NASH EQUILIBRIUM POINTS AND THEIR FINDING FOR NONSMOOTH CASE

IGOR M. PROUDNIKOV
Scientific Center, Smolensk Federal Medical University, Smolensk, Russia, 214000
Dedicated to Professor F. Clarke on the occasion of his 75-th birthday

Abstract

The purpose of this paper is to develop a numerical method for finding an equilibrium point in a model, in which the loss function of each object (subject) is described by a convex function with respect to one of its variables. Such models are found in medicine, economics, game theory, and biology. For the more complex case, with nonsmooth functions describing the state of each element of the system as damage, loss, or gain, the Steklov average integrals are used that turn nonsmooth functions into smooth ones. Numerical method for finding equilibrium points in the more general non-smooth case is constructed. In the process of optimization, the diameters of the sets, over which the averaging takes place, are decreased in accordance with the optimization steps. All limit points are proved to be equilibrium points. Under some conditions, the convergence rate can be estimated using the Kantorovich theorem. The necessity to develop new methods for finding Nash equilibrium points in the nonsmooth case is concluded.

Keywords. Clarke subdifferential; Convex functions; Non-cooperative Nash equilibrium point; Lebesgue integrals; Newton's optimization methods.
2020 Mathematics Subject Classification. 49J52, 90C30, 90C31.

1. Introduction

Let the physical or economic state of a system be described by m loss functions $f_{1}\left(x_{1}, x_{2}, \ldots\right.$, $\left.x_{m}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}, f_{2}\left(x_{1}, x_{2}, \ldots, x_{m}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}, \ldots, f_{m}\left(x_{1}, x_{2}, \ldots, x_{m}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}$ depending on m variables $x_{1}, x_{2}, \ldots, x_{m}$, where \mathbb{R}^{m} is m-dimensional Euclidean space. Then an equilibrium point is a state $x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}$ for which changing any x_{j}^{*} leads to an increase in the corresponding function $f_{j}(\cdot)$, i.e.

$$
\begin{equation*}
f_{j}\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{j}^{*}, \ldots, x_{m}^{*}\right) \leq f_{j}\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{j-1}^{*}, x_{j}, x_{j+1}^{*}, \ldots, x_{m}^{*}\right) . \tag{1.1}
\end{equation*}
$$

Equilibrium states were introduced into economics by J. Nash. In 1950-1953, his published many results on the existence of equilibrium points; see, e.g., [1]-[4]. The problem of equilibrium points finding in biology or economics is closely related to game theory and is of practical

[^0]importance. Equilibrium points arise from interspecific competition in biology and intercompany competition in economics. Equilibrium points in medicine are homeostasis points [5]. These are points of balance between various states of the human body, e.g. blood pressure, temperature, blood cholesterol level, pulse rate. Some balance is achieved between different pills when we take medication. Here we consider non-cooperative games of m players, none of whom can influence other players' behavior (strategies). A player i chooses independently a pure strategy x_{i} from a compact convex set S_{i}, such that he minimizes his loss function $f_{i}(\cdot)$.

Consider a vector $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$, called a multistrategy and comprised of the pure strategies $x_{i} \in S_{i}$. We assume that the vector x belongs to the compact convex set $S=S_{1} \times S_{2} \times$ $\ldots S_{m} \in \mathbb{R}^{m}$, which is the Cartesian product of the compact sets $S_{i}, i \in 1: m$, and int $S \neq \emptyset$.
Definition 1.1. A multistrategy $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right) \in S$ of a non-cooperative game is called a non-cooperative equilibrium if inequality (1.1) is true for every $j \in 1: m$ and $x_{j} \in S_{j}$.

The definitions of equilibrium points in game theory, medicine, and economics are similar. In 1950, J. Nash proved the following theorem.
Theorem 1.1. [1]. Let S_{i} be a compact convex set for any $i \in 1: m$ and $f_{i}(\cdot)$ be convex with respect to $x_{i} \in S_{i}$. Then there is a non-cooperative equilibrium in a non-cooperative game with m players.

