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1. INTRODUCTION

Finding zeros of operators plays a vital role in the field of nonlinear analysis and optimiza-
tion. In fact, there are many problems that can be formulated in this setting (see [4, 7, 10] and
the references therein). In this paper, we study the strong convergence of an iterative scheme for
finding zeros of pseudo-monotone operators, which is a modification of Malitsky’s algorithm.
In [6], Malitsky proposed some projection methods for solving variational inequality problems
with monotone and Lipschitz continuous mappings in Hilbert spaces. First, he introduced the
projected reflected gradient algorithm with a constant stepsize using the Lipschitz constant of
the operator, requiring only one projection per iteration, to prove that the generated sequence
is weakly convergent to a solution of the monotone variational inequality. Also he showed that
it has R-linear rate of convergence under the strong monotonicity assumption of the operator.
Then he proposed another algorithm to avoid using the Lipschitz constant of the monotone oper-
ator and proved that the generated sequence is weakly convergent to a solution of the monotone
variational inequality where the new algorithm needed at most two projections per iteration (see
[6] and [11]).
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Subsequently, in [11] the authors modified the Malitsky’s algorithm and proved that the gen-
erated sequence is weakly convergent to a solution of the monotone variational inequality, re-
quiring only one projection per iteration. Also, they showed the R-linear convergence rate under
the strong monotonicity assumption.

In this paper, inspired and motivated by the above papers, we modify the methods mentioned
above to prove the strong convergence of the generated sequence to a zero of a pseudo-monotone
operator without any knowledge of the Lipschitz constant of the operator.

This paper is organized as follows. In Section 2, we recall some definitions and prelimi-
naries that will be needed in the sequel. In Section 3, we modify the Malitsky’s algorithm to
approximate zeros of pseudo-monotone operators in Hilbert spaces, and we prove the strong
convergence of the generated sequence to a zero of the pseudo-monotone operator. In Section
4, we give some examples of applications of our main result.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. We denote the weak con-
vergence in H by ⇀ and the strong convergence by→. Throughout the paper, C is a nonempty,
closed and convex subset of H, F : H→ H is an operator. An operator F : H→ H is called:
(i) monotone if

〈F(x)−F(y),x− y〉 ≥ 0, ∀ x,y ∈ H.

(ii) pseudo-monotone if

〈F(x),y− x〉 ≥ 0 implies that 〈F(y),x− y〉 ≤ 0, ∀ x,y ∈ H.

(iii) asymptotically pseudo-monotone if, for each bounded sequence {xk} and any y ∈ H,

limsup
k→∞

〈F(xk),y− xk〉 ≥ 0 implies that liminf
k→∞

〈F(y),xk− y〉 ≤ 0.

(iv) Lipschitz continuous if there exists L > 0 such that

‖F(x)−F(y)‖ ≤ L‖x− y‖, ∀ x,y ∈ H.

(v) Coercive, if for any sequence {xk} in H such that ‖xk‖→ ∞, we have ‖F(xk)‖→ ∞.
It is easy to see that each monotone operator is pseudo-monotone as well as asymptoti-

cally pseudo-monotone. Moreover, every asymptotically pseudo-monotone operator is pseudo-
monotone. A function f : H → R is called weakly upper semicontinuous on H if for every
x ∈ H,

f (x)≥ limsup
k→∞

f (xk)

for each sequence xk ⇀ x as k→+∞. It is well known that for any x ∈ H there exists a unique
x̄ ∈C such that

‖x̄− x‖= inf
{
‖y− x‖ : y ∈C

}
.

Now we define the mapping PC : H→C by taking PC(x) to be this unique x̄ ∈C. The mapping
PC is called the metric projection of H onto C (see [1]).

Lemma 2.1. ([1], Theorem 3.14) Let C ⊂H be nonempty, closed and convex, x ∈H and x̄ ∈C.
Then x̄ = PC(x) if and only if

〈y− x̄,x− x̄〉 ≤ 0, ∀ y ∈C.



