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Abstract. We study the relaxation complexity for nonconvex quadratic global optimization, which is defined as
the number of convex relaxation subproblems to be solved. The relaxation complexity for quadratic programming
with fixed nonconvex-rank is known to be a polynomial function of the dimension. In this paper, we show that the
relaxation complexity for nonconvex quadratic optimization with convex quadratic constraints may not depend on
the dimension, as long as the objective function has a fixed nonconvex rank.
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1. INTRODUCTION

We study the following nonconvex quadratic optimization problem with convex quadratic
constraints:

(QCQP) min f (x) = xT Gx+2gT x

s.t. x ∈Ω :=
{

x ∈ Rn : xT Aix+2aT
i x+ ςi ≤ 0, i = 1, · · · ,m

}
,

where G ∈ Rn×n is symmetric and not positive semidefinite, Ai ∈ Rn×n are symmetric and
positive semidefinite, g,ai ∈ Rn and ςi ∈ R for i = 1, · · · ,m. We assume that Slater condition
holds, i.e., Ω contains an interior point. We also assume that Ω is bounded.

Problem (QCQP) contains many special cases such as the trust-region subproblem (m = 1,
A1 = I) with key applications in nonlinear programming [18], the Celis-Dennis-Tapia subprob-
lem (m = 2, A1 = I) [2, 12], the multi-ball constrained quadratic optimization (Ai ≡ I) [17]
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with applications in finding Chebyshev center of the intersection of balls [16], ellipsoid con-
strained quadratic optimization [7] and references therein, and box constrained quadratic opti-
mization (Ai≡ eieT

i , ai≡ 0) [6], where ei is the i-th column of I. In general, (QCQP) is NP-hard,
even when G has a negative eigenvalue [13]. For recent global optimization methods based on
branch-and-bound/branch-and-cut for solving (QCQP), we refer to [3, 9, 10, 11].

For any ε ∈ (0,1), we call x̂ ∈Ω an ε-approximate solution if

f (x̂)− fmin ≤ ε ( fmax− fmin) ,

where fmin and fmax denote the minimum and maximum of f (x) over Ω, respectively. When
m = 1 and A1 = I (i.e., the trust-region subproblem), an ε-approximate solution of (QCQP) can
be found in polynomial time [4]. We refer to [15] for more references. For general (QCQP)
with m ≥ 2, Fu et al. [4] presented a polynomial-time algorithm to find an ε(τ)-approximate
solution, where ε(τ) = 1− (1− τ)/(m(1+ τ))2 for all τ ∈ (0,1− 1/

√
2). Until recently, the

approximate ratio ε is corrected to be (1− (1− τ)/(
√

m2 +m(1+ τ))2 [19]. Moreover, when
g = ai ≡ 0 for i = 1, · · · ,m, the ratio ε(τ) is sharpened (1− (1− τ)/(

√
m(1+ τ))2 [5]. Note

that ε(τ) is an increase function of τ . It is unknown whether there is an efficient algorithm to
find an ε-approximate solution of (QCQP) with ε < ε(0) = 1−1/(m2 +m) for m≥ 2.

When Ai ≡ 0, (QCQP) reduces to the classical quadratic programming (QP). Vavasis [14]
introduced the weak Löwner-John ellipsoid approach to find an ε-approximate solution of non-
convex (QP). The relaxation complexity, i.e., the number of convex relaxation subproblems to
be solved, is polynomial in n, if the nonconvex rank of G, denoted by q, is fixed.

In this paper, we first extend Vavasis’s algorithm [14] to solve (QCQP), and show that the
relaxation complexity is polynomial in the dimension n for fixed q. As a main contribution, the
relaxation complexity of a modified version of Vavasis’s algorithm by replacing Löwner-John
ellipsoid pair with Dikin ellipsoid pair, can substantially reduce the relaxation complexity to be
independent of the dimension n.

The remainder of this paper is organized as follows. In Section 2, we extend Vavasis’s al-
gorithm from (QP) to (QCQP). In Section 3, we improve Vavasis’s algorithm for (QCQP) to
achieve a much lower relaxation complexity. Conclusions are made in Section 4.

Throughout this paper, A � (�)0 represent positive (semi)definite. Denote by AT and A−1

the transpose and inverse of A, respectively. In addition, A−T = (A−1)T . Let diag(A) be the
vector formed by the diagonal elements of A and det(A) be the determinant of A. I ∈ Rn×n is
the identity matrix. Ii ∈ Rn×n is a matrix where all the elements are 0 except the i-th row and
the i-th column is 1. Denote by ∇2L(x) the Hessian matrix of L(x). d·e denotes the smallest
integer larger than or equal to “·”.