The aim of the paper is to develop numerical methods for finding equilibrium points in the nonsmooth case. To our knowledge, there are papers describing numerical methods for finding equilibrium points in special cases [6], however, there are no papers describing numerical methods for finding equilibrium points in the general case.

2. Discussion of the Problem

We describe a method of searching for an equilibrium state, provided that the functions $f_{i}\left(x_{-i}, x_{i}\right): S \rightarrow R$, where $x_{-i}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m}\right)$, are convex with respect to x_{i}. We assume that the inclusion $\left\{x \in \mathbb{R}^{m} \mid f_{i}(x)<f_{i}\left(x_{0}\right)\right\} \subset$ int S is true for any $i \in 1: m$, in which x_{0} is a starting point. We can conclude from here that equilibrium points x^{*} belong to int S. Here int S means the interior of the set S.

Let us denote the coordinate vectors by $e_{1}=(1,0,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0)$, $\ldots, e_{m}=(0,0,0, \ldots, 1)$. It is known that coordinate descent method admits no convergence for nonsmooth functions [7]. Therefore, we will use the ideas from [8].

Equilibrium points finding algorithms for the smooth case

One way is to use gradient and second-order methods for the smooth case, i.e., $f_{i}(\cdot), i \in 1$: m, are differentiable functions with respect to the variables $x_{j}, j \in 1: m$. Denote the partial derivative of the function $f_{i}(\cdot)$ with respect to the variable x_{i} by $f_{i, x_{i}}^{\prime}(\cdot)$.

Consider the vector function $\Theta(\cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$:

$$
\Theta(x)=\left(\begin{array}{c}
f_{1, x_{1}}^{\prime}(x) \tag{2.1}\\
f_{2, x_{2}}^{\prime}(x) \\
\cdots \\
f_{m, x_{m}}^{\prime}(x)
\end{array}\right)
$$

We search a vector $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right)$, for which $\Theta\left(x^{*}\right)=0$. It is clear that the vector x^{*} is an equilibrium point.

First, we give the general description of the Newton's method. From expansion accurate to the higher order terms $\Theta(x+\Delta x)=\Theta(x)+\Theta^{\prime}(x) \Delta x+o(\Delta x)$, in which

$$
\lim _{\Delta x \rightarrow 0} \frac{o(\Delta x)}{\|\Delta x\|}=0
$$

we obtain the value for the step Δx. Suppose

$$
\Theta(x+\Delta x) \approx \Theta(x)+\Theta^{\prime}(x) \Delta x=0
$$

It follows that $\Delta x=-\left(\Theta^{\prime}(x)\right)^{-1} \Theta(x)$, where

$$
\Theta^{\prime}(x)=\left(\begin{array}{cccc}
f_{1, x_{1}, x_{1}}^{\prime \prime} & f_{1, x_{1}, x_{2}}^{\prime \prime} & \cdots & f_{1, x_{1}, x_{m}}^{\prime \prime} \tag{2.2}\\
f_{2, x_{2}, x_{1}}^{\prime \prime} & f_{2, x_{2}, x_{2}}^{\prime \prime} & \cdots & f_{2, x_{2}, x_{m}}^{\prime \prime} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m, x_{m}, x_{1}}^{\prime \prime} & f_{m, x_{m}, x_{2}}^{\prime \prime} & \cdots & f_{m, x_{m}, x_{m}}^{\prime \prime}
\end{array}\right)
$$

Algorithm 1 (The Newton's method for twice continuously differentiable functions $f i(\cdot)$)

At each step k, if the inverse matrix $\left(\Theta^{\prime}\left(x_{k}\right)\right)^{-1}$ exists, we find

$$
\begin{equation*}
\Delta x_{k}=-\left(\Theta^{\prime}\left(x_{k}\right)\right)^{-1} \Theta\left(x_{k}\right) \tag{2.3}
\end{equation*}
$$