ZEROS OF PSEUDO-MONOTONE OPERATORS 3

Lemma 2.2. ([1], Corollary 2.14) Let x,y ∈ H and α ∈ R. Then

‖αx+(1−α)y‖2 = α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2

Lemma 2.3. [9] Consider sequences {sk}⊂ [0,∞),{tk}⊂R and {αk}⊂ (0,1) satisfying ∑
∞
k=0 αk =

∞. Suppose that
sk+1 ≤ (1−αk)sk +αktk, ∀ k ≥ 0. (2.1)

If limsupn→∞tkn ≤ 0 for any subsequence {skn} of {sk} satisfying liminfn→∞(skn+1− skn)≥ 0,
then limk→∞sk = 0.

3. STRONG CONVERGENCE

In this section, we assume that F : H → H is pseudo-monotone, Lipschitz continuous on H,
satisfies a suitable condition and F−1(0) 6= /0. It is well known that F−1(0) is a closed and
convex subset of H. By using the Halpern’s regularization method, we prove the strong conver-
gence of the sequence generated by Algorithm 1 to PF−1(0)u where P is the metric projection
and u ∈ H is an arbitrary point.
Algorithm 1.
1. Initialization: Let x0,y0 and u belong to H, λ0 ∈ (0,+∞), δ ∈ (1,+∞), θ ∈ (0,

√
2−1
δ

). Let
αk ∈ (0,1) be such that limk→∞ αk = 0 and ∑

∞
k=0 αk =+∞.

2. Iterative step: Given xk and yk, compute

zk+1 := xk−λkF(yk), (3.1)

If xk = zk+1, then F(yk) = 0, so yk is a solution and we can stop. Otherwise let

xk+1 := αk+1u+(1−αk+1)zk+1, (3.2)

yk+1 := xk− (1+δ )λkF(yk), (3.3)

where

λk+1 :=

{
min

{
θ‖yk+1−yk‖
‖Fyk+1−Fyk‖ ,λk

}
, if Fyk+1−Fyk 6= 0,

λk, otherwise.
(3.4)

We divide the proof of our main theorem into several lemmas and propositions. Note that
the Lipschitz continuity of F shows that θ

L =
θ‖yk+1−yk‖
L‖yk+1−yk‖ ≤

θ‖yk+1−yk‖
‖Fyk+1−Fyk‖ where L is the Lips-

chitz constant of F . It is clear that the sequence {λk} is nonincreasing and bounded below by
min{λ0,

θ

L}. Therefore limk→∞ λk exists and is different from zero.

Lemma 3.1. Let {yk} and {zk} be given by Algorithm 1. Then we have

〈F(yk−1),yk− zk+1〉=
1

2δλk−1

(
‖zk+1− zk‖2−‖yk− zk‖2−‖zk+1− yk‖2

)
.

Proof. Note that (3.1) and (3.3) imply that zk− yk = δλk−1F(yk−1). Therefore we have

〈F(yk−1),yk− zk+1〉=
1

δλk−1
〈zk− yk,yk− zk+1〉

=
1

2δλk−1

(
‖zk+1− zk‖2−‖yk− zk‖2−‖zk+1− yk‖2

)
. (3.5)

�
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Lemma 3.2. Let {yk} and {zk} be given by Algorithm 1. Then we have

2λk〈F(yk)−F(yk−1),yk− zk+1〉 ≤ θ

(
(1+
√

2)‖yk− zk‖2 +‖zk− yk−1‖2 +
√

2‖zk+1− yk‖2
)
.

Proof. Using the Cauchy-Schwarz inequality and the Lipschitz continuity of F , we have

2λk〈F(yk)−F(yk−1),yk− zk+1〉 ≤ 2λk‖F(yk)−F(yk−1)‖‖yk− zk+1‖
≤ 2θ‖yk− yk−1‖‖yk− zk+1‖

≤ θ

( 1√
2
‖yk− yk−1‖2 +

√
2‖yk− zk+1‖2

)
. (3.6)

On the other hand, we have

‖yk− yk−1‖2 = ‖yk− zk‖2 +‖zk− yk−1‖2 +2〈yk− zk,zk− yk−1〉

≤ ‖yk− zk‖2 +‖zk− yk−1‖2 +2‖yk− zk‖‖zk− yk−1‖

≤ (2+
√

2)‖yk− zk‖2 +
√

2‖zk− yk−1‖2. (3.7)

Now (3.6) and (3.7) imply that

2λk〈F(yk)−F(yk−1),yk− zk+1〉 ≤ θ

(
(1+
√

2)‖yk− zk‖2 +‖zk− yk−1‖2 +
√

2‖zk+1− yk‖2
)
.

