
Commun. Optim. Theory 2024 (2024) 17 https://doi.org/10.23952/cot.2024.17

THE ELLIPSOID METHOD REDUX

MICHAEL J. TODD

School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA

Dedicated to the memory of Naum Z. Shor and to the Ukrainian people

Abstract. We reconsider the ellipsoid method for linear inequalities. Using the ellipsoid representation of Burrell
and Todd, we show the method can be viewed as coordinate descent on the volume of an enclosing ellipsoid, or
on a potential function, or on both. The method can be enhanced by improving the lower bounds generated and
by allowing the weights on inequalities to be decreased as well as increased, while still guaranteeing a decrease in
volume. Three different initialization schemes are described, and preliminary computational results given. Despite
the improvements discussed, these are not encouraging.
Keywords. Certificates; Ellipsoid method; Linear inequalities.
2020 Mathematics Subject Classification. 90C05, 65K05.

1. INTRODUCTION

In the mid 1970s, a Russian, Arkadi S. Nemirovski, and a Ukrainian, Naum Z. Shor, inde-
pendently devised the ellipsoid method for convex nonsmooth minimization. Their motivations
were rather different: Yudin and Nemirovski [21] were interested in the informational complex-
ity of convex optimization and in developing an implementable version of the method of central
sections of Levin [11] and Newman [13], while Shor [16] was investigating a special case of his
space dilation methods with intriguing geometric properties. The history of the study of convex
minimization in the Soviet Union is nicely described in the survey article of Tikhomirov [19].

The algorithm did not attract a great deal of interest in the West until a couple of years
later, when Leonid G. Khachiyan [9] used it to prove the polynomial-time solvability of linear
programming. This was a very impressive theoretical advance, but the algorithm did not seem
to be useful in solving large-scale sparse linear programming problems in practice. There were
also important consequences in combinatorial optimization, as noted by Karp and Papadimitriou
[8], Grötschel, Lovàsz, and Schrijver [6], and Padberg and Rao [14], and explored in depth in
[7].

E-mail address: mjt7@cornell.edu
Received: June 7, 2023; Accepted: September 25, 2023.

c©2024 Communications in Optimization Theory

1

2 M.J. TODD

Considerable efforts were made over the years after the ellipsoid method was first developed
to improve its performance. The fundamental problem is that the volume of the enclosing
ellipsoid is cut only by a factor of about 1− (2n)−1 at each iteration, where n is the dimension
of the problem, whereas the method of central sections cuts the volume of an enclosing set by
a constant factor. Thus variants using so-called deep cuts and parallel cuts were developed first
by Shor and Gershovich [17] and then rediscovered by many others, but unfortunately did not
improve practical performance by much. Nemirovski and Yudin devised algorithms adapting
to the effective dimension of the problem [12], and recently Rodomanov and Nesterov [15]
have developed a hybrid of the ellipsoid and subgradient methods avoiding the difficulties of
the former in high dimensions. Tarasov, Khachiyan, and Erlikh [18] developed an inscribed
ellipsoid method that decreased the volume by a constant ratio, but at the expense of a much
more complicated computation at each iteration. A summary of the early developments can be
found in [1].

In the domain for which it was intended, the ellipsoid method did prove quite effective for
medium-sized highly nonlinear problems (Ecker and Kupferschmid [4]), although testing by
Shor indicated that other versions of his space-dilation methods were preferable; see also the
more recent theoretical analysis in Burke, Lewis, and Overton [2].

Our interest here is in linear programming, and more specifically in systems of linear inequal-
ities. As we have noted, the ellipsoid method can be very slow when attacking problems of high
dimension, even when using deep cuts. However, there is a hope of improved performance
when the algorithm is viewed a different way. Burrell and Todd [3] showed that an enclosing
ellipsoid could be derived by combining rank-one convex quadratic inequalities obtained from
the original inequalities, provided these were two-sided. Thus the Burrell-Todd version of the
ellipsoid method required lower bounds on the linear functions involved in the inequalities (we
assume these are all given by upper bounds), and these bounds were obtained from duality ar-
guments. At each iteration, a single violated inequality was chosen, and then the multiplier d j
on the associated quadratic inequality adjusted, possibly after updating the corresponding lower
bound. This method was shown to be closely related to the deep/parallel cut ellipsoid method.
One advantage of this viewpoint is that it is sometimes possible to infer the infeasibility of the
original system of linear inequalities, and obtain a certificate of this infeasibility, whereas the
original method could only do this in the case of rational data, after making perturbations, taking
an astronomical number of iterations without obtaining a feasible point, and then concluding
infeasibility without producing a certificate.

Recently, Lamperski, Freund, and Todd [10] developed the oblivious ellipsoid algorithm
(OEA), which by modifying the method above slightly is guaranteed to either find a feasible
solution or prove infeasibility in a number of iterations that is polynomial in the dimensions
of the problem and the logarithm of a certain condition number of the system. In the case of
infeasibility, the proof relies on a fixed decrease in a certain potential function. However, the
algorithm operates obliviously (without knowing whether the problem is feasible or infeasible),
and so it must choose its parameters carefully to guarantee a simultaneous decrease in both
the volume of the enclosing ellipsoid and the potential function. As a result, the decrease
in the volume is even slower, by a factor of about 1− (2m)−1, where m > n is the number
of inequalities. Another consequence was some counter-intuitive steps in the algorithm: the

ELLIPSOID METHOD 3

ellipsoid was not always defined by the best lower bounds obtained on the constraint functions,
and sometimes these lower bounds were actually decreased.

In this paper we propose improvements to both the OEA and the standard (deep-cut) ellipsoid
algorithm (SEA), implemented as in Burrell-Todd [3]. Among all the lower bounds on the jth
constraint function aT

j x that could be derived from ellipsoids differing from the current one by
only adjusting the weight d j and its defining lower bound l j, we show how the “best” one can
be obtained at negligible cost. We demonstrate how the OEA can be adapted with no loss in
theoretical guarantees to always use the best lower bounds generated. The SEA can also use this
improved bound. We also show how the SEA can be modified to use decreasing or drop steps
which decrease the weight d j on a well-satisfied constraint, again without losing theoretical
guarantees. In addition, we give a modification of the potential function which allows some
weights d j to be zero, and still allows convergence to be established in the infeasible case. We
provide a geometric interpretation of these potential functions.

Finally, we give the results of some preliminary computational tests, which show that, while
the performance of the algorithms is improved by these changes, it remains unfortunately slow,
with a number of iterations growing roughly with the 1.7-th power of the dimension.

The paper is organized as follows. In Section 2, we give the ellipsoid representation we
employ and show some of its properties. We discuss the improved lower bound in Section
3. Then, in Section 4, we define the modified potential function and show that it can also be
decreased by a constant at every iteration. We consider steps that decrease weights d j in Section
5, and put all these ideas together in improvements of the OEA and the SEA in Section 6. The
results of computational testing are given in Section 7.

2. THE ELLIPSOID REPRESENTATION AND CERTIFICATES OF INFEASIBILITY

In this section we describe the technique Burrell and Todd [3] used to generate an ellipsoid
containing a polyhedron and how it can be used also to certify infeasibility. We will generally
use the notation of [3], except that, as in [10], we use γ j to denote the semi-width of the ellipsoid
in the direction of a j rather than its square, to avoid square roots.

We would like either to find a point in

P := {y ∈ IRn : AT y≤ u}

or to prove it empty. We assume A is n×m, and has rank n (otherwise we can project y and the
columns of A to a lower-dimensional space). The jth column of A is denoted a j; without loss
of generality, we suppose all columns are nonzero.

Our first step is to provide lower bounds also on the linear functions in AT y. Let us assume
we have an m×m matrix Λ and an m-vector l with

AΛ =−A, Λ≥ 0, l =−Λ
T u, (2.1)

so that y ∈ P implies
AT y =−Λ

T AT y≥−Λ
T u = l,

implying that l is a vector of lower bounds as desired. Burrell and Todd [3] explain how to
obtain such a Λ if we are given upper and lower bounds on the components of a feasible y.
Then

P = {y ∈ IRn : l ≤ AT y≤ u}. (2.2)

4 M.J. TODD

We will also assume l < u; otherwise P is empty or we can again project it to a lower-dimensional
space.

We now proceed from this bounded polyhedron defined by many linear constraints (with
potentially exponential complexity in vertices and faces) to an approximating set defined by a
single quadratic inequality, as follows: First we multiply linear inequality by linear inequality,
to get a (rank-one) quadratic inequality; then we aggregate these inequalities using nonnegative
weights. Thus the inequalities indexed by j imply

(aT
j y− l j)(aT

j y−u j)≤ 0;

then, multiplying this by d j ≥ 0 and summing, we find

y ∈ P =⇒ ∑
j

d j(aT
j y− l j)(aT

j y−u j)≤ 0.

If we let D := Diag(d), this quadratic inequality can be written

(AT y− l)T D(AT y−u)≤ 0. (2.3)

We always assume that d is chosen so that ADAT is positive definite. Then we can complete
the square as follows. Define

r :=
u+ l

2
, v :=

u− l
2

,

so that l = r− v,u = r+ v. Then set

ȳ := (ADAT)−1ADr.

Now simple algebraic manipulations show that the quadratic inequality (2.3) can be written as

(y− ȳ)T (ADAT)(y− ȳ) ≤ ȳT (ADAT)ȳ− lT Du
= rT DAT (ADAT)−1ADr− lT Du
= rT DAT (ADAT)−1ADr− rT Dr+ vT Dv.

(2.4)

If the right-hand side above is positive, this defines an ellipsoid centered at ȳ; if zero, the ellip-
soid degenerates to a single point; and if negative, the inequality is infeasible.