We set $x_{k+1}=x_{k}+2^{-l} \Delta x_{k}$, in which l is the smallest number from the set $M=\{0,1,2, \cdots\}$ for which the inequality $\left\|\Theta\left(x_{k+1}\right)\right\|<\left\|\Theta\left(x_{k}\right)\right\|$ is correct and $x_{k+1} \in$ int S. It is easy to prove that there exists a number l for which the inequality $\left\|\Theta\left(x_{k+1}\right)\right\|<\left\|\Theta\left(x_{k}\right)\right\|$ is true. Indeed,

$$
\begin{aligned}
& \Theta\left(x_{k+1}\right)=\boldsymbol{\Theta}\left(x_{k}+2^{-l_{s}} \Delta x_{k}\right)=\boldsymbol{\Theta}\left(x_{k}\right)+2^{-l_{s}} \Theta^{\prime}\left(x_{k}\right) \Delta x_{k}+o\left(2^{-l_{s}} \Delta x_{k}\right)= \\
& =\boldsymbol{\Theta}\left(x_{k}\right)-2^{-l_{s}} \Theta\left(x_{k}\right)+o\left(2^{-l_{s}} \Delta x_{k}\right)=\Theta\left(x_{k}\right)\left(1-2^{-l_{s}}\right)+o\left(2^{-l_{s}} \Delta x_{k}\right)
\end{aligned}
$$

Since $\left\|o\left(2^{-l_{s}} \Delta x\right)\right\| \leq 2^{-l_{s}} \varepsilon\left(l_{s}\right)\left\|\Theta\left(x_{k}\right)\right\|$, in which $\varepsilon\left(l_{s}\right) \rightarrow 0$ as $l_{s} \rightarrow \infty$, we have for big enough l_{s}

$$
\left\|\Theta\left(x_{k+1}\right)\right\| \leq\left(1-2^{-l_{s}}+2^{-l_{s}} \boldsymbol{\varepsilon}\left(l_{s}\right)\right)\left\|\Theta\left(x_{k}\right)\right\|<\left\|\Theta\left(x_{k}\right)\right\|
$$

what needed to be proven. Repeat the process as long as $\left\|\Theta\left(x_{k}\right)\right\| \leq \varepsilon$, in which ε is a positive small number.

Let the inequality

$$
\begin{equation*}
L_{1}\|\Delta x\| \leq\left\|\Theta^{\prime}(x) \Delta x\right\| \leq L_{2}\|\Delta x\| \tag{2.4}
\end{equation*}
$$

hold true for some $L_{1}, L_{2}>0$ and any Δx. We assume that x belongs to a small neighborhood of an equilibrium point x^{*}, in which $\Theta\left(x^{*}\right)=0$ and the optimization process takes place with full step Δx_{k} i.e. $l=0$. Then it is possible to obtain an estimation of the convergence rate of the Newton's method. We have

$$
\left\|\Theta\left(x_{k+1}\right)\right\|=\left\|\Theta\left(x_{k}+\Delta x_{k}\right)-\Theta\left(x^{*}\right)\right\|=\left\|\Theta^{\prime}(\xi) \Delta x_{k}\right\|,
$$

in which ξ is a point on the line, connecting x_{k+1} and x^{*}, and between them. Let us substitute the expression for Δx_{k} from (2.3). Therefore, we obtain

$$
\left\|\Theta^{\prime}(\xi) \Delta x_{k}\right\|=\left\|\Theta^{\prime}(\xi)\left(\Theta^{\prime}\left(x_{k}\right)\right)^{-1} \Theta\left(x_{k}\right)\right\| .
$$

Due to the continuity of the matrix $\Theta^{\prime}(\cdot)$ and the fact that at each step k according to the choice of the step $\Theta\left(x_{k}\right)=o\left(\Delta x_{k-1}\right)$, and also the assumption (2.4), we obtain a chain of inequalities

$$
L_{1}\left\|\Delta x_{k}\right\| \leq\left\|\Theta^{\prime}(\xi) \Delta x_{k}\right\|=\left\|\Theta^{\prime}(\xi)\left(\Theta^{\prime}\left(x_{k}\right)\right)^{-1} \Theta\left(x_{k}\right)\right\| \leq c_{k}\left\|\Theta\left(x_{k}\right)\right\| .
$$