�

Lemma 3.3. Let {yk} and {zk} be given by Algorithm 1 and let x∗ ∈ F−1(0). Then we have

‖x∗− zk+1‖2 ≤ (1−αk)‖x∗− zk‖2 +αk‖x∗−u‖2−αk‖zk+1−u‖2

+
(
(1+
√

2)θ − λk

δλk−1

)
‖yk− zk‖2 +

(
λk

δλk−1
− (1−αk)

)
‖zk+1− zk‖2

+
(√

2θ − λk

δλk−1

)
‖zk+1− yk‖2 +θ‖zk− yk−1‖2.

Proof. Let x∗ ∈ F−1(0). By (3.1), we have λkF(yk) = xk− zk+1. Therefore we get

λk〈F(yk),x∗− zk+1〉= 〈xk− zk+1,x∗− zk+1〉.

Equivalently, we have

‖x∗− zk+1‖2 = ‖x∗− xk‖2−‖zk+1− xk‖2 +2λk〈F(yk),x∗− zk+1〉. (3.8)

Since 〈F(x∗),yk − x∗〉 = 0 and F is pseudo-monotone, we have 〈F(yk),yk − x∗〉 ≥ 0. Using
(3.8), we get

‖x∗− zk+1‖2 ≤ ‖x∗− xk‖2−‖zk+1− xk‖2 +2λk〈F(yk),x∗− zk+1〉
+2λk〈F(yk),yk− x∗〉

= ‖x∗− xk‖2−‖zk+1− xk‖2 +2λk〈F(yk),yk− zk+1〉

= ‖x∗− xk‖2−‖zk+1− xk‖2 +2λk〈F(yk)−F(yk−1),yk− zk+1〉
+2λk〈F(yk−1),yk− zk+1〉. (3.9)

Using Lemmas 3.1 and 3.2 along with (3.9), we get
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‖x∗− zk+1‖2 ≤ ‖x∗− xk‖2−‖zk+1− xk‖2 +2λk〈F(yk)−F(yk−1),yk− zk+1〉
+2λk〈F(yk−1),yk− zk+1〉

≤ ‖x∗− xk‖2−αk‖zk+1−u‖2− (1−αk)‖zk+1− zk‖2 +αk(1−αk)‖u− zk‖2

+θ

(
(1+
√

2)‖yk− zk‖2 +‖zk− yk−1‖2 +
√

2‖zk+1− yk‖2
)

+
λk

δλk−1

(
‖zk+1− zk‖2−‖yk− zk‖2−‖zk+1− yk‖2

)
(3.10)

Therefore, we have

‖x∗− zk+1‖2 ≤ ‖x∗− xk‖2−αk‖zk+1−u‖2 +αk(1−αk)‖u− zk‖2

+
(
(1+
√

2)θ − λk

δλk−1

)
‖yk− zk‖2 +

(
λk

δλk−1
− (1−αk)

)
‖zk+1− zk‖2

+
(√

2θ − λk

δλk−1

)
‖zk+1− yk‖2 +θ‖zk− yk−1‖2. (3.11)

Now using (3.2) and Lemma 2.2, we get

‖x∗− zk+1‖2 ≤ (1−αk)‖x∗− zk‖2 +αk‖x∗−u‖2−αk‖zk+1−u‖2

+
(
(1+
√

2)θ − λk

δλk−1

)
‖yk− zk‖2 +

(
λk

δλk−1
− (1−αk)

)
‖zk+1− zk‖2

+
(√

2θ − λk

δλk−1

)
‖zk+1− yk‖2 +θ‖zk− yk−1‖2. (3.12)

�

In the following theorem, we show the strong convergence of the sequence {xk} generated
by Algorithm 1 to an element of F−1(0).