Let us suppose for now that the right-hand side is positive. Clearly the ellipsoid depends on
the vector d, but since the algorithm sometimes updates the lower bounds l (while also updating
Λ to preserve the derivation (2.1)), we denote it by either E(d) or E(d, l). We have shown above
that

P ⊆ E(d) := E(d, l)
:= {y ∈ IRn : (y− ȳ)T (ADAT)(y− ȳ)≤ rT DAT (ADAT)−1ADr− rT Dr+ vT Dv}. (2.5)

Since we are temporarily assuming that the right-hand side

f (d) := f (d, l) := rT DAT (ADAT)−1ADr− rT Dr+ vT Dv (2.6)

is positive, we can scale d so that it becomes 1. Then, if we write

B := (ADAT)−1

(we will use this notation whether f (d, l) is 1 or not), the ellipsoid can be written {y ∈ IRn :
(y− ȳ)T B−1(y− ȳ) ≤ 1}, which is the traditional way to represent ellipsoids in the ellipsoid
method. Let us note now two important advantages of the representation in (2.5) we are using:

(i) The conditions in (2.1) and the nonnegativity of d certify the containment (2.5); and

ELLIPSOID METHOD 5

(ii) The matrix ADAT preserves more of the sparsity and structure of the matrix A than its
inverse B, and a Cholesky factor of ADAT is also likely to preserve some of this sparsity
(as in interior-point methods), while allowing us to perform cheaply all the operations
in the algorithm. In contrast, B may be dense or close to dense.

Given such an ellipsoid E containing P, an iteration of the ellipsoid method
(a) stops if its center ȳ satisfies all the constraints, and otherwise
(b) possibly stops with a proof of infeasibility, or
(c) generates a new ellipsoid E+ containing P and satisfying

vol(E+)≤ exp
[
− 1

2(n+1)

]
vol(E). (2.7)

The oblivious ellipsoid algorithm (OEA) of Lamperski, Freund, and Todd [10] is designed
to terminate in a polynomial number of steps whether the system of inequalities is feasible or
not (and without knowing which), and so takes a more conservative approach to updating the
ellipsoid, so that (2.7) is modified to replace the dimension n with the number of inequalities m:

vol(E+)≤ exp
[
− 1

2(m+1)

]
vol(E). (2.8)

At the same time, the OEA guarantees a decrease in a certain potential function φ(d, l) which
we will define later, so that its value at the new iterate is decreased by the same factor:

φ+ ≤ exp
[
− 1

2(m+1)

]
φ . (2.9)

If the ellipsoid is represented as above, with E = E(d, l) and d scaled so that f (d, l) = 1, (b)
and (c) are accomplished by first choosing a violated constraint j; then checking whether l j is at
least as large as the minimum value of aT

j y over E, aT
j ȳ−(aT

j Ba j)
1/2, and if not, updating it and

the jth column of Λ so that (2.1) remains true; and finally increasing just the jth component of
d so that (2.7) (or (2.8) and (2.9)) holds. (The OEA also modifies l j in a more complicated way;
the first part of the step is to decrease l j until the center ȳ satisfies aT

j ȳ = u j.) We will elaborate
on this in the following sections; details can be found in Burrell and Todd [3] and Lamperski et
al. [10]. We note that the algorithm in [10] and its analysis are quite technical. We will therefore
not provide more details here, hoping that our version in Section 6 is easier to understand, but
we will rely on the analysis in [10] to establish convergence.

Among the contributions of this paper are a better way to update the lower bound and to
show that a suitable volume reduction can also be achieved by choosing a constraint that is
well satisfied, and then decreasing the corresponding component of d, possibly to zero. Since
decreasing a component of d can make the right-hand side of the quadratic inequality negative
(or zero), we are led to another advantage of the representation we are using:

(iii) If f (d, l) is negative (or if it is zero and the center ȳ is not feasible), the representation
in (2.5) provides a certificate of infeasibility for P.

Throughout this paper, a certificate of infeasibility means a Farkas-type certificate (an L-
certificate in the notation of [10]). We say that x ∈ IRm certifies the infeasibility of l ≤ AT y≤ u
if

Ax = 0, uT x+− lT x− < 0 (2.10)

6 M.J. TODD

(here x+ and x− are the componentwise positive and negative parts of x so that x+− x− =
x, x+ ≥ 0, x− ≥ 0, and xT

+x− = 0). To show that such a certificate is valid, note that if x
satisfies (2.10), and if l ≤ AT y≤ u, then uT x+ ≥ yT Ax+ and lT x− ≤ yT Ax−, so subtracting gives
uT x+− lT x− ≥ yT A(x+−x−) = 0, which is impossible. As an example, suppose a lower bound
l j is certified by a vector λ j as in (2.1) so that Aλ j =−a j, λ j ≥ 0, and −uT λ j = l j, and l j > u j;
then we find A(λ j + e j) = 0, λ j + e j ≥ 0, and uT (λ j + e j) = u j− l j < 0, so that x := λ j + e j is
a certificate of infeasibility. Here e j denotes the jth coordinate vector; we also use e to denote
the vector of ones of appropriate dimension.

We note that a certificate of infeasibility for l ≤ AT y≤ u easily yields one for AT y≤ u, i.e., a
vector x̂ with

Ax̂ = 0, x̂≥ 0, uT x̂ < 0.
Indeed, if x satisfies (2.10), then it is easy to see using (2.1) that x̂ = x++Λx− satisfies the
system above.

Item (iii) above was proved in [10]; here we provide a simpler derivation. We first establish
the claim in the case of a negative right-hand side (in Section 4 we will give geometric intuition
for why f (d, l)< 0 implies infeasibility).

Theorem 2.1. Suppose, with the notation above,

f (d, l) = rT DAT BADr− rT Dr+ vT Dv < 0.

Then
x := Dt̄,

where
t̄ := AT ȳ− r, (2.11)

certifies the infeasibility of l ≤ AT y≤ u.

Proof. We need to show that Dt̄ satisfies the conditions in (2.10). . First, Ax = 0 follows from
the definition of ȳ. Now note that the projection of D1/2r onto the null space of AD1/2 is

q := D1/2r−D1/2AT (ADAT)−1AD1/2D1/2r =−D1/2t̄, (2.12)

and its norm squared is
qT q = rT Dr− rT DAT (ADAT)−1ADr. (2.13)

So the right-hand side of the quadratic inequality being negative is equivalent to−qT q+vT Dv<
0, or

‖D1/2v‖< ‖q‖.
Finally,

uT x+− lT x− = (r+ v)T x+− (r− v)T x− = rT (x+− x−)+ vT (x++ x−) = rT x+ vT |x|,

where |x| denotes the vector of absolute values of the components of x. Now rT x=(D1/2r)T (D1/2t̄)
=−(D1/2r)T q =−qT q =−‖q‖2, while vT |x|= (D1/2v)T |D1/2t̄| ≤ ‖D1/2v‖‖q‖< ‖q‖2, which
shows that the quantity displayed above is negative.
ut
The proof incidentally provides another useful form for f (d, l). Using (2.6), (2.12), and

(2.13), we obtain
f (d, l) = vT Dv− t̄T Dt̄. (2.14)

ELLIPSOID METHOD 7

Finally, we consider the case that the right-hand side f (d, l) is zero. Then the solution set to
the quadratic inequality is the singleton ȳ. If this is feasible, we have our desired point in P. If
not, we know P is empty, but again we would like a certificate of infeasibility. We show that
either x or a perturbation of it provides such a certificate.

Proposition 2.2. Suppose now
f (d, l) = 0.

Then, if ȳ is infeasible, either
x := Dt̄

or
x̃ := x+ ε(e j−DAT Ba j)

is a certificate of infeasibility for l ≤ AT y ≤ u, where in the second case either aT
j ȳ > u j and

ε > 0 or aT
j ȳ< l j and ε < 0, and ε is sufficiently small in absolute value that none of the nonzero

components of x change sign in x̃.

Proof. By examining the proof of the theorem above, we see that ‖D1/2t̄‖= ‖D1/2v‖ and that, if
x does not yield a certificate, D1/2|t̄| and D1/2v are collinear. Henceforth, assume ȳ is infeasible
and x is not a certificate of infeasibility. Then, for nonzero dh, t̄h =±vh, and aT

h ȳ =: wh is either
lh or uh. Moreover, if dh 6= 0 but xh = 0, then aT

h ȳ = rh and t̄h = 0, so vh = 0 and wh = lh = uh.
Thus, if dh is nonzero, aT

h ȳ = wh, so that DAT ȳ = Dw. Then ADAT ȳ = ADw, so BADw = ȳ.
Now choose j so that aT

j ȳ > u j or aT
j ȳ < l j (since ȳ is infeasible), so that d j = 0, and choose ε

as in the statement of the proposition.
Since Ax = 0 and A(e j−DAT Ba j) = a j− a j, we have Ax̃ = 0, and it remains to show that

uT x̃+− lT x̃− < 0. If xh > 0, then wh > rh, so wh = uh and x̃h > 0, uhx̃h = whx̃h. Similarly, if
xh < 0, then x̃h < 0, (−lh)(−x̃h) = whx̃h. And if dh 6= 0 but xh = 0, then wh = uh = lh, so uhx̃h =
(−lh)(−x̃h) = whx̃h. A similar argument with x instead of x̃ shows that wT x = uT x+− lT x− = 0,
since x is not a certificate of infeasibility. Now suppose aT

j ȳ > u j and so ε > 0. Then

uT x̃+− lT x̃− = ∑
dh 6=0

[whxh− ε(whdhaT
h Ba j)]+ εu j

= wT x+ ε(u j−wT DAT Ba j)

= ε(u j−aT
j ȳ)< 0,

and a similar argument holds if aT
j ȳ < l j.

ut
It appears therefore that decreasing the right-hand side f (d, l) aids both in finding a feasible

point in P if one exists (by decreasing the volume of the enclosing ellipsoid E(d, l)) and also in
finding a certificate of infeasibility in the case that P is empty. We now make this more precise.

By considering a linear transformation carrying a unit ball to E(d, l), we see that twice the
logarithm of the volume of the ellipsoid differs by a constant from

g(d) := g(d, l) := n ln f (d, l)− lndet ADAT = n ln f (d, l)+ p(d), (2.15)

where p(d) := − lndet ADAT is a standard barrier function designed to keep ADAT positive
definite. (Here and below, we define − lndet M to be +∞ if M is not positive definite, even if

8 M.J. TODD

its determinant is positive.) We could therefore consider an algorithm that iterates values of d
or of (d, l) to minimize g, or maybe its upper bound

g̃(d) := g̃(d, l) := n f (d, l)+ p(d)−n, (2.16)

which has the advantage of being defined even if f is nonpositive, and is a convex function of
d. However, while we have expressions for these functions and their derivatives, they involve
the inverse or determinant of ADAT , which is costly to evaluate for each new d. It therefore
makes sense to consider coordinate descent algorithms, changing just a single component of d
at each iteration, since then ADAT is modified by a rank-one update and its inverse (or Cholesky
factorization) and determinant are simple to update. It turns out that such coordinate descent
algorithms are exactly variants of the ellipsoid algorithm, as we shall see in Section 5.