Here $c_{k}=\left\|\Theta^{\prime}(\xi)\left(\Theta^{\prime}\left(x_{k}\right)\right)^{-1}\right\|$. We also have $\|o(\Delta x)\| \leq \varepsilon(\Delta x)\|\Delta x\|$, in which $\varepsilon(\Delta x) \rightarrow 0$ as $\Delta x \rightarrow 0$. Let us define

$$
N_{k}=N\left(\Delta x_{k}\right)=\frac{1}{\varepsilon\left(\Delta x_{k}\right)}
$$

in which $N_{k}=N\left(\Delta x_{k}\right) \rightarrow_{k} \infty$ as $\left\|\Delta x_{k}\right\| \rightarrow 0$. Therefore,

$$
\left\|o\left(\Delta x_{k-1}\right)\right\| \leq \frac{\left\|\Delta x_{k-1}\right\|}{N_{k-1}}
$$

We also have

$$
\left\|\Theta\left(x_{k}\right)\right\|=\left\|o\left(\Delta x_{k-1}\right)\right\| \leq \frac{\left\|\Delta x_{k-1}\right\|}{N_{k-1}} .
$$

As a result,

$$
L_{1}\left\|\Delta x_{k}\right\| \leq c_{k} \frac{\left\|\Delta x_{k-1}\right\|}{N_{k-1}}
$$

From the inequalities, we have

$$
\left\|\Delta x_{k}\right\| \leq c_{k} \frac{\left\|\Delta x_{k-1}\right\|}{L_{1} N_{k-1}}=q_{k}\left\|\Delta x_{k-1}\right\|
$$

where $q_{k}=\frac{c_{k}}{L_{1} N_{k-1}}$. Superlinear convergence follows directly due to $q_{k} \rightarrow_{k} 0$.
Finally, e obtain the following theorem.
Theorem 2.1. Let assumption (2.4) hold true for the twice continuously differentiable functions $f_{i}(\cdot), i \in 1: m$. Then the Newton method converges with superlinear rate in a small neighborhood of x^{*}.

This optimization process requires the existence of continuous second mixed derivatives with respect to the variables $x_{i}, x_{j}, i, j \in 1: m$, of the functions $f_{i}(\cdot), i \in 1: m$, and the existence of the inverse matrix $\left(\Theta^{\prime}\left(x_{k}\right)\right)^{-1}$ at any step k. Unfortunately, assumption (2.4) does not always hold. Moreover, Theorem 2.1 is true in a small neighborhood of the point x^{*} which is to be reached.

3. Solution of the Problem for the Nonsmooth Case

Let us use the ideas from [8]. We assume that $f_{i}(\cdot), i \in 1: m$, are Lipschitz functions with constants L_{i}, i.e., $\left\|f_{i}(u)-f_{i}(v)\right\| \leq L_{i}\|u-v\|$ for all $u, v \in \mathbb{R}^{m}$. We construct functions

$$
\begin{equation*}
\varphi_{i}(x)=\frac{1}{\mu(D)} \int_{D} f_{i}(z+x) d z \tag{3.1}
\end{equation*}
$$

in which D is an arbitrary convex compact set, $0 \in \operatorname{int} D, \mu(D)>0$ is the Lebesgue measure of set D, and the integral is the Lebesgue integral. It is not difficult to verify that function $\varphi_{i}(\cdot)$ is convex with respect to its variable x_{i}.