Theorem 3.4. Suppose that F : H→H is pseudo-monotone, coercive and Lipschitz continuous,
and satisfies either one of the following conditions:
(i) the operator F is sequentially weak-to-weak continuous,
(ii) F is asymptotically pseudo-monotone,
(iii) the function 〈F(·),y−·〉 : H→ R is weakly upper semicontinuous for all y ∈ H.
(iv) for any arbitrary sequence {vk} such that vk ⇀ v and limsupk→∞〈F(vk),vk− v〉 ≤ 0, it fol-
lows that, for all y ∈ H, liminfk→∞〈F(vk),vk− y〉 ≥ 〈F(v),v− y〉.
If F−1(0) 6= /0, then the sequence {xk} generated by Algorithm 1 is strongly convergent to
PF−1(0)u.

Proof. Let x∗ = PF−1(0)u. For simplicity, denote Ak :=
(
(1+
√

2)θ − λk
δλk−1

)
‖yk− zk‖2, Bk :=(

λk
δλk−1

− (1−αk)
)
‖zk+1− zk‖2 and Ck :=

(
(1+
√

2)θ − λk
δλk−1

)
‖zk+1− yk‖2. Using Lemma

3.3, we have

‖x∗− zk+1‖2 ≤ (1−αk)‖x∗− zk‖2 +αk‖x∗−u‖2−αk‖zk+1−u‖2

+Ak +Bk +Ck−θ‖zk+1− yk‖2 +θ‖zk− yk−1‖2. (3.13)
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Note that the sequence {λk} is nonincreasing and bounded away from zero, therefore limk→∞ λk
exists and is different from zero. Now by our assumptions on δ and θ , we have

lim
k→∞

(
(1+
√

2)θ − λk

δλk−1

)
= (1+

√
2)θ − 1

δ
< 0 (3.14)

and

lim
k→∞

(
λk

δλk−1
− (1−αk)

)
< 0. (3.15)

Therefore it follows from (3.13), (3.14) and (3.15) that for large enough k, we have

‖x∗− zk+1‖2 ≤ (1−αk)‖x∗− zk‖2 +αk‖x∗−u‖2−αk‖zk+1−u‖2

−θ‖zk+1− yk‖2 +θ‖zk− yk−1‖2. (3.16)

Denote sk := ‖x∗− zk‖2 +θ‖zk− yk−1‖2, then we can write the above inequality in the form

sk+1 ≤ (1−αk)sk +αk

(
‖x∗−u‖2−‖u− zk+1‖2 +θ‖zk− yk−1‖2

)
. (3.17)

Next we will show that limk→∞ sk = 0. In view of Lemma 2.3, it suffices to show that

limsup
n→∞

(
‖x∗−u‖2−‖u− zkn+1‖2 +θ‖zkn− ykn−1‖2

)
≤ 0 (3.18)

for every subsequence {skn} of {sk} satisfying liminfn→∞(skn+1− skn) ≥ 0. Consider such a
subsequence. By using (3.17), we get

0≤ liminf
n→∞

(skn+1− skn)

≤ limsup
n→∞

(skn+1− skn)

≤ limsup
n→∞

αkn

(
−‖x∗− zkn‖

2 +‖x∗−u‖2−‖u− zkn+1‖2
)

≤ 0.

Therefore, we have limn→∞(skn+1− skn) = 0. Moreover, we get

0≤ liminf
n→∞

(skn+1− skn)

≤ liminf
n→∞

αkn

(
−‖x∗− zkn‖

2 +‖x∗−u‖2−‖u− zkn+1‖2
)

≤ limsup
n→∞

αkn

(
−‖x∗− zkn‖

2 +‖x∗−u‖2−‖u− zkn+1‖2
)

≤ 0.