3. THE “BEST” LOWER BOUND

Recall that Section 3 of Burrell and Todd [3] shows that a lower bound on a constraint func-
tion can be generated by any ellipsoid represented as above (with f (d, l) = 1). Thus, given an
index j, we can calculate

λ := γ jD(AT (ȳ− γ
−1
j Ba j)− r), (3.1)

where γ j := (aT
j Ba j)

1/2, which satisfies Aλ =−a j, and then

θ(λ) := lT
λ−−uT

λ+

provides a lower bound on aT
j y over P. This λ can be converted into a nonnegative

λ̂ := Λλ−+λ+

which also satisfies Aλ̂ =−a j and θ(λ̂) =−uT λ̂ = θ(λ), equations which directly certify the
lower bound from AT y ≤ u. We call such λ ’s dual vectors, because they certify lower bounds
via duality.

In both the SEA and the OEA, a variety of ellipsoids is considered at each iteration. In the
SEA, there is the original ellipsoid, the ellipsoid obtained by decreasing d j to zero, and the final
ellipsoid. In the OEA, there is the original ellipsoid, the ellipsoid obtained by decreasing l j until
the center satisfies aT

j ȳ = u j, and the final ellipsoid. All these ellipsoids differ from the original
merely by a different d j and a different l j. In this section, we obtain the best lower bound of the
form θ(λ) that can be obtained from a class of λ ’s including all those generated as above.

Note that λ above is a linear combination of D(AT ȳ−r), DAT Ba j, and e j (with a zero weight
on the latter). We first show how to get an improved lower bound based on a dual vector of the
same form, but with jth component zero, as long as the lower bound from λ improves on l j and
aT

j ȳ > r j.
Note that Proposition 4.2 in [3] shows that d jγ

2
j < 1, and so λ j = d jγ j(aT

j ȳ− r j− γ j)> −1.
Hence

λ̃ :=
1

1+λ j
(λ −λ je j)

is well defined. It also has jth component zero, and satisfies Aλ̃ =−a j. If λ j ≥ 0 then we find

θ(λ̃) =
1

1+λ j
θ(λ)+

λ j

1+λ j
u j,

ELLIPSOID METHOD 9

a convex combination of the bound given by λ and u j. If θ(λ) > u j, indicating infeasibility,
then θ(λ̃) is also greater than u j, and we can use it to generate a certificate of infeasibility. If
θ(λ)≤ u j, then θ(λ̃) provides at least as good a lower bound as θ(λ).

On the other hand, if λ j < 0, then we have

θ(λ̃) =
1

1+λ j
θ(λ)+

λ j

1+λ j
l j,

or
θ(λ) = (1+λ j)θ(λ̃)+(−λ j)l j,

a convex combination of θ(λ̃) and l j. In both cases, we either obtain a certificate of infeasibility,
and terminate, or

θ(λ̃)≥ θ(λ),

and note that λ̃ is also a linear combination of D(AT ȳ− r), DAT Ba j, and e j.
In the SEA, aT

j ȳ > r j, i.e., t j is positive, in the ellipsoid at the start of the iteration because we
choose j as a constraint where ȳ violates the upper bound; t j remains positive in the ellipsoid
after dropping a j by (23) in [3]; and it is still positive for the final ellipsoid since (29) of [3]
shows that it is multiplied by 1− σ̂ > 0 from its previous value. In the OEA, t j is positive in the
ellipsoid at the start of the iteration by the choice of j; it remains positive after the decrease of
l j by (47) in [10]; and it is still positive for the final ellipsoid by (41) in [10]. Thus in all cases
we can move from λ to λ̃ and either still have a certificate of infeasibility or obtain at least as
good a lower bound. So we now confine ourselves to dual vectors that are linear combinations
of D(AT ȳ− r), DAT Ba j, and e j and have jth component zero.

Let d and l denote the vectors used in the ellipsoid at the start of the iteration, and let d̂ and l̂
correspond to another of the ellipsoids considered in the previous paragraph, so that they differ
from d and l only in their jth components. Let D̂, r̂, and ŷ correspond to these new vectors.
Then

AD̂AT = ADAT +αa jaT
j , (AD̂AT)−1 = (ADAT)−1 +β (ADAT)−1a jaT

j (ADAT)−1

for some α , β . Next AD̂r̂ = ADr+δa j for some δ , so that

ŷ = (AD̂AT)−1AD̂r̂ = ȳ+ ε(ADAT)−1a j

for some ε , and so D̂(AT ŷ− r̂) is a linear combination of D(AT y− r), DAT Ba j, and e j.
Similarly, (AD̂AT)−1a j = ζ (ADAT)−1a j for some ζ , so that D̂AT (AD̂AT)−1a j is a linear

combination of DAT Ba j and e j. It follows that λ̂ , like λ , is a linear combination of D(AT ȳ− r),
DAT Ba j, and e j.

We have shown that any lower bound generated by one of the ellipsoids we have been con-
sidering arises from a dual vector which is a linear combination of these three vectors, and that
moreover, we can restrict our attention to those dual vectors whose jth component vanishes.

Let us therefore consider a generic such dual vector

λ = µD(AT ȳ− r)+νDAT Ba j +πe j

with Aλ =−a j and λ j = 0. The first condition yields

ν +π =−1,

10 M.J. TODD

while the second gives

µd jt̄ j +νd jγ
2
j +π = 0.

We can now solve the first equation for ν in terms of π , substitute in the second, and then
solve for π in terms of µ , and thus express λ as a linear function of µ . Next we find and sort
the m values of µ where a component of λ vanishes, and then by moving through the sorted
values we find µ to maximize the piecewise-linear concave function θ(λ). This gives us the
desired best lower bound from any of the set of ellipsoids under consideration. The work for this
last phase is O(m lnm), while that of the remaining computations (in particular, of calculating
AT Ba j) is O(mn).

(Note: the final λ has zero jth component, but this may not be true of λ̄ := Λλ−+λ+. It may
then be possible to improve the lower bound further, as in moving from λ to λ̃ above; note that
λ̄ is not of the form above so such an improvement does not contradict our argument. This is
also why we put “best” in quotes above. It would be possible to compute the best lower bound
achievable from a dual vector as above after the improvement just discussed, but this would
require a one-dimensional search for the maximum of a piecewise-rational function and would
require up to twice as much arithmetical work per iteration, and so we did not pursue it.)

4. A MODIFIED POTENTIAL FUNCTION

Let us define

z(A,u) := min
y∈IRm

max
i
(aT

i y−ui), τ(A,u) := |z(A,u)|.

We use τ(A,u) as a condition number for the problem (strictly, its inverse is a condition number).
If P is empty, then every point has some aT

i y−ui positive, and since z(A,u) can be written as the
optimal value of a bounded linear programming problem this shows that z(A,u) is positive. If P
is nonempty, and has positive volume, then there is a point satisfying all constraints strictly, so
that z(A,u) is negative. If all constraint normals ai are normalized, then τ(A,u) is the minimum
distance each constraint must be relaxed to make the problem feasible in the first case (P empty),
and the radius of the largest ball contained in the feasible region in the second (P nonempty).
(In [10], all constraint normals were normalized, but that is not needed in what follows.)

We use γi(d, l) as the semi-width of the ellipsoid E(d, l) in the direction ai:

γi(d, l) := max{aT
i (y− ȳ) : y ∈ E(d, l)}=

√
f (d, l)aT

i Bai. (4.1)

If P is empty and we have an ellipsoid E(d, l) where the index j with maximal (positive)
aT

i ȳ−ui has γ j(d, l)< τ(A,u), it is not hard to see (Proposition 5.2 of [10]) that we can construct
from a dual vector certifying a lower bound for aT

j y a certificate of infeasibility. Thus at every
iteration, the OEA of [10] ensures a decrease of not only the volume of E(d, l), but also a
measure that forces an aggregate decrease in the γi’s. In fact, [10] requires that the weight
vector d is strictly positive, and uses the following upper bounds on the γi’s (Proposition 7.1 of
[10]):

γi(d, l)≤
(

di

f (d, l)

)−1/2

.

ELLIPSOID METHOD 11

Then [10] uses the potential function

φ(d, l) :=
m

∏
i=1

max

{(
di

f (d, l)

)−1/2

,
m

m+1
τ(A,u)

}
.

Clearly, φ is bounded below, by (mτ(A,u)/[m+ 1])m, and if we decrease it to this value, then
all γi(d, l)’s are below τ(A,u) and we can prove infeasibility. Thus, [10] proves that φ decreases
by a fixed fraction at every iteration, and hence establishes convergence in the infeasible case.

One disadvantage of using this function is that it forces all iterates to have d strictly positive.
Here, we suggest a modified potential function that avoids this restriction, and we give geo-
metric interpretations to both potential functions (and incidentally to the infeasibility criterion
f (d, l) < 0). We simply use the γi’s directly in the potential function instead of their upper
bounds:

ψ(d, l) :=
m

∏
i=1

max
{

γi(d, l),
m

m+1
τ(A,u)

}
. (4.2)

In order to prove that this modified potential function decreases suitably at each iteration, it
suffices to prove the following analog of Lemma 7.1 of [10]:

Lemma 4.1. Let d ≥ 0 and l ∈ IRm satisfy f (d, l)> 0, and similarly let d̃ ≥ 0 and l̃ ∈ IRm satisfy
f (d̃, l̃)> 0. Let 1≤ j ≤ m, and suppose that d, l, d̃, l̃ satisfy:

1
f (d̃, l̃)

d̃ = α

(
1

f (d, l)
d +

2
m−1

1
γ j(d, l)2 e j

)
,

for a scalar α ≥ m2−1
m2 . If γ j(d, l)≥ τ(A,u), then

ψ(d̃, l̃)≤ exp
(
− 1

2(m+1)

)
ψ(d, l).