The function $f_{i}(\cdot)$ has the partial derivative with respect to x_{i} almost everywhere (a.e.) on set S. In [8], it was proven that function $\varphi_{i}(\cdot)$ is continuously differentiable with respect to variable x_{i}. The partial derivative $\varphi_{i}(\cdot)$ with respect to x_{i} can be calculated by the formula [8]

$$
\varphi_{i, x_{i}}^{\prime}(x)=\frac{\partial \varphi_{i}(x)}{\partial x_{i}}=\frac{1}{\mu(D)} \int_{D} \frac{\partial f_{i}(x+y)}{\partial x_{i}} d y
$$

Functions $\varphi_{i}(\cdot), i \in 1: m$, have an equilibrium point according to Nash's theorem. Substitute $f_{i}(\cdot), i \in 1: m$, for $\Phi_{i}(\cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}, i \in 1: m$, defined by

$$
\Phi_{i}(x)=\frac{1}{\mu(D)} \int_{D} \varphi_{i}(x+y) d y
$$

in which the functions $\varphi_{i}(\cdot), i \in 1: m$, and the set D are defined above (see (3.1)). We take the integral of the integral, since in this way we obtain the twice continuously differentiable functions $\Phi_{i}(\cdot), i \in 1: m$, and the stationary points of $\Phi_{i}(\cdot)$ are $\varepsilon(D)$-stationary points of $f(\cdot)$ [8]. Since $\varphi_{i}(\cdot)$ is a Lipschitz [8], we have

$$
\begin{equation*}
\Phi_{i}^{\prime}(x)=\frac{1}{\mu(D)} \int_{D} \varphi_{i}^{\prime}(z+x) d z \tag{3.2}
\end{equation*}
$$

We have proved that $\Phi_{i}(\cdot), i \in 1: m$, have Lipschitz second derivatives [8]. If D is a ball or a cube centered at zero with the diameter $d(D)$, then functions $\Phi_{i}(\cdot), i \in 1: m$, have Lipschitz second derivatives $\Phi_{i}^{\prime \prime}(\cdot)$ with constant [8]

$$
L_{i}^{\prime}=\frac{2 L_{i}}{d^{2}(D)} .
$$

We can apply the Newton's method to $\Phi_{i}(\cdot), i \in 1: m$, to find the equilibrium points. In the process of optimization, we will consistently decrease the step λ_{k} and the diameter $d\left(D_{k}\right)$ so that the inequality

$$
\begin{equation*}
\frac{\lambda_{k}}{d^{2}\left(D_{k}\right)}<\varepsilon_{k} \tag{3.3}
\end{equation*}
$$

was true for some sequence $\left\{\varepsilon_{k}\right\}$ in which $\varepsilon_{k} \rightarrow+0$ as $k \rightarrow \infty$. We will prove that the inequality (3.3) guarantees that any limit point of a sequence obtained by the Newton's method using the functions $\Phi_{i}^{\prime}(\cdot), \Phi_{i}^{\prime \prime}(\cdot), i \in 1: m$, is an equilibrium point of the functions $f_{i}(\cdot), i \in 1: m$.

The Newton's method for finding equilibrium points for $f_{i}(\cdot), i \in 1: m$, using the functions $\Phi_{i}(\cdot)$

Calculate $\boldsymbol{\Theta}\left(z_{k}\right)$ and $\Theta^{\prime}\left(z_{k}\right)$

$$
\begin{gathered}
\Theta(x)=\left(\begin{array}{c}
\Phi_{1, x_{1}}^{\prime}(x) \\
\Phi_{2, x_{2}}^{\prime}(x) \\
\cdots \\
\Phi_{m, x_{m}}^{\prime}(x),
\end{array}\right) \\
\Theta^{\prime}(x)=\left(\begin{array}{cccc}
\Phi_{1, x_{1}, x_{1}}^{\prime \prime} & \Phi_{1, x_{1}, x_{2}}^{\prime \prime} & \cdots & \Phi_{1, x_{1}, x_{m}}^{\prime \prime} \\
\Phi_{2, x_{2}, x_{1}}^{\prime \prime} & \Phi_{2, x_{2}, x_{2}}^{\prime \prime} & \cdots & \Phi_{2, x_{2}, x_{m}}^{\prime \prime} \\
\vdots & \vdots & \ddots & \vdots \\
\Phi_{m, x_{m}, x_{1}}^{\prime \prime} & \Phi_{m, x_{m}, x_{2}}^{\prime \prime} & \cdots & \Phi_{m, x_{m}, x_{m}}^{\prime \prime}
\end{array}\right)
\end{gathered}
$$

accordingly to (3.2) for the twice differentiable functions $\Phi_{i}(\cdot), i \in 1: m$, when D is a ball or a cube.