This implies that

lim
n→∞

αkn

(
−‖x∗− zkn‖

2 +‖x∗−u‖2−‖u− zkn+1‖2
)
= 0. (3.19)
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Now since limn→∞(skn+1− skn) = 0, by using (3.13), we get

0≤ liminf
n→∞

(
−Akn−Bkn−Ckn

)
≤ limsup

n→∞

(
−Akn−Bkn−Ckn

)
≤ limsup

n→∞

(
− (skn+1− skn)+αkn

(
−‖x∗− zkn‖

2 +‖x∗−u‖2−‖u− zkn+1‖2
))

≤ limsup
n→∞

(
− (skn+1− skn)

)
+ limsup

n→∞

(
αkn

(
−‖x∗− zkn‖

2 +‖x∗−u‖2−‖u− zkn+1‖2
))

= 0

which implies that limn→∞

(
−Akn−Bkn−Ckn

)
= 0. Now the definitions of Ak, Bk and Ck along

with (3.14) and (3.15) imply that

lim
n→∞

Akn = lim
n→∞

Bkn = lim
n→∞

Ckn = 0. (3.20)

Therefore we have

lim
n→∞
‖ykn− zkn‖

2 = lim
n→∞
‖zkn+1− zkn‖

2 = lim
n→∞
‖zkn+1− ykn‖

2 = 0. (3.21)

On the other hand, using (3.2) in the following equality, we get

‖xkn− zkn+1‖ ≤ ‖xkn− zkn‖+‖zkn+1− zkn‖
= αkn‖u− zkn‖+‖zkn+1− zkn‖
≤ αkn‖u− zkn+1‖+2‖zkn+1− zkn‖ (3.22)

Using (3.19) and (3.21), and taking the limit from (3.22) as n→ ∞, we get

lim
n→∞
‖xkn− zkn+1‖= 0. (3.23)

Using (3.1), we have

λknF(ykn) = xkn− zkn+1. (3.24)

Now since limn→∞ ‖xkn− zkn+1‖= 0, and limk→∞ λk exists and is different from zero, taking the
limit in (3.24), we get

lim
n→∞

F(ykn) = 0. (3.25)

Now we claim that the subsequence {ykn} is bounded, otherwise we have a contradiction with
coercivity of the operator F . In the sequel, the boundedness of {ykn} along with (3.21) imply
that the subsequences {zkn} and {zkn+1} are bounded. Note that we have limn→∞(skn+1− skn) =
0 and it means that

lim
n→∞

(
‖x∗− zkn+1‖2 +θ‖zkn+1− ykn‖

2−‖x∗− zkn‖
2−θ‖zkn− ykn−1‖2

)
= 0. (3.26)

Since by (3.21), limn→∞ ‖zkn+1− ykn‖2 = 0, from (3.26) we obtain that

lim
n→∞

(
‖x∗− zkn+1‖2−‖x∗− zkn‖

2−θ‖zkn− ykn−1‖2
)
= 0,

which implies that

lim
n→∞

(
2〈x∗− zkn ,zkn− zkn+1〉+‖zkn+1− zkn‖

2−θ‖zkn− ykn−1‖2
)
= 0.
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Since {zkn} is bounded and limn→∞ ‖zkn+1− zkn‖= 0, we deduce that

lim
n→∞
‖zkn− ykn−1‖2 = 0. (3.27)

Taking a subsequence of {zkn+1} if needed, we may assume without loss of generality that it
has a weak limit point p ∈ H so that zkn+1 ⇀ p. It is clear that ykn ⇀ p. Now we consider the
following four cases:
(i) Assume that the operator F is sequentially weak-to-weak continuous. Then (3.25) implies
that

lim
n→∞

F(ykn) = F(p) = 0, (3.28)

that is p ∈ F−1(0).
(ii) If F is asymptotically pseudo-monotone, from (3.25) we obtain

limsup
n→∞

〈F(ykn),y− ykn〉 ≥ 0, ∀ y ∈ H

which implies that

〈F(y), p− y〉= liminf
n→∞

〈F(y),ykn− y〉 ≤ 0, ∀ y ∈ H. (3.29)

Let z ∈ H be arbitrary and set y = t p+(1− t)z where t ∈ (0,1). Using (3.29), we have