Proof. The proof follows that of Lemma 7.1 of [10] (which proves a similar result for φ instead
of ψ), using

νi(d) := max
{

γi(d, l),
m

m+1
τ(A,u)

}
instead of

µi(d) := max

{(
di

f (d, l)

)−1/2

,
m

m+1
τ(A,u)

}
.

That proof is quite technical, and its details are not important to the rest of this paper. We
therefore just highlight the differences when using the modified potential function ψ . First note
that (with B as usual denoting (ADAT)−1)

1
f (d̃, l̃)

AD̃AT = α
1

f (d, l)

(
ADAT +

2
m−1

1
aT

j Ba j
a jaT

j

)
so that

f (d̃, l̃)(AD̃AT)−1 =
1
α

f (d, l)

(
B− 2

m+1
1

aT
j Ba j

Ba jaT
j B

)
. (4.3)

It follows that

γ j(d̃, l̃)2 =
1
α

m−1
m+1

γ j(d, l)2 ≤
(

m
m+1

)2

γ j(d, l)2

12 M.J. TODD

using the bound on α , and similarly

γi(d̃, l̃)2 ≤ 1
α

γi(d, l)2 ≤ m2

m2−1
γi(d, l)2

for i 6= j. With a few extra arguments to take care of the maxima in the definition of ψ , these
inequalities yield the desired result as in the proof of Lemma 7.1 in [10], using the inequality

m
m+1

(
m2

m2−1

)m−1
2

≤ exp
(
− 1

2(m+1)

)
.

ut
We conclude this section by giving some geometric intuition regarding these potential func-

tions, or rather their versions without taking the maxima,

φ̂(d, l) :=
m

∏
i=1

(
di

f (d, l)

)−1/2

and

ψ̂(d, l) :=
m

∏
i=1

γi(d, l). (4.4)

As the product of m terms, these seem to be related to volumes of m-dimensional objects. This
is true for the first, but not quite for the second.

Recall that E(d, l) is an ellipsoid in IRn containing all feasible y’s. Let us view this in the space
of the slacks s := AT y ∈ IRm, assuming d > 0. Note that a feasible s satisfies r− v ≤ s ≤ r+ v,
so lies in the ellipsoid

E1
s := {s ∈ IRm : (s− r)T D(s− r)≤ vT Dv}.

The volume of this m-dimensional ellipsoid is the volume of the m-dimensional ball times
m

∏
i=1

(
di

vT Dv

)−1/2

,

which differs from φ̂(d, l) by replacing f (d, l) = vT Dv− t̄T Dt̄ (from (2.14)) by vT Dv. However,
note that we are interested in slacks of the form AT y, so we can take a slice of this ellipsoid of
the form

{AT y ∈ IRm : (AT y− (AT ȳ− t̄))T D(AT y− (AT ȳ− t̄))≤ vT Dv}.
But since ADt̄ = 0, this quadratic inequality simplifies to (AT y−AT ȳ)T D(AT y−AT ȳ)≤ vT Dv−
t̄T Dt̄, so that all feasible slack vectors s = AT y lie in the ellipsoid

E2
s := {s ∈ IRm : (s−AT ȳ)T D(s−AT ȳ)≤ f (d, l)},

whose volume is exactly φ̂(d, l) times that of the m-dimensional ball.
We remark that these two m-dimensional ellipsoids, E1

s centered at r and the similar but
smaller one E2

s centered at AT ȳ, are analogous to a globe and the smaller globe enclosing all
points of a given latitude. We also see that f (d, l)< 0 corresponds to the case that the subspace
{AT y} completely misses the ellipsoid centered at r. Finally, if d has some zero components,
then the two m-dimensional ellipsoids become ellipsoidal cylinders, of infinite volume, while
if ADAT is positive definite, their intersection with the subspace {AT y} is an n-dimensional
ellipsoid embedded in IRm.

ELLIPSOID METHOD 13

The other (perturbed) potential function, ψ̂(d, l), does not appear to be the volume of an
m-dimensional object, but as the product of the semi-widths γi(d, l), it can be viewed as an
m-dimensional measure of the n-dimensional ellipsoid E(d, l).

5. THE ELLIPSOID METHOD AS COORDINATE DESCENT AND DECREASE STEPS

Let us suppose we have some nonnegative d with ADAT positive definite and some lower
bounds l certified by Λ as in (2.1). We can then define ȳ, and we stop if this is feasible. So
assume not. Then if f (d, l)≤ 0, we can construct a certificate of infeasibility as in Section 2. In
fact, we may as well also check whether Dt̄ provides a certificate of infeasibility, and then stop;
this may happen even if f (d, l) is positive.

We therefore assume that ȳ is not feasible, and that f (d, l) > 0, so we can scale d to make
f (d, l) equal to 1. We now have an ellipsoid E := E(d, l) that contains P. Standard ellipsoid
methods proceed as follows. First, an index j is chosen so that ȳ violates the jth constraint:
aT

j ȳ > u j. Then the new ellipsoid is chosen by adjusting d j and possibly l j. We have seen how
to choose the “best” possible value for l j. In this section we concentrate on updating d j in order
to decrease g in (2.15) (and/or possibly φ or ψ). Since we are changing a single component of
d, this can be viewed as coordinate descent, and then we may want to consider decreasing d j as
well as increasing it if this leads to good progress. It turns out that this is possible if ȳ satisfies
the jth constraint handily.

5.1. Decrease steps. Assume we have chosen a particular index j and we have scaled d so that
f (d, l) = 1. For simplicity, we write γ j for γ j(d, l). We consider the implications of updating d
to

d+ := d+(σ) := d +
σ

(1−σ)γ2
j
e j, (5.1)

with σ < 1. This form is chosen to mesh with previous work: if 0 ≤ σ < 1, the resulting
ellipsoid is defined by a quadratic inequality that is a linear combination of that defining the old
ellipsoid (with a weight of 1−σ), and that defining the slice l j ≤ aT

j y ≤ u j (with a weight of
σ/γ2

j). Now we consider also the possibility of choosing a negative value of σ . Of course, in
this case the containment of the intersection of the current ellipsoid and the slice within the new
ellipsoid is not guaranteed, but the containment of the feasible region is guaranteed as long as
d remains nonnegative.

If we choose a negative value of σ , there are three particular values we need to consider: one
that reduces d j to zero, one that makes f (d, l) equal to zero, and one that minimizes g(d, l). Note
that as σ goes from 0 to−∞, σ/[(1−σ)γ2

j] goes from 0 to−γ
−2
j , but this is no great limitation,

since by Proposition 4.1 of [3], d j ≤ γ
−2
j , with equality only if making d j zero makes ADAT

singular; moreover, the proposition assures that AD+AT is positive definite.
Let us determine the effects on ȳ, f and p of making such a change, where σ < 1 can be

positive or negative. This result is similar to those obtained in [20] and [3], and a restatement
of Proposition D.1 of [10] in our notation.

Proposition 5.1. Suppose f (d, l) = 1 and d+ is as given in (5.1) above. Let

α :=
aT

j ȳ−u j

γ j
=

t̄ j− v j

γ j
, β :=

aT
j ȳ− l j

γ j
=

t̄ j + v j

γ j
. (5.2)

14 M.J. TODD

Then

B+ := (AD+AT)−1 = B−σ
Ba jaT

j B

aT
j Ba j

, ȳ+ := B+AD+r = ȳ−σ
α +β

2γ j
Ba j, (5.3)

and

ζ (σ) := f (d+, l) = 1−αβσ +
(β −α)2

4
σ2

1−σ
, π(σ)) := p(d+) = p(d)+ ln(1−σ). (5.4)

Note that α and β are convenient measures for the depths of the cuts. The jth constraint can
be written as α ≤ −aT

j (y− ȳ)/γ j ≤ β . We always have α < β , while α > 0 signifies that ȳ
violates the jth (upper-bound) constraint. If α > 1 then the jth constraint fails to intersect the
ellipsoid, and a certificate of infeasibility can be constructed. If α ≤ −1, then all the points
in the ellipsoid satisfy the jth constraint. Similar statements apply to β with respect to the jth
lower-bound constraint.

Proof. First note that AD+AT =ADAT +[σ/(1−σ)]a jaT
j /aT

j Ba j, so the formula for B+ follows
from the rank-one update formula, as does the equation det B+ = (1−σ)det B, which leads to
the formula for π(σ).

Next,

ȳ+ = (B− σ

γ2
j
Ba jaT

j B)(ADr+
σ

(1−σ)γ2
j
r ja j)

= ȳ−σγ
−2
j Ba j(aT

j ȳ− 1
1−σ

r j +
σ

1−σ
r j)

= ȳ−σγ
−2
j (aT

j ȳ− r j)Ba j = ȳ−σγ
−2
j t̄ jBa j = ȳ−σ

α +β

2γ j
Ba j.

Then

ȳT
+(AD+AT)ȳ+

= ȳT
+AD+r

= (ȳ−σγ
−2
j t̄ jBa j)

T (ADr+
σ

(1−σ)γ2
j
r ja j)

= ȳT (ADAT)ȳ−σγ
−2
j t̄ jaT

j ȳ+
σ

(1−σ)γ2
j
r jaT

j ȳ− σ2

(1−σ)γ2
j
r jt̄ j

= ȳT (ADAT)ȳ+
σ

(1−σ)γ2 (−[1−σ]t̄ j(t̄ j + r j)+ r j(t̄ j + r j)−σr jt̄ j)

= ȳT (ADAT)ȳ+
σ

(1−σ)γ2
j
(r2

j − t̄2
j +σ t̄2

j) = ȳT (ADAT)ȳ+
σ

(1−σ)γ2
j
r2

j −σγ
−2
j t̄2

j .

Finally,

lT D+u = lT (D+
σ

(1−σ)γ2
j
e jeT

j)u = lT Du+
σ

(1−σ)γ2
j
l ju j = lT Du+

σ

(1−σ)γ2
j
(r2

j − v2
j),

ELLIPSOID METHOD 15

so that

ζ (σ) = ȳT
+(AD+AT)ȳ+− lT D+u

= ȳT (ADAT)ȳ− lT Du+
σ

1−σ
γ
−2
j v2

j −σγ
−2
j t̄2

j = 1−σγ
−2
j (t̄2

j − v2
j)+

σ2

1−σ
γ
−2
j v2

j .