Take a sequence of sets $\left\{D_{s}\right\}, s=1,2, \ldots$ with non-empty interior, the diameters $d\left(D_{s}\right)$ of which tend to zero in $s \rightarrow \infty$. Let $D_{s}=B_{r_{s}}^{m}(0)=\left\{v \in \mathbb{R}^{n} \mid\|v\| \| \leq r_{s}\right\}$ for $r_{s} \rightarrow+0$ and $s \rightarrow \infty$. Let us introduce for $i \in 1: m$ the following sequence of functions

$$
\varphi_{i, s}(x)=\frac{1}{\mu\left(D_{s}\right)} \int_{D_{s}} f_{i}(x+y) d y
$$

and

$$
\begin{equation*}
\Phi_{i, s}(x)=\frac{1}{\mu\left(D_{s}\right)} \int_{D_{s}} \varphi_{i, s}(x+y) d y . \tag{3.4}
\end{equation*}
$$

The difference between (3.2) and (3.4) is that (3.2) is written for a constant D, while (3.4) is written for a set D_{s} depending on the parameter s.

Construct the functions $\Theta_{s}(\cdot)$ for the functions $\Phi_{i, s}(\cdot), i \in 1: m$, as written above. Let the inequality $\left\|\Phi_{i, s}^{\prime \prime}(\cdot)\right\| \leq L_{s}$ hold true in which $\Phi_{i, s}^{\prime \prime}(\cdot)$ is the matrix of the second mixed derivatives. In [8], it was proved that $L_{s}=\frac{L}{d\left(D_{s}\right)}$, in which $L=\max _{i \in 1: m} L_{i}$.

It follows from here that, depending on the selected metric of the space \mathbb{R}^{m}, the norm $\left\|\Theta_{s}^{\prime}(\cdot)\right\|$ is proportional to L_{s}. Suppose $\left\|\Theta_{s}^{\prime}(\cdot)\right\| \leq L_{s}$. Define the vector-function $\tilde{\Theta}_{s}(\cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ as a function of y :

$$
\begin{equation*}
\tilde{\Theta}_{s}(y, x)=\Theta_{s}(y)+2 L_{s}(y-x) . \tag{3.5}
\end{equation*}
$$

Then we have the inequality for the matrix $\tilde{\Theta}_{s}^{\prime}(\cdot)$

$$
\begin{equation*}
L_{s}\|z\|^{2} \leq\left(\tilde{\Theta}_{s}^{\prime}(x, x) z, z\right) \leq 3 L_{s}\|z\|^{2} \forall z \in \mathbb{R}^{n} \tag{3.6}
\end{equation*}
$$

Let us construct the Newton's method for finding the roots of the equation $\Theta_{s}(x)=0$ using the function $\tilde{\Theta}_{s}(\cdot)$. We will use the rule of consistent reduction of the length λ_{k} of $k^{t h}$ step and the diameter $d\left(D_{k}\right)$.

Description of the Newton's method for finding for the equilibrium points using $\Phi_{i, s}(\cdot)$.

Let a point x_{k} was constructed at the step k. Construct the point x_{k+1}. Take by definition $\tilde{\Theta}_{s, k}(\cdot)=\tilde{\Theta}_{s}\left(\cdot, x_{k}\right)$. The dependence of s on k is be written as $s=s(k)$. We calculate $\Delta x_{k}=$ $-\left(\tilde{\Theta}_{s, k}^{\prime}\left(x_{k}\right)\right)^{-1} \tilde{\Theta}_{s, k}\left(x_{k}\right)$ at each step k. We set $x_{k+1}=x_{k}+2^{-l} \Delta x_{k}$, in which l is the smallest number from the set $M=\{0,1,2, \cdots\}$ for which $\left\|\tilde{\Theta}_{s, k}\left(x_{k+1}\right)\right\|<\left\|\tilde{\Theta}_{s, k}\left(x_{k}\right)\right\|$ and $x_{k+1} \in \operatorname{int} S$.