2. A LÖWNER-JOHN ELLIPSOID BASED APPROXIMATION ALGORITHM

We extend Vavasis’s algorithm presented in [14] for (QP) to solve (QCQP).
First, as shown in [8], one can find in polynomial time a weak Löwner-John ellipsoid pair

satisfying
Ewl j(cwl j;1)⊆Ω⊆ Ewl j(cwl j;(n+1)

√
n), (2.1)

where

Ewl j(cwl j;r) :=
{

x ∈ Rn : (x− cwl j)
T M(x− cwl j)≤ r2} ,
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with cwl j ∈ Rn, M ∈ Rn×n, and M � 0. For convenience, we denote the radius ratio of the
inner and outer ellipsoids as ρ . It is clear that ρ = 1/((n+ 1)

√
n) for the weak Löwner-John

ellipsoid pair. Then there is a nonsingular and symmetric matrix P such that M = PPT . Let the
eigenvalue decomposition of P−1GP−T be P−1GP−T = QT ΛQ, where Q is orthogonal and Λ is
diagonal. Then, for U = P−T QT , we have

UT MU = I, Λ =UT GU.

By introducing

y =U−1 (x− cwl j
)
, (2.2)

we can rewrite (QCQP) as

(EP) min
y∈Rn

yT
Λy+2dT y+ζ

s.t. y ∈Ω1 :=
{

y ∈ Rn : yT Biy+2bT
i y+κi ≤ 0, i = 1, · · · ,m

}
,

where d =UT Gcwl j+UT g, ζ = cT
wl jGcwl j+2gT cwl j, Bi =UT AiU , bi =UT Aicwl j+UT ai, κi =

cT
wl jAicwl j + 2aT

i cwl j + ςi. Similarly, Ewl j(cwl j;1) and Ewl j(cwl j;(n+ 1)
√

n) are reformulated
as

E1 :=
{

y ∈ Rn : yT y≤ 1
}
, E2 :=

{
y ∈ Rn : yT y≤ n(n+1)2} ,

respectively. As the mapping from x to y is linear, we have

E1 ⊆Ω1 ⊆ E2.

Without loss of generality, let diag(Λ) = [λ1, · · · ,λn] with

λ1 ≤ ·· · ≤ λq < 0≤ λq+1 ≤ ·· · ≤ λn.

Let y = (zT , wT )T , where z ∈ Rq and w ∈ Rn−q. The projections of Ω1, E1, and E2 in z-space
are

Ω2 :=
{

z ∈ Rq : ∃w ∈ Rn−q s.t. (zT ,wT )T ∈Ω1
}
,

E3 :=
{

z ∈ Rq : zT z≤ 1
}
, E4 :=

{
z ∈ Rq : zT z≤ n(n+1)2} ,

respectively. Trivially, we have
E3 ⊆Ω2 ⊆ E4.

Moreover, it holds that
E4 ⊆ L :=

[
−(n+1)

√
n, (n+1)

√
n
]q
.

We equally divide each dimension of L into t parts. So L is divided into tq sub-rectangles

Lk =
{

z ∈ Rq : lk
j ≤ z j ≤ uk

j, j = 1, · · · ,q
}
, k = 1, · · · , tq

with uk
j− lk

j = 2(n+1)
√

n/t. Then, solving (EP) amounts to solve tq subproblems over the set
{(zT ,wT )T ∈Ω1 : z ∈ Lk}. Since

λ j(z j− lk
j )(z j−uk

j)≥ 0, j = 1, · · · ,q,
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each subproblem can be lower bounded by its convex relaxation:

(REPk) min
(z,w)∈Rn

ϕk(z,w) := φk(z)+
n

∑
j=q+1

(
λ jw2

j +2d jw j
)
+ζ

s.t. z ∈ Lk,(zT ,wT )T ∈Ω1,

where d j is the j-th component of d, and

φk(z) =
q

∑
j=1

[
λ j(uk

j + lk
j )+2d j

]
z j−

q

∑
j=1

λ juk
jl

k
j ,

The optimal solution of (REPk) remains a feasible candidate solution for (EP). The candidate
with the minimal objective function value of (EP) is selected as the best approximate solution
of (EP). It makes sense that the larger t, the better the approximation. Precisely, according to
the proof of Theorem 2 in [14], for any given precision ε ∈ (0,1), setting t =

⌈
(n+1)

√
qn/ε

⌉
outputs an ε-approximate solution of (EP). As a summary, we have the following relaxation
complexity result.

Theorem 2.1. For any ε ∈ (0,1), if we approximate Ω with the weak Löwner-John ellip-
soid pair (2.1), an ε-approximate solution of (QCQP) can be obtained by solving at most⌈
(n+1)

√
nq/ε

⌉q
convex quadratic constrained quadratic optimization subproblems (REPk).

Theorem 2.1 is a natural extension of Theorem 2 in [14] as (QCQP) reduces to (QP) when
Ai ≡ 0 for i = 1, · · · ,m.

Remark 2.2. Since the number of subproblems that need to be solved by Vavasis’s algorithm is⌈√
q/ερ2

⌉q
, which is a polynomial about ρ , it is clear that the larger ρ , the fewer the number

of subproblems that need to be solved.