This gives the desired result on noting that γ
−2
j (t̄2

j − v2
j) = γ

−1
j (t̄ j− v j)γ

−1
j (t̄ j + v j) = αβ and

γ
−1
j v j = (β −α)/2. ut

5.2. Critical values of σ . Now we identify the three critical values of σ . First, the value at
which the jth component of d+(σ) hits zero is

σ0 :=−
d j

1−d jγ
2
j
.

Second, the value (if it exists) where ζ (σ) hits zero, by the proposition above, is a root of the
quadratic

[(β −α)2 +4αβ]σ2−4(1+αβ)σ +4 = 0,
or

2(1+αβ)±
√

4(1+αβ)2−4(α +β)2

(α +β)2 = 2
1+αβ ±

√
(1−α2)(1−β 2)

(α +β)2

if α +β 6= 0, and
(1+αβ)−1 = (1−α

2)−1 = (1−β
2)−1

if α + β = 0. Note that, if α + β = 0 and α ≥ −1, then this last expression is undefined
or greater than 1 and is not a valid value for σ . Similarly, if α + β 6= 0, we must have |α|
and |β | both at most 1 or both greater than one for the square root to exist. In the former
case 1+αβ > 0 and by the arithmetic-geometric mean inequality, the smaller root is at least
2[1+αβ − (1−α2/2−β 2/2)]/(α +β)2 = 1. Thus the only time that a meaningful value of σ

can give a zero value of ζ is when α <−1 and β > 1, and then the root closest to zero is

σζ :=

21+αβ+
√

(1−α2)(1−β 2)

(α+β)2 if α +β 6= 0,

(1−α2)−1 ifα +β = 0.

The last critical value is where η(σ) := g(d+(σ)) attains its minimum. Note that η(σ) =
n lnζ (σ)+π(σ), so that

η
′(σ)=

1
(1−σ)ζ (σ)

[
n(1−σ)

(
−αβ +

(β −α)2

4
2σ −σ2

(1−σ)2

)
−
(

1−αβσ +
(β −α)2

4
σ2

1−σ

)]
.

We see that η ′(0) is negative if αβ >−1/n (so that σ should be increased to a positive value)
and positive if αβ <−1/n (so that σ should be decreased to a negative value. We are interested
in values of σ less than 1 with ζ (σ) positive, and then η ′(σ) is a positive multiple (1/[4(1−
σ)2ζ (σ)]) of the quadratic

−(n+1)(α +β)2
σ

2 +(2n(α +β)2 +4(1+αβ))σ −4(1+nαβ).

If α +β = 0, this is in fact linear, with a root at

ση :=
1+nαβ

1+αβ
=

1−nβ 2

1−β 2 . (5.5)

16 M.J. TODD

Otherwise, if 1+nαβ is positive, it has two positive roots, and we would like to increase σ to
the smaller, which is

ση :=
2(1+nαβ)+n(α +β)2−ρ

(n+1)(α +β)2 , (5.6)

with
ρ :=

(
4(1−α

2)(1−β
2)+n2(β 2−α

2)2)1/2
.

These are exactly the formulae given in Todd [20]. If 1+nαβ is negative, the quadratic has one
positive and one negative root, and we would like to decrease σ to the negative root, which is
given by exactly the same formula ση given above.

In the case that 1+nαβ is positive, the ellipsoid E(d+(ση)) is the minimum-volume ellipsoid
containing a slice of the current ellipsoid E(d, l), A similar statement is true when 1+ nαβ is
negative, but now involving the two end-pieces of the current ellipsoid.

Theorem 5.2. Suppose −1≤ α ≤ β ≤ 1, with α >−1 and/or β < 1, and let

Ēαβ := {y ∈ E(d, l) :−aT
j y≤−aT

j ȳ+αγ j or −aT
j y≥−aT

j ȳ+βγ j}.

Then if 1+nαβ is nonnegative, the minimum-volume ellipsoid containing Ēαβ is E(d, l), while
if 1+nαβ < 0, it is E(d+(ση), l).

Proof. We follow exactly the proof technique in [20]. We first transform to a situation where
E(d, l) is the unit ball and −a j becomes the first unit vector. Then the very same arguments
of Proposition 1 and Theorem 1 of [20] provide lower bounds on the volumes of containing
ellipsoids, since the 2n+ 1 or 4n points used in those proofs also lie in the (transformed) set
Ēαβ .

Next, we construct ellipsoids achieving these bounds exactly as in Theorem 2 of [20]. The
only difference is that now, if y lies in the (transformed) set Ēαβ , it satisfies yT y≤ 1 and (eT

1 y−
α)(eT

1 y− β) ≥ 0. We take 1−ση times the first and add ση times the second and add. But
since the second multiplier is negative, it reverses the sense of the second inequality and we get
a valid less-than-or-equal-to inequality. The rest of the proof is the same. ut

Our strategy is now clear. If we choose j giving αβ > −1/n, we should increase σ to ση

as given by (5.5) or (5.6) above. This is like the usual deep-cut ellipsoid method. On the other
hand, if αβ <−1/n, we should decrease σ . If α <−1 and β > 1, we can compute σζ . If this is
at least σ0, we should decrease σ to σζ , and the resulting value of f (d, l) will be zero, allowing
us to deduce the feasibility or infeasibility of the problem. If this does not occur, either because
α ≥ 1 or β ≤ 1 or σζ < σ0, we decrease σ to the maximum of σ0 and ση as given by (5.5) or
(5.6) above.

5.3. Guaranteed reduction of volume but not potential. We now give conditions under
which a decrease step can guarantee a reduction in the volume of the ellipsoid.

Theorem 5.3. Suppose n≥ 2. Then, if

αβ ≤−2
n

and max{α,−β} ≤ −2
n
,

there is some σ̂ < 0 with
g̃(d+(σ̂), l)≤ g̃(d, l)− 1

4n
,

where g̃ is defined in (2.16). Moreover, either

ELLIPSOID METHOD 17

(a) d+(σζ)≥ 0 and f (d+(σζ), l)≤ 0; or
(b) f (d+(σ0), l)> 0 and vol(E(d+(σ0, l)≤ vol(E(d, l)); or
(c) d+(ση)≥ 0 with f (d+(ση), l)> 0 and

vol(E(d+(ση), l)≤ exp
(
− 1

8n

)
vol(E(d, l)).

Proof. We will be working with g(d, l), which is twice the logarithm of the volume of E(d, l),
and its upper bound g̃(d, l). Recall that g̃(d, l) = n f (d, l)+ p(d)−n, so that by Proposition 5.1

∆g̃ := g̃(d+(σ), l)− g̃(d, l)

=−nαβσ +n
(β −α)2

4
σ2

1−σ
+ ln(1−σ)

≤−(nαβ +1)σ +n
(β −α)2

4
σ

2

for negative σ . We now distinguish three cases.
If α ≥−1 and β ≤ 1, then nαβ +1≤−1 and the last term on the right-hand side is at most

nσ2, so that the right-hand-side above is at most σ + nσ2, and by choosing σ̂ = −1/(2n) we
see that we can achieve the desired decrease.

Next, if−1≤ α ≤−2/n and β > 1 (the argument is analogous if α <−1 and 2/n≤ β ≤ 1),
then nαβ + 1 ≤ −2β + 1 ≤ −β and (β −α)2 ≤ (β + 1)2 ≤ 4β 2, so that the right-hand side
is at most βσ + nβ 2σ2, and by choosing σ̂ = −1/(2nβ) we see that we can again achieve a
decrease of at least 1/(4n).

Finally, if α < −1 and β > 1 and β ≥ −α (the argument is analogous if −α > β), then
nαβ +1≤−nβ +1 and (β −α)2 ≤ (2β)2 = 4β 2, so that the right-hand side is at most (nβ −
1)σ +nβ 2σ2, and by choosing σ̂ =−(nβ −1)/(2nβ 2), we see that we can achieve a decrease
of at least (nβ − 1)2/(4nβ 2) = (n− 1/β)2/(4n) ≥ (n− 1)2/(4n) ≥ 1/(4n). This proves the
first part.

Next, if σζ is well-defined and at least σ0, then (a) holds, and we can establish feasibility
or infeasibility. So assume not. Then if σ̂ ≤ σ0, an upper bound on g̃, and hence one on g, is
decreasing as we move from σ = 0 down to σ0, and it is tight at σ = 0, so case (b) holds. Lastly,
assume σζ is not well-defined or is less than σ0, and that σ̂ > σ0. Then either ση ≤ σ0, so that
the volume of E(d∗(σ), l) is decreasing as we move from σ = 0 down to σ0, and so case (b)
holds, or ση > σ0, and then

g(d+(ση), l)≤ g(d+(σ̂), l)≤ g̃(d+(σ̂), l)≤ g̃(d, l)− 1
4n

= g(d, l)− 1
4n

,

so that case (c) holds. ut
Unfortunately, we cannot guarantee a suitable decrease in the potential functions φ and ψ for

negative σ . Indeed, let us suppose all terms µi and νi are defined by their first arguments. Then
to first order, f (d+(σ), l) is 1−αβσ . All components di, i 6= j, are unchanged, while

(d+(σ)) j

d j
= 1+

σ

(1−σ)d jγ
2
j
,

18 M.J. TODD

and since d j can be arbitrarily close to zero, this ratio can decrease arbitrarily fast as σ decreases.
This implies that we cannot control φ . By Proposition 5.1, we know

γ j(d+(σ), l)2 = (1−σ)γ2
j ,

However, the best we can achieve for i 6= j, using the Cauchy-Schwarz inequality, is

γi(d+(σ), l)2 ≤ (1−σ)γ2
i ,

and since there are m such terms we cannot guarantee a decrease in ψ either. Hence decrease
steps do not seem to be possible in the OEA while maintaining complexity guarantees for the
infeasible case.

