi f ), which is equivalent to saying that −d ∈
0+ (argmin f ) . Therefore x−d ∈ x+0+ (argmin f ) , showing that x∈M (argmin f ) . This proves
the inclusion rbd(argmin f ) ⊆ M (argmin f ) , which says that argmin f is a Pareto bordered
set. �
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Theorem 5.6. If C ⊆ Rn is a Pareto bordered set and dim(C ∩ (lin C)⊥) ≥ 2, then C is a
generalized Minkowski set.

Remark 5.7. The dimension assumption in Theorem 5.6 is not superfluous: consider, e.g., the
case when C is a halfspace. On the other hand, the converse of Theorem 5.6 does not hold, as
shown by [6, Example 4.9], which exhibits a Minkowski set that is not Pareto bordered.

In order to prove Theorem 5.6, we need the following lemmas. We will denote by π the
projection mapping onto (lin C)⊥.

Lemma 5.8. Let C ⊆ Rn be a nonempty closed convex set and U ⊆ Rn be a supplementary
subspace to lin C. If πU denotes the projection mapping onto U corresponding to the direct sum
decomposition U⊕ lin C = Rn, then

πU (C) =C∩U (5.1)

and
C = πU (C)+ lin C. (5.2)

In particular, if π denotes the orthogonal projection mapping onto (lin C)⊥, then

π (C) =C∩ (lin C)⊥

and
C = π (C)+ lin C.

Proof. Equality (5.1) is an immediate consequence of the decomposition

C = (C∩U)+ lin C, (5.3)

since πU is linear. Equality (5.2) follows from (5.3) and (5.1). �

Corollary 5.9. Let C ⊆ Rn be a nonempty closed convex set and U ⊆ Rn be a supplementary
subspace to lin C. If πU denotes the projection mapping onto U corresponding to the direct sum
decomposition U⊕ lin C = Rn, then

π
−1
U (πU (C)) =C.

In particular, if π denotes the orthogonal projection mapping onto (lin C)⊥, then

π
−1 (π (C)) =C.

Proof. The inclusion⊇ being obvious, we will only prove the opposite one. Let x∈ π
−1
U (πU (C)) .

Then, in view of (5.2), we have

x = πU (x)+ x−πU (x) ∈ πU (C)+ lin C =C,

which proves the inclusion ⊆ . �

Lemma 5.10. If C ⊆ Rn is a nonempty closed convex set, then

aff
(

C∩ (lin C)⊥
)
= (aff C)∩ (lin C)⊥ (5.4)

and
rbd(C∩ (lin C)⊥)+ lin C = rbd C. (5.5)
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Proof. The inclusion ⊆ in (5.4) being obvious, we will only prove the opposite one. To this
aim, let x ∈ (aff C)∩ (lin C)⊥. Since x ∈ aff C, it follows that

x = λ1x1 + · · ·+λmxm (5.6)

for some λ1, . . . ,λm ∈ R such that λ1 + · · ·+λm = 1 and some x1, . . . ,xm ∈ C. Applying π to
both sides of (5.6), we obtain

x = λ1π (x1)+ · · ·+λmπ (xm) .

Thus, by Lemma 5.8, we have x∈ aff
(
C∩ (lin C)⊥

)
, which completes the proof of the inclusion

⊇ in (5.4).
To prove the inclusion ⊇ in (5.5), let x ∈ rbd C and, for r > 0, take

xr ∈ B(x,r)∩ (aff C)∩ (Rn \C) .

By Corollary 5.9, we have π (xr) /∈C; hence, since π is nonexpansive, using (5.4) we get

π (xr) ∈ B(π (x) ,r)∩ (aff C)∩ (lin C)⊥∩ (Rn \C)

= B(π (x) ,r)∩ (aff C)∩ (lin C)⊥∩
(
Rn \

(
C∩ (lin C)⊥

))
= B(π (x) ,r)∩ aff

(
C∩ (lin C)⊥

)
∩
(
Rn \

(
C∩ (lin C)⊥

))
.

This shows that π (x) ∈ rbd(C∩ (lin C)⊥), from which we deduce that

x = π (x)+ x−π (x) ∈ rbd(C∩ (lin C)⊥)+ lin C,

as was to be proved.
To prove the inclusion ⊆ in (5.5), it suffices to prove that

rbd(C∩ (lin C)⊥)⊆ rbd C, (5.7)

since rbd C+ lin C = rbd C in view of [6, Proposition 4.6]. To see that (5.7) holds, just observe
that, for every x ∈ rbd(C∩ (lin C)⊥) and r > 0, using (5.4) one obtains

B(x,r)∩ (aff C)∩ (Rn \C)

⊇ B(x,r)∩ (aff C)∩ (lin C)⊥∩ (Rn \C)

= B(x,r)∩ (aff C)∩ (lin C)⊥∩
((
Rn \

(
C∩ (lin C)⊥

)))
= B(x,r)∩ aff

(
C∩ (lin C)⊥

)
∩
((
Rn \

(
C∩ (lin C)⊥

)))
6= /0.

Now, from the inclusion (5.7), we deduce that

rbd(C∩ (lin C)⊥)+ lin C ⊆ rbd C+ lin C = rbd C,

the latter equality being due to [6, Proposition 4.6]. �

The proof of Theorem 5.6. By using (5.5) and [6, Proposition 4.5], the equality M(C) = rbd C
can be rewritten as

M(C∩ (lin C)⊥)+ lin C = rbd (C∩ (lin C)⊥)+ lin C.
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From this equation, taking into account that the sets M(C∩ (lin C)⊥) and rbd (C∩ (lin C)⊥) are
contained in (lin C)⊥, we obtain

M(C∩ (lin C)⊥) =
(

M(C∩ (lin C)⊥)+ lin C
)
∩ lin C)⊥

=
(

rbd(C∩ (lin C)⊥)+ lin C
)
∩ lin C)⊥

= rbd (C∩ (lin C)⊥).

Then, in view of Remark 5.2, by using [6, Proposition 4.8] and Theorem 4.3, the statement
follows immediately. �
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