When Ai � 0 for i = 1, · · · ,m, the Löwner-John ellipsoid pair [8] for Ω is given by

E l j(c;1)⊆Ω⊆ E l j(c;n), (2.3)

where

E l j(c;r) =
{

x ∈ Rn : (x− c)TC−2(x− c)≤ r2} ,
and (C,c) is the optimal solution of the following semidefinite programming problem [1]:

min
C∈Rn×n,c,µ∈Rn

logdet
(
C−1)

s.t.

 −µi− ςi +aT
i A−1

i ai 0 (c+A−1
i ai)

T

0 µiI C
c+A−1

i ai C A−1
i

� 0, i = 1, · · · ,m.

Replacing the weak Löwner-John ellipsoid pair (2.1) with the Löwner-John ellipsoid pair
(2.3), we can strengthen Theorem 2.1 as follows.

Corollary 2.3. Suppose Ai � 0 for i = 1, · · · ,m. For any ε ∈ (0,1), with the Löwner-John ellip-

soid pair (2.3), solving at most
⌈

n
√

q/ε

⌉q
convex quadratic constrained quadratic optimization

subproblems yields an ε-approximate solution of (QCQP).
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Moreover, when Ω is central symmetric, [1] shows that (2.3) can be strengthened to be

E l j(c;1)⊆Ω⊆ E l j(c;
√

n),

so that the number of subproblems in Corollary 2.3 can reduce to
⌈√

nq/ε

⌉q
.

3. A DIKIN ELLIPSOID BASED APPROXIMATION ALGORITHM

In this section, we improve Vavasis’s algorithm for solving (QCQP) by replacing the Löwner-
John ellipsoid pair with the Dikin ellipsoid pair.

Consider the logarithmic barrier function

L(x) =−
m

∑
i=1

log
(
−
(
xT Aix+2aT

i x+ ςi
))

.

The unique minimizer of L(x), denoted by cd is called the analytic center of Ω. Define the Dikin
ellipsoid as

Ed(cd;r) =
{

x ∈ Rn : (x− cd)
T

∇
2L(cd)(x− cd)≤ r2} .

It is shown in [4] and then corrected in [19] that

Ed(cd;1)⊆Ω⊆ Ed(cd;
√

m2 +m). (3.1)

Replacing the Löwner-John ellipsoid pair (2.3) with the Dikin ellipsoid pair (3.1), we can
further strengthen Corollary 2.3 as follows.

Corollary 3.1. For a given ε ∈ (0,1), with the Dikin ellipsoid pair (3.1), solving at most⌈√
(m2 +m)q/ε

⌉q

(3.2)

convex quadratic constrained quadratic optimization subproblems yields an ε-approximate so-
lution of (QCQP).

Remark 3.2. Corollary 3.1 can be further improved when all quadratic constraints of (QCQP)
are homogeneous, i.e., ai ≡ 0 for i = 1, · · · ,m. It is not difficult to verify that cd = 0 and

∇
2L(cd) = 2

m

∑
i=1

Ai

−ςi
.

Consequently, (3.1) is improved to be

Ed(cd;
√

2)⊆Ω⊆ Ed(cd;
√

2m), (3.3)

see [5]. Therefore, the upper bound of the number of subproblems (3.2) further reduces to⌈√
mq/ε

⌉q
(3.4)

Remark 3.3. Comparing with Theorems 2.1 and Corollary 2.3, the upper bound of the number
of subproblems (3.2) in Corollary 3.1 is dimensional-free. This is advantageous for optimization
problems with low nonconvex-rank and small number of convex quadratic constraints.
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Remark 3.4. Remark 3.3 cannot be applied for (QP). Actually, when Ai ≡ 0 for i = 1, · · · ,m,
for compact Ω, we have the following Dikin ellipsoid pair [1]:

Ed(cd;1)⊆Ω⊆ Ed(cd;
√

m2−m). (3.5)

Since Ω must be compact, under Slater condition, it holds that m≥ n+1. It follows that√
m2−m≥

√
(n+1)2− (n+1)≥

√
(n+1)n > n.

This implies that the number of subproblems for solving (QP) by the Dikin ellipsoid pair is
greater than that by the Löwner-John ellipsoid pair.

4. CONCLUSION

We study the relaxation complexity (i.e., the number of convex optimization subproblems to
be solved) for globally solving nonconvex (QCQP). We first extend Vavasis’s algorithm from
(QP) to (QCQP), and then replace the (weak) Löwner-John ellipsoid pair with the Dikin ellip-
soid pair as a further improvement. It turns out that the relaxation complexity is no longer de-
pendent of the dimension if the nonconvexity-rank is fixed. Thus the presented new algorithm
seems to be more suitable for very large-scale (QCQP) with a low nonconvexixty-rank. The
relaxation complexity for (QCQP) with a high nonconvexity-rank remains unknown. Future
works also include further extensions for general convex constrained nonconvex optimization
problems.
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