Suppose we only try decrease steps when the conditions of Theorem 5.3 hold. Then the
ellipsoid method in the feasible case will enjoy similar theoretical guarantees to those without
such steps. Indeed, in a decrease step, either case (a) holds and we establish feasibility or
infeasibility; or case (b) holds (we call this a drop step) and the volume of the ellipsoid does not
increase; or case (c) holds, and the volume decreases by a factor similar to that for a “normal”
step. Thus we only need to bound the drop steps. But if d j decreases to zero, it must have
been positive because it was one of the original at most m components of d, or because it was
increased from 0 in a previous step (we call these add steps). Hence the iteration bound is at
most multiplied by eight (four because of the less significant volume reduction, and two because
each drop step must be paired with an earlier increase or add step) and incremented by m.

6. IMPROVING AN ITERATION

In this section we see how the ideas of the previous sections can be incorporated into the
iterations of the SEA and the OEA. Note that both of these include some counter-intuitive steps.
In the SEA, we first decrease d j to zero before updating the lower bound and then increasing
d j again. In the OEA, we first decrease the lower bound used in the ellipsoid before updating
the ellipsoid, and the value of l j used in the ellipsoid is not necessarily the best available.
Here we remedy these drawbacks and possibly improve the efficiency of the algorithms without
sacrificing any theoretical guarantees.

Note that most ellipsoid updating steps perform a balancing act: the ellipsoid is squeezed in
one direction while growing in other directions, so that the parameters must be appropriately
chosen to obtain an overall decrease in the appropriate measure. This is doubly so for the
OEA, since it seeks to simultaneously decrease the volume of the ellipsoid and the potential
function φ . However, some changes (analogous to masking in crowded indoor spaces and
getting vaccinated in the time of COVID) are unequivocally beneficial, involving no trade-offs.

Definition 6.1. A move from (d, l) to (d̃, l̃) is a Pareto-improving step if d̃ ≥ d and f (d̃, l̃) ≤
f (d, l), with at least one inequality strict.

Of course, we are interested in the case that both l and l̃ are vectors of valid lower bounds,
and that d ≥ 0.

Let us examine the effect of such a step. By (5.4), possibly applied repeatedly, p(d) is
reduced, so that g(d, l) is decreased. By its definition, φ(d, l) is (maybe not strictly) decreased.
And since (5.3), possibly applied repeatedly, shows that aT

i Bai decreases for each i, ψ(d, l) is
(maybe not strictly) decreased.

Here are some examples of Pareto-improving steps:

ELLIPSOID METHOD 19

(a) Increasing d j if v j(d, l)< |t̄ j(d, l)| (i.e., if aT
j ȳ > u j or aT

j ȳ < l j), by (42) in [10];
(b) Decreasing l j if aT

j ȳ > u j by (48) in [10];
(c) Increasing l j if aT

j ȳ < u j, also by (48) in [10];
(d) Increasing both d j and l j while keeping aT

j ȳ = u j; and
(e) Taking a minimum-volume ellipsoid updating step if δ in (3.7) of [20] is at most 1, e.g., if

α ≥ 1/n and β = 1 (d increases while f (d, l) remains 1).
The only one of these cases that requires proof is (d), but it is crucial to our improvements.

Case (b) corresponds to the first step in an iteration of the OEA in [10]; case (c), completely
analogous, could be applied at the end of such an iteration, either increasing l j to the best
certified lower bound or increasing aT

j ȳ to u j. Case (e) is included to illustrate that certain
minimum-volume ellipsoid updates, if the parameters are suitable, involve no trade-offs and
will simultaneously decrease the potential functions φ and ψ . Now let us examine case (d) in
detail.

Proposition 6.2. Suppose d ≥ 0, with ADAT positive definite, and l is a vector of lower bounds
for the constraints of P. Let the center ȳ of E(d, l) satisfy aT

j ȳ = u j where d j > 0, and let l̃ j,
with l j < l̃ j < u j, also be a valid lower bound for aT

j y for y ∈ P. Define

µ :=
l̃ j− l j

u j− l̃ j
d j.

Then, with d̃ := d+µe j, l̃ = l+(l̃ j− l j)e j, E(d̃, l̃) also has center ȳ and the move from (d, l) to
(d̃, l̃) is a Pareto-improving step.

(Note that if d j = 0, µ = 0 and d is unchanged. Since the ellipsoid does not depend on the
jth constraint, it is unchanged when l̃ replaces l, so that ȳ and f (d, l) are unchanged and the
conclusion is true except that no inequality in the definition of Pareto-improving steps is strict.)

Proof. The inequality defining E(d, l) can be written

d j(aT
j y−u j)(aT

j y− l j)+∑
i6= j

di(aT
i y−ui)(aT

i y− li)≤ 0. (6.1)

If we add to this µ times
(aT

j y−u j)(aT
j y−u j)≤ 0, (6.2)

we obtain
(d j +µ)(aT

j y−u j)(aT
j y− l̃ j)+∑

i6= j
di(aT

i y−ui)(aT
i y− li)≤ 0,

since

l̃ j =
d j

d j +µ
l j +

µ

d j +µ
u j

from the definition of µ . This is the inequality defining E(d̃, l̃). Since ȳ minimizes both the
left-hand side of (6.1) (uniquely) and the left-hand side of (6.2), it also minimizes uniquely the
left-hand side of the final inequality, implying that it is the center of E(d̃, l̃).

It remains to show that f (d, l) is not increased. But using the equation (2.14), we see that

f (d, l) = d jv2
j −d jt̄2

j +∑
i6= j

(div2
i −dit̄2

i),

20 M.J. TODD

and only the terms indexed by j change. But since aT
j ȳ = u j, we find that v j = t̄ j both before and

after the change, and thus in both cases, the two terms cancel and hence f (d, l) is unchanged.
ut

We now outline improvements to the SEA and the OEA. First, we choose the index j as either
one that is maximally violated (maximum (aT

i ȳ−ui)/γi(d, l) in the SEA or (aT
i ȳ−ui)/‖ai‖ in

the OEA), or, for the SEA, an index for which a decrease or drop step (Section 5) would be
worthwhile. Next, if we choose a violated constraint, we can use the technique of Section 3
to either generate a lower bound at least as good as those in previous algorithms, or obtain a
certificate of infeasibility. We can then proceed as follows.

For the SEA, instead of decreasing d j to zero, we first take a Pareto-improving step of type
(a) to decrease aT

j ȳ to u j. Using (5.3), we see that we should replace d by d+(σ), where

σ := 2
aT

j ȳ−u j

(α +β)γ j
.

Next we can take a Pareto-improving step of type (d) to increase both d j and l j, increasing the
latter to the bound found in the previous paragraph. Finally, we take a usual ellipsoid-updating
step from the current ellipsoid, increasing d j to minimize the volume of the new ellipsoid.

It is worth noting that exactly the same ellipsoid would have been obtained by first decreasing
d j to zero, then updating l j to the “best” lower bound, and then taking a usual ellipsoid-updating
step, since with the same updated l j, there is only one volume-minimizing d j. However, we find
the three-step procedure described above more intuitive, and it paves the way for our improve-
ment of the OEA.

In [10], the first step of the OEA is to decrease l j until aT
j ȳ = u j, and then take an ellipsoid-

updating step, finally adjusting l j to correspond to the final ellipsoid. The result is that l j will
rarely be the best lower bound found. As an alternative, we can perform the first two steps of
the modified SEA described above, resulting in l j being the best lower bound found and the
equality aT

j ȳ = u j. (An alternative, which will lead to exactly the same ellipsoid, is to decrease
l j until aT

j ȳ = u j, and then take a Pareto-improving step of type (d), increasing both d j and l j,
until l j reaches the best lower bound, but we prefer the first motivation.) We can then replace d
by d+(σ), where

σ =
2

m+1
.

Since α = 0 and β ≤ 1 (we use a bound no less than that given by the current ellipsoid) (5.3)
gives

f (d+, l)≤ 1+
1

m2−1
=

m2

m2−1
,

and so Lemma 7.1 of [10] and Lemma 4.1 above assure us that we obtain a suitable decrease
in φ and ψ . Indeed, we can do slightly better. Note that ln φ̂(d+(σ), l) is bounded by an
expression like g(d+(σ), l), but with m replacing n. We can therefore use a value for σ that is
like ση in (5.6), but with m replacing n, and then we get a reduction at least as good as that from
σ = 2/(m+1) as above. The proof parallels that of Lemma 7.2 in [10].

7. COMPUTATIONAL RESULTS

Here we give the results of some preliminary computational testing.

ELLIPSOID METHOD 21

7.1. Problem generation. We consider problems of sixteen different sizes. The number of
variables, n, is 60, 125, 250, or 500; the number of inequalities, m, is either 1.4, 2, 2.8, or 4
times n (photographers of a certain age may recognize these numbers). For each such pair n, m,
we generate ten feasible problems and ten infeasible problems as follows.

For feasible problems, we first generate A as an n×m matrix with independent standard
Gaussian entries. We then generate an n-vector y0 whose entries are each 100 times a standard
Gaussian random variable, again all independent. Finally, we set u as AT y0 plus a vector of
ones, so that y0 is feasible.

For infeasible problems, we start by generating A and y0 as above. We then generate a vector
x of m independent uniform random variables in [0,1], and replace A by A− (1/eT x)AxeT , with
e an n-vector of ones, so that Ax = 0. We set u equal to Ay0 plus an n-vector of independent
standard Gaussian random variables, and then replace u by −u if uT x > 0. Then x certifies the
infeasibility of the system AT y≤ u, but the (now infeasible) region is again somewhat centered
about y0 (or the similarly distributed −y0).

In either case, we apply our algorithms to the system AT y ≤ u, without knowing whether or
not it is feasible, hoping to generate either a feasible solution or a certificate of infeasibility.

7.2. Obtaining the initial system. We investigated three ways to convert a problem generated
as above to a form suitable for our algorithms, hence with bounds on the variables.

7.2.1. Big M initialization. The simplest method is just to augment the constraints AT y≤ u with
bounds −Me ≤ y ≤ Me, where e is an n-vector of ones and M is a large constant. While this
method has no theoretical justification, we include it to compare our other methods to, and also
because it serves as the basis for the two-phase method below. We typically use M = 10,000
which is large compared to the expected size of a component of y, of the order of 100 for
problems generated as above. Hence we do not expect to render feasible problems infeasible
by adding these bounds. Similarly, if we generate a certificate of infeasibility, we expect it to
involve only the original constraints of the system, not the added bounds. These expectations
held true in our experiments. We also tried other values of M to determine how it affected the
performance of the algorithms.