(1− t)〈F(t p+(1− t)z),z− p〉 ≥ 0, (3.30)

Dividing (3.30) by (1− t) and taking the limit as t→ 1−, we get

〈F(p),z− p〉 ≥ 0, ∀ z ∈ H, (3.31)

which shows p ∈ F−1(0).
(iii) If the function 〈F(·),y−·〉 : H → R is weakly upper semicontinuous, then it follows from
(3.25) that

limsup
n→∞

〈F(ykn),y− ykn〉 ≥ 0, ∀ y ∈ H

which implies that

〈F(p),y− p〉 ≥ 0, ∀ y ∈ H. (3.32)

Hence p ∈ F−1(0).
(iv) In this case, it follows from (3.25) that

liminf
n→∞

〈F(ykn),ykn− p〉 ≤ 0, ∀ y ∈ H

which implies that, for all y ∈ H, liminfk→∞〈F(ykn),ykn− y〉 ≥ 〈F(p), p− y〉. Therefore

〈F(p), p− y〉 ≤ 0, ∀ y ∈ H.

Hence p ∈ F−1(0).
Therefore we have shown that p ∈ F−1(0) when the operator F satisfies either (i), (ii), (iii) or
(iv). Now it follows from (3.27) that

limsup
n→∞

(
‖x∗−u‖2−‖u− zkn+1‖2 +θ‖zkn− ykn−1‖2

)
≤ ‖x∗−u‖2−‖u− p‖2. (3.33)
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Since x∗ = PF−1(0)u, we have ‖x∗−u‖2−‖u− p‖2 ≤ 0. Therefore we get

limsup
n→∞

(
‖x∗−u‖2−‖u− zkn+1‖2 +θ‖zkn− ykn−1‖2

)
≤ 0, (3.34)

which shows that (3.18) is satisfied. Therefore zk→ x∗, and hence by (3.23), xk→ x∗=PF−1(0)u.
�

Corollary 3.5. Suppose that F : H → H is coercive, monotone and Lipschitz continuous, and
F−1(0) 6= /0. Then the sequence {xk} generated by Algorithm 1 is strongly convergent to
PF−1(0)u.

Proof. Since it is clear that every monotone operator is asymptotically pseudo-monotone, then
the result follows from Theorem 3.4. �

Since from a practical point of view, it may not be easy to determine whether the zero set of
the operator is nonempty, in the following remark, we give a sufficient condition for the zero
set of the operator to be nonempty. In this case, the iterative sequence converges strongly to a
zero of the operator. It is worth noting that this condition may prove useful when performing
numerical experiments.

Remark 3.6. With the same assumptions as in Theorem 3.4, if there is a bounded subsequence
{ykn} of {yk} satisfying limn→∞ ‖xkn − zkn+1‖ = 0, then F−1(0) 6= /0. In fact, this condition
implies that limn→∞ F(ykn) = 0, that is (3.25) holds. Then the same proof as in Theorem 3.4
shows that F−1(0) 6= /0.

4. EXAMPLES AND NUMERICAL EXPERIMENTS

In this section, we provide some examples of applications of our main result. In fact, our
results can be applied to find zeros of monotone and pseudo-monotone operators. Recently the
authors studied the strong convergence of an inexact proximal point algorithm with possible
unbounded errors for monotone operators in Banach and Hadamard spaces (see [2, 3]).

Karamardian introduced pseudo-monotone operators in 1976 (see [5]). The prototypical ex-
ample of a pseudo-monotone operator is the gradient of a pseudo-convex function. Given an
open convex set C ⊂ H, we recall that a differentiable function f : C→ R is said to be pseudo-
convex if and only if the following statement holds:

〈∇ f (x),y− x〉 ≥ 0⇒ f (y)≥ f (x), ∀ x,y ∈C. (4.1)

In [5], Karamardian showed that a differentiabe function f is pseudo-convex if and only if its
gradient ∇ f is pseudo-monotone. In the following, we give an example of application of our
main theorem.