7.2.2. Freund-Vera initialization. The second method is to introduce an additional variable to
homogenize the problem, as in Freund and Vera [5] . Thus we replace AT y≤ u by

AT y−uη ≤ 0, −η ≤ 0.

(We actually want a solution with η positive, so that y/η will solve the original system.) With
this homogeneous system, we can add arbitrary bounds, so we require −e ≤ y ≤ e, with e as
above, and η ≤ 1 (we already have a lower bound of 0 on η). Note that the system above is
always feasible, with y and η both zero. If we happen to hit this solution, we do not terminate,
but continue, pretending the constraint −η ≤ 0 is violated. If we find a feasible solution with
η positive, we have a feasible solution to the original system. We could also find a weak
infeasibility certificate, a vector satisfying all the requirements except that the strict inequality
is satisfied weakly, at equality. Then, since all the added upper bounds (y ≤ e,−y ≤ e, η ≤ 1)
have right-hand sides 1, the weights on all of these must be zero. It follows that we have x, ξ

satisfying
Ax = 0, −uT x−ξ = 0, x≥ 0, ξ ≥ 0.

22 M.J. TODD

If in fact ξ is positive, then Ax = 0, uT x = −ξ < 0, and x ≥ 0, so we have a certificate of
infeasibility for the original system. (In addition, the system above with ξ > 0 is the alternative
system for the homogeneous system with −η < 0.) If not, at least we have a weak infeasibility
certificate.

Use of a homogeneous system is very attractive in eliminating the need to add artificial
bounds and determine appropriate values to be used, but the approach also has disadvantages. If
the original system is infeasible, then the corresponding homogeneous system is on the bound-
ary between feasible and infeasible systems, so its condition number is infinite. More prac-
tically, it is clearly necessary computationally to choose tolerances very carefully, to estimate
whether an inexact solution is close enough to feasibility and has η sufficiently positive to claim
we have found a feasible solution to the original system, and to estimate whether an inexact in-
feasibility certificate has ξ sufficiently positive to claim we have determined infeasibility of the
original system. This caused very few problems for the algorithms where decrease of weights
d j was allowed, but if not, it was obviously hard to generate certificates with zero or close to
zero weights on the added bounds, since these are obtained from Theorem 2.1 or from lower
bound weights and usually involve constraints with positive d j’s. Hence a number of infeasible
instances mistakenly were judged feasible.

7.2.3. Two-phase method. Finally, we discuss a technique that is based on the fact that we
really want to let our big M tend to infinity, and the observation that the algorithms are quite
insensitive to its size. What happens as M grows to infinity? Scaling and then taking the limit,
we are led to the phase-1 problem

AT y≤ 0, −e≤ y≤ e.

We can apply the SEA or the OEA to this system. If we find a point with AT y < 0, we can
scale it to find a point satisfying AT y ≤ u, our original system. If instead, AT y ≤ 0 but with
equality in at least one component, we choose such an index j and continue the iterations as if
the constraint were strictly violated. Finally, we may obtain a weak certificate of infeasibility,
that is, a vector (x, x̃, x̂) satisfying (x, x̃, x̂) ≥ 0, Ax+ x̃− x̂ = 0, eT x̃+ eT x̂ ≤ 0. Then it is easy
to see that the weights (x̃, x̂) on the added bounds are zero, so that Ax = 0, x ≥ 0. However,
this does not give a weak certificate of infeasibility for the original system, because u has been
ignored. By examining the different cases of infeasibility certificates in Sections 2 and 3, we
see that x j being zero usually implies that d j is zero, unless either an unlikely coincidence
occurs, like aT

j ȳ = r j in Theorem 2.1, or x j is zero because of our search of the piecewise-linear
function θ(λ) in Section 3. In the latter cases, if d j is positive and j corresponds to a bound,
we ignore the certificate and continue the iterations. However, if all positive d j’s correspond to
original constraints with x j positive, then we can use this d to generate a starting ellipsoid for
the original system. Indeed, we can use Ax = 0, x ≥ 0 to generate lower bounds l j for every j
with x j positive. We then have upper and lower bounds for every constraint with d j positive,
and this gives our ellipsoid E(d, l). We do not have lower bounds for the remaining constraints,
but these can be generated when such a constraint is chosen as violated. We now move to phase
2, applying the algorithm to the original system starting with E(d, l). Notice that again we have
to be careful in setting our tolerances in order to recognize weak certificates of infeasibility, and
we might occasionally obtain false indications of (in)feasibility due to numerical inaccuracies.

ELLIPSOID METHOD 23

For phase 1 to terminate, we need to be able to reduce the weights d j on the added bounds
to zero or to negligible values compared to the rest. This is very hard for algorithms that never
decrease weights, and so we only use this method for variants of the SEA that allow decrease
and drop steps.

7.3. Experimental results. We ran several versions of our algorithms to investigate the sepa-
rate effects of our new lower bounds and of allowing decrease and drop steps. We give detailed
results for three versions of the SEA and one version of the OEA, and make some comments
about our other findings.

For the OEA, to maintain the theoretical guarantees of [10], we need to choose the violated
constraint j with the largest (aT

j ȳ− u j)/‖a j‖. Having chosen j, we perform the iteration as
described at the end of Section 6, including the acceleration in the last paragraph. For the SEA,
we compute jmax and jmin maximizing and minimizing (aT

j ȳ− u j)/γ j, respectively, with the
second search confined to those j’s with positive d j. We first consider j = jmin. If the resulting
αmin and βmin from (5.2) satisfy αβ ≤−2/n and dropping j would keep ADAT positive definite
and not increase the volume of the ellipsoid, we perform a drop step with this j. We prioritize
drop steps to remove redundant constraints and, in the case of the big M or 2-phase methods,
to remove bounds. If we cannot use a drop step, we calculate αmax and βmax from (5.2) for
j = jmax and then choose an add/increase step for jmax or a decrease step for jmin according as
min(1,αmax)min(1,βmax) is further from or closer to −1/n than max(−1,αmin)min(1,βmin).
Having chosen j, we complete the iteration as described in Section 6.

The average numbers of iterations for the SEA are given in Table 1. Several observations can
be made. For all the initialization methods, the lightly constrained feasible problems were the
easiest to solve, followed by the infeasible problems and then the more highly constrained fea-
sible problems. For some reason, for the big-M and two-phase methods, the feasible problems
with m = 2n were harder to solve than the more highly constrained problems. For infeasible
problems, all methods were comparable, with the number of iterations very highly correlated
with the dimension n but seemingly independent of the number m of constraints. For feasible
problems, the methods differed quite a bit, but there was no clear winner. These observations
are confirmed by fitting power laws to the data. For example, for the Freund-Vera initialization
on feasible problems, the best fit was .08m1.72, while for infeasible problems it was .19n1.78.
The combination of deep cuts, improved lower bounds, and decrease and drop steps seems to
have dropped the exponent from the worst case quadratic level to between 1.7 and 1.8, but
this is nowhere near the linear rate necessary to compete with pivoting (or interior-point) meth-
ods. To highlight this, Table 1 also includes the average number of iterations required on the
same problems by the linprog routine in MATLAB, using the dual simplex option and solv-
ing max{ f T y : AT y ≤ u} with f identically zero. These are better by a considerable factor,
particularly on the larger problems, and the iterations are no more costly.

When we modified the SEA to use the lower bound suggested in [3], the results varied from
3% faster to 50% slower; the geometric mean of the ratios was 1.20. The results are given
in Table 2. Next we used the best bound, but eliminated decrease and drop steps. For this
comparison, we restricted ourselves to the Freund-Vera and big M methods. The increase-only
algorithm varied from 7% faster to 249% slower, with a geometric mean of the ratios of 1.93.
The full results appear in Table 3. We conclude that the improved lower bound had only a
slightly beneficial effect, but that decrease and drop stops are very advantageous.

24 M.J. TODD

We also investigated the effect of the value of M in the big M method. We only looked at the
problems with n equal to 60, 125, or 250. Since theory suggests that the number of iterations
might grow linearly with logM, we might expect a growth of 33% if we increase M from 1000 to
10,000, and 25% more if we further increase it to 100,000. However, the number of iterations
for M = 10,000 ranged from 2% faster to 15% slower compared to that for M = 1,000 for
feasible problems, with a geometric mean of the ratios of 1.06, while for M = 100,000, the
algorithm ranged from 1% faster to 16% slower, with the geometric mean of the ratios still
1.06. For the infeasible problems, the effect was even smaller: all the numbers were within 3%.
We conclude that the effect of M is marginal, at least when using the SEA with its decrease and
drop steps.

The average numbers of iterations for the OEA are given in Table 4. We see that these are
distinctly worse than those for the SEA, although given the compromises made in the original
OEA we feel that the fact that results are of the same order as for the SEA shows the value of the
improvements described in Section 6. Some runs terminated with numerical problems: either
the lower-triangular Cholesky factor of ADAT became close to singular, or ADAT itself was
judged not sufficiently positive definite during a refactorization, called for when inaccuracies
in updated quantities became noticeable. Here we make two comparisons. The first is with
the increase-only variant of the SEA of the previous paragraph. We find that the OEA results
are between 7% faster and 207% slower (discounting the runs that terminated with numerical
problems), with the geometric mean of the ratios being 1.97. Secondly, we wondered whether
part of the poor performance of the OEA was due to its selecting the index j based on scaling
by the norm of a j, rather than by its ellipsoidal norm γ j, which would lead to a deeper cut. So
we changed to selecting j in the latter way. Compared to this variant, the OEA results varied
from 5% faster to 18% slower (ignoring the runs that terminated with numerical problems or
that ran into the iteration limit). We conclude tentatively (due to the numerical problems) that
choosing j to maintain theoretical guarantees has only a small effect.

Overall, we feel we have given ellipsoid algorithms for linear inequalities that iterate a se-
quence of containing ellipsoids, choosing one index j and only updating the corresponding
weight d j and lower bound l j, the very best chance to show their potential, and they have come
up wanting. Even the most sophisticated coordinate-descent method must suffer compared to a
gradient- or higher-order-based algorithm, and the speed of the resulting iterations due to sim-
pler linear algebra is unable to compensate. In high dimensions, the decrease in the volume of
the ellipsoid (and of the potential function) is just too slow to be competitive. One might hope
that the sequence of ellipsoids generated would resemble a balloon blown up and then released,
rushing round the room and rapidly reducing its volume; instead, one is left with the image of a
large soap bubble blown to amuse a child, which vibrates charmingly in one direction and then
another, but seems not to get smaller – until it pops!