Example 4.1. Let H be a real Hilbert space and f : H→R be a differentiabe and pseudo-convex
function. Also suppose that ∇ f is coercive and Lipschitz continuous. Assume that Argmin f 6= /0
and ∇ f satisfies either one of the following conditions:
(i) the operator ∇ f is sequentially weak-to-weak continuous,
(ii) ∇ f is asymptotically pseudo-monotone,
(iii) the function 〈∇ f (·),y−·〉 : H→ R is weakly upper semicontinuous for all y ∈ H.
(iv) for any arbitrary sequence {vk} such that vk ⇀ v and limsupk→∞〈∇ f (vk),vk− v〉 ≤ 0, it
follows that, for all y ∈ H, liminfk→∞〈∇ f (vk),vk− y〉 ≥ 〈∇ f (v),v− y〉.
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If we take F = ∇ f , then the sequence {xk} generated by Algorithm 1 is strongly convergent to
an element of Argmin f = F−1(0).

Example 4.2. Let the function f : R→ R be defined by

f (x) =


1
2x2−

√
2x+5 x≥

√
2,

−x4 +4x2 −
√

2 < x <
√

2,
1
2x2 +

√
2x+5 x≤−

√
2,

and G : R2 → R be defined by G(x,y) = f (
√

x2 + y2). Then ∇G : R2 → R2 is the operator
∇G(x,y) = 〈 x√

x2+y2
f ′(
√

x2 + y2), y√
x2+y2

f ′(
√

x2 + y2)〉 where

f ′(x) =


x−
√

2 x≥
√

2,
−4x3 +8x −

√
2 < x <

√
2,

x+
√

2 x≤−
√

2.

It can be shown that ∇G is coercive, Lipschitz continuous and pseudo-monotone, but not
monotone. Now in order to implement Algorithm 1 in Section 3 for this example, we take
λ0 = 0.4, δ = 1.01, θ = 0.4

δ
, αk =

1
k+1 , x0 = y0 = (1,−1) and u = (−2,1) . It is easy to see that

PF−1(0)(u) = (0,0). Note that the conditions of Theorem 3.4 are satisfied. Hence if the sequence
{xk} is generated by Algorithm 1, then it converges strongly to x∗ = PF−1(0)(u) = (0,0).

We performed the numerical experiment for this example and the numerical results are dis-
played in Table 4.1. Also, for each starting point, the test was successful, meaning that the
sequence {xk} converges to x∗. This problem was solved by the Optimization Toolbox in Mat-
lab R2020a on a Laptop Intel(R) Core(TM) i7- 8665U CPU @ 1.90GHz RAM 8.00 GB.

Table 4.1
k xk+1 ‖xk+1− xk‖ ‖xk+1− x∗‖
1 (-0.50000000, 0.00000000) 1.80277563 0.50000000
2 (-1.00000000, 0.33333333) 0.60092521 1.05409255
3 (-0.71452208, 0.50000000) 0.33056832 0.87209048
10 (-0.75214094, 0.37379939) 0.07165555 0.83990593
20 (-0.40010075, 0.20001144) 0.02065949 0.44730883
30 (-0.28010499, 0.14005143) 0.00967294 0.31316643
100 (-0.08912040, 0.04456020) 0.00098642 0.09963963
1000 (-0.00905571, 0.00452785) 0.00001011 0.01012460
10000 (-0.00090685, 0.00045342) 0.00000010 0.00101389

Example 4.3. Let the function f : R→ R be defined by

f (x) =


x

3
2 x≥ 1,

3
4x2 + 1

4 −1 < x < 1,
(−x)

3
2 x≤−1,
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and G : R2 → R be defined by G(x,y) = f (
√

x2 + y2). Then ∇G : R2 → R2 is the operator
∇G(x,y) = 〈 x√

x2+y2
f ′(
√

x2 + y2), y√
x2+y2

f ′(
√

x2 + y2)〉 where

f ′(x) =


3
2
√

x x≥ 1,
3
2x −1 < x < 1,
−3
2
√
−x x≤−1.

It can be shown that ∇G is coercive, Lipschitz continuous and monotone. Now in order to
implement Algorithm 1 in Section 3 for this example, we take λ0 = 0.4, δ = 1.1, θ = 0.4

δ
,

αk =
1

k+1 , x0 = y0 = (6,−14) and u = (−2,4) . It is easy to see that PF−1(0)(u) = (0,0). Note
that the conditions of Theorem 3.4 are satisfied. Hence if the sequence {xk} is generated by
Algorithm 1, then it converges strongly to x∗ = PF−1(0)(u) = (0,0).

We performed the numerical experiment for this example and the numerical results are dis-
played in Table 4.1. Also, for each starting point, the test was successful, meaning that the
sequence {xk} converges to x∗. This problem was solved by the Optimization Toolbox in Mat-
lab R2020a on a Laptop Intel(R) Core(TM) i7- 8665U CPU @ 1.90GHz RAM 8.00 GB.

Table 4.2
k xk+1 ‖xk+1− xk‖ ‖xk+1− x∗‖
1 (1.53878809, -3.92383888) 11.01959320 4.21478118
2 (-0.14684487, -0.10180639) 4.17723483 0.17868396
3 (-0.58528093, 1.01565552) 1.20039465 1.17222434
10 (-0.76028376, 1.51165724) 0.09776704 1.69208126
20 (-0.44413475, 0.88800806) 0.04579848 0.99288166
30 (-0.30615016, 0.61228955) 0.02214052 0.68456294
100 (-0.09547839, 0.19095679) 0.00212174 0.21349618
1000 (-0.00968479, 0.01936959) 0.00002164 0.02165586
10000 (-0.00096984, 0.00193969) 0.00000021 0.00216864

Example 4.4. (Problem 1, [11]) This problem was also considered in [6, 8]. Let H = Rm and
A = [ai j] be a square matrix of order m≥ 2 defined by

ai j =


−1 if j > i and j = m+1− i,
1 if j < i and j = m+1− i,
0 otherwise.

Define F : H→H by F(x) = Ax. If m = 2, then F is a rotation with a π/2 angle. F is coercive,
monotone and Lipschitz continuous. The unique zero of the operator is the origin, but the usual
gradient method gives rise to a sequence satisfying ‖xk+1‖> ‖xk‖ for all k, that is the sequence
is not convergent. We apply our method and show that the generated sequence converges to the
solution of the problem. Since F(0) = 0, then F−1(0) 6= /0.

Now in order to implement Algorithm 1 in Section 3 for this example, we take λ0 = 0.4,
δ = 1.1, θ = 0.4

δ
, αk =

1
k+1 , x0 = y0 = (1,1, · · · ,1) and u= (2,2, · · · ,2). Note that the conditions

of Corollary 3.5 are satisfied. Hence the sequence {xk} generated by Algorithm 1 converges
strongly to x∗ = (0,0, · · · ,0). Our stopping criterion is ‖xk−1− xk‖< ε , and we take ε = 10−4.

We performed the numerical experiment for this example and the numerical results are dis-
played in Table 4.2. This problem was solved by the Optimization Toolbox in Matlab R2020a
on a Laptop Intel(R) Core(TM) i7- 8665U CPU @ 1.90GHz RAM 8.00 GB.
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Table 4.3
m Number of iterations CPU time (Sec)
100 831 0.002655
200 989 0.004560
500 1243 0.015625
1000 1479 0.046875
2000 1759 0.093750
4000 2091 0.140625

5. CONCLUSIONS

In this paper, we studied the strong convergence of the generated sequence by a modified
variant of the Malitsky’s algorithm [6] to a zero of a pseudo-monotone operator without any
knowledge of the Lipschitz constant of the operator. As a special case, we obtain the strong
convergence of the generated sequence for a monotone operator, extending the results by Yang
and Liu [11] who proved the weak convergence of the sequence in this case with their algorithm.
We preformed some numerical experiments to show the efficiency of our algorithm. As a future
direction for research, by using the ideas and methods in this paper, it might be interesting to
study the possibility of extending the convergence results for monotone and pseudo-monotone
operators in Banach spaces as well as for accretive operators.
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