ELLIPSOID METHOD 25

SEA Freund-Vera Big M Two-Phase Dual Simplex
Initialization Initialization Method Algorithm

n m Feasible Infeasible Feasible Infeasible Feasible Infeasible Feasible Infeasible
60 84 168.1 294.4 223.4 293.4 230.1 298.6 44.2 73.4
60 120 448.7 283.0 589.2 283.5 587.0 283.5 62.0 83.9
60 168 575.1 291.7 569.7 290.1 422.5 289.9 73.3 83.2
60 240 574.6 298.4 587.3 302.3 426.3 301.3 83.2 86.3

125 175 477.5 1012.5 566.7 1029.6 565.9 1044.9 103.2 165.2
125 250 1690.2 1020.2 2076.9 1017.2 2142.4 1011.7 146.4 190.3
125 350 2334.0 1031.3 1648.3 1039.3 1384.2 1032.8 172.5 196.2
125 500 2209.8 1082.3 1661.7 1079.4 1415.1 1080.4 206.1 206.4
250 350 1143.8 3571.5 1224.3 3551.1 1256.1 3567.1 236.4 360.9
250 500 7216.6 3473.3 6848.7 3468.2 7424.4 3468.2 329.6 417.8
250 700 8766.8 3547.2 4819.0 3537.8 4518.0 3545.2 397.9 446.9
250 1000 7647.5 3736.0 4888.8 3728.3 4561.9 3732.1 476.3 455.2
500 700 2521.9 12951.1 2648.3 12941.7 2602.3 12977.2 535.7 769.6
500 1000 26069.4 12487.0 30432.2 12460.8 31015.1 12495.3 736.7 906.6
500 1400 31222.7 12627.1 15896.6 12633.9 15805.4 12632.8 899.8 923.8
500 2000 30540.2 13128.0 15958.0 13144.6 15675.3 13139.8 1139.3 985.4

TABLE 1. Average Number of Iterations for the Standard Ellipsoid and Dual
Simplex Algorithms.

SEA Freund-Vera Big M Two-Phase
old lower bound Initialization Initialization Method

n m Feasible Infeasible Feasible Infeasible Feasible Infeasible
60 84 171.6 360.0 233.6 353.1 229.7 355.5
60 120 463.4 339.9 629.6 346.4 625.2 338.7
60 168 575.3 339.7 599.9 357.6 463.1 343.0
60 240 569.0 344.4 663.6 377.3 492.6 344.7

125 175 483.0 1359.4 590.3 1385.5 578.5 1362.0
125 250 1820.0 1291.5 2275.5 1322.1 2395.7 1298.7
125 350 2380.6 1278.2 1698.8 1279.6 1626.5 1278.9
125 500 2259.7 1279.2 1860.1 1320.7 1637.6 1289.5
250 350 1148.5 5166.8 1232.1 5172.2 1246.6 5148.0
250 500 7528.9 4852.7 7820.1 4852.9 8010.1 4859.5
250 700 9128.6 4700.3 5615.5 4933.0 5684.3 4708.4
250 1000 7937.7 4676.2 5780.1 4774.2 5601.8 4684.6
500 700 2569.5 20209.1 2657.5 20247.1 2640.4 20189.3
500 1000 27541.3 18714.4 34961.1 18701.1 35913.6 18716.2
500 1400 32721.9 18029.6 20234.0 18094.9 20845.0 18014.4
500 2000 29761.3 17714.2 20008.0 17853.5 19897.8 17704.0

TABLE 2. Average Number of Iterations for the Standard Ellipsoid Algorithm
Using the Old Lower Bound.

26 M.J. TODD

SEA Freund-Vera Big M
no decrease steps Initialization Initialization

n m Feasible Infeasible Feasible Infeasible
60 84 156.9 955.7 220.8 756.3
60 120 426.6 960.1 1260.0 726.2
60 168 615.5 1018.9 1102.7 746.4
60 240 628.6 1031.7 1083.0 774.9

125 175 452.6 3138.4 538.8 2610.8
125 250 1668.5 3128.2* 5073.5 2450.8
125 350 2513.4 3087.0 3700.0 2446.9
125 500 3095.0 3246.3 3513.6 2522.7
250 350 1077.3 9943.2 1152.6 8767.8
250 500 6988.6 9636.5 18739.8 7982.8
250 700 10801.3 9843.1 12225.5 7888.9
250 1000 12477.0 9771.8 11154.2 8063.0
500 700 2366.2 33079.6* 2499.9 30014.4
500 1000 25796.9 30651.4* 79708.0 26702.4
500 1400 51327.2 30728.0 40222.4 26011.5
500 2000 49914.1 30015.3 36197.5 26281.5

TABLE 3. Average Number of Iterations for the Standard Ellipsoid Algorithm
with No Decrease Steps. Starred entries gave one or two false indications of
feasibility.

OEA Freund-Vera Big M
Initialization Initialization

n m Feasible Infeasible Feasible Infeasible
60 84 155.3 1938.9 302.8 1530.6
60 120 545.6 1920.7† 2417.4 1513.3
60 168 621.6 ***** 2223.5 1661.5
60 240 623.8 2424.6 2331.7 1936.9

125 175 476.9 6927.4 681.3 5752.7
125 250 2640.8 6775.7 9939.3 5553.1
125 350 3212.9 7190.6 8119.6 5943.0
125 500 3632.7 8170.7 8334.9 6900.5
250 350 1060.6 24583.9† 1335.9 20656.7
250 500 10656.3 22527.6 35910.7 19230.9
250 700 13255.5 23553.7 28108.1 20433.9
250 1000 14967.7 26418.2 28531.3 23466.8
500 700 2220.8 ***** 2625.5 74527.0
500 1000 39625.3 76003.3† 89640.3 67401.3
500 1400 53417.8 79077.7† 98419.0 70930.6
500 2000 61351.9 88321.6 98719.9 80721.8

TABLE 4. Average Number of Iterations for the Oblivious Ellipsoid Algorithm.
∗ At least one run terminated for numerical reasons. † One or two runs gave
false indications of feasibility.

ELLIPSOID METHOD 27

Acknowledgement
The author would like to thank Jourdain Lamperski and Rob Freund for very helpful conversa-
tions, and two anonymous referees for their detailed and constructive comments.

REFERENCES

[1] R. Bland, D. Goldfarb, M. J. Todd, The ellipsoid method: A survey, Oper. Res. 29 (1981) 1039–1091.
[2] J.V. Burke, A.S. Lewis, M.L. Overton, The speed of Shor’s r-algorithm, IMA J. Numer. Anal. 28 (2008)

711-720.
[3] B. P. Burrell, M. J. Todd, The ellipsoid method generates dual variables, Math. Oper. Res. 10 (1985), 527–715.
[4] J.G. Ecker, M. Kupferschmid, A computational comparison of the ellipsoid algorithm with several nonlinear

programming algorithms, SIAM J. Control Optim. 23 (1985) 657–674.
[5] Robert M. Freund, Jorge R. Vera, Condition-based complexity of convex optimization in conic linear form

via the ellipsoid algorithm, SIAM J. Optim. 10 (1999) 155–176.
[6] M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimiza-

tion, Combinatorica 1 (1981) 169–197.
[7] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, second ed.,

Springer-Verlag, Berlin, 1994.
[8] R.M. Karp, C.H. Papadimitriou, On linear characterizations of combinatorial optimization problems, SIAM

J. Computing 11 (1982) 620–632.
[9] L. G. Khachiyan, A polynomial algorithm in linear programming, Soviet Math. Dokl. 20 (1979) 191–194.

[10] J. Lamperski, R.M. Freund, M.J. Todd, An oblivious ellipsoid algorithm for solving a system of (in)feasible
linear inequalities, Math. Oper. Res. arXiv:1910.03114, 2020,

[11] A. Iu. Levin, On an algorithm for the minimization of convex functions, Math. Doklady 6 (1965) 286-290.
[12] A.S. Nemirovski and D.B. Yudin, Optimization methods adapted to the “significant” dimension of the prob-

lem, Automation and Remote Control 38 (1977) 513–524.
[13] D.J. Newman, Location of the maximum on unimodal surfaces, J. Assoc. Computing Machinery 12 (1965)

395–398.
[14] M.W. Padberg, M.R. Rao, The Russian method for linear programming III: Bounded integer programming,

Tech. report, New York University, Graduate School of Business Administration, 1981.
[15] A. Rodomanov, Y. Nesterov, Subgradient ellipsoid method for nonsmooth convex problems, Math. Program.

199 (2023) 305–341.
[16] N.Z. Shor, Cut-off method with space extension in convex programming problems, Cybernetics 13 (1977)

94–96.
[17] N.Z. Shor, V.I. Gershovich, Family of algorithms for solving convex programming problems, Cybernetics 15

(1979) 502–507.
[18] S. P. Tarasov, L.G. Khachiyan, I. I. Erlikh, The method of inscribed ellipsoids, Soviet Math. Dokl. 37 (1988)

226–230.
[19] V. M. Tikhomirov, The evolution of methods of convex optimization, Amer. Math. Monthly 103 (1996)

65–71.
[20] M.J. Todd, Minimum volume ellipsoids containing part of a given ellipsoid, Math. Oper. Res. 7 (1980)

253–261.
[21] D.B. Yudin, A.S. Nemirovski, Informational complexity and effective methods of solution for convex ex-

tremal problems, Matekon: Translations of Russian and East European Mathematical Economics 13 (1977),
25–45.

	1. Introduction
	2. The ellipsoid representation and certificates of infeasibility
	3. The ``best'' lower bound
	4. A modified potential function
	5. The ellipsoid method as coordinate descent and decrease steps
	5.1. Decrease steps
	5.2. Critical values of
	5.3. Guaranteed reduction of volume but not potential

	6. Improving an iteration
	7. Computational results
	7.1. Problem generation
	7.2. Obtaining the initial system
	7.3. Experimental results

	References