It is possible to prove that $\left\|\tilde{\Theta}_{s, k}\left(x_{k+1}\right)\right\|<\left\|\tilde{\Theta}_{s, k}\left(x_{k}\right)\right\|$ for small $\left\|\Delta x_{k}\right\|$ and $\left\|\Delta x_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$ for fixed s in a small neighborhood of the equilibrium point x^{*}. We assume that we reach a small surrounding of the equilibrium point x^{*} for big k in which the process takes place with the full step Δx_{k}.

If the inequality

$$
\begin{equation*}
\frac{\left\|\Delta x_{k}\right\|}{d^{2}\left(D_{s(k)}\right)}<\varepsilon_{k} \tag{3.7}
\end{equation*}
$$

is fulfilled for a sequence $\left\{\varepsilon_{k}\right\}, \varepsilon_{k} \rightarrow+0$ as $k \rightarrow \infty$, then we decrease the diameter $d\left(D_{s(k)}\right)$ of $D_{s(k)}$ and increase $k, s=s(k)$. Inequality (3.6) holds true for $\tilde{\Theta}_{s(k), k}^{\prime}(\cdot)$ and all s, k. Firstly, we prove that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \Theta_{s(k)}\left(x_{k}\right)=0 \tag{3.8}
\end{equation*}
$$

and the sequence $\left\{x_{k}\right\}$ has a limit point x^{*}.

We have the expansion of the function $\tilde{\Theta}_{s(k), k}(\cdot)$ in the neighborhood of the point x_{k}

$$
\left.\left.\tilde{\Theta}_{s(k), k}\left(x_{k+1}\right)=\tilde{\Theta}_{s(k), k}\left(x_{k}\right)\right)+\tilde{\Theta}_{s(k), k}^{\prime}\left(x_{k}\right)\right) \Delta x_{k}+o_{s(k), k}\left(\Delta x_{k}\right) .
$$

After substitution $\Delta x_{k}=-\left(\tilde{\Theta}_{s(k), k}^{\prime}\left(x_{k}\right)\right)^{-1} \tilde{\Theta}_{s, k}\left(x_{k}\right)$ in this expansion we obtain

$$
\begin{equation*}
\tilde{\Theta}_{s(k), k}\left(x_{k+1}\right)=o_{s(k), k}\left(\Delta x_{k}\right) . \tag{3.9}
\end{equation*}
$$

Let us prove that $o_{s(k), k}\left(\Delta x_{k}\right)$ is an infinitesimal function with respect to Δx_{k} as $k \rightarrow \infty$. Since $\tilde{\Theta}_{s(k), k}(\cdot)$ was obtained from $\Theta_{s}(\cdot)$ through adding the linear function, $o_{s(k), k}(\cdot)$ is the same infinitesimal function in the expansion of $\Theta_{s}(\cdot)$ in the surrounding of x_{k}.

Now we will obtain the upper bound for $o_{s(k), k}(\cdot)$. The following expansion takes place

$$
\Theta_{s}\left(x_{k+1}\right)=\Theta_{s}\left(x_{k}\right)+\Theta_{s}^{\prime}\left(x_{k}\right) \Delta x_{k}+o_{s, k}\left(\Delta x_{k}\right)
$$

Since the function $\Theta_{s}(\cdot)$ is continuously differentiable for each s, according to the midpoint theorem, we have

$$
\Theta_{s}\left(x_{k+1}\right)-\Theta_{s}\left(x_{k}\right)=\Theta_{s}^{\prime}(\xi)\left(x_{k+1}-x_{k}\right)=\Theta_{s}^{\prime}(\xi) \Delta x_{k},
$$

in which $\xi \in\left[x_{k}, x_{k+1}\right]$. Let us substitute this difference in the Taylor series and use the Lipschitzness of $\Theta_{s}^{\prime}(\cdot)$ with the constant $\frac{2 L}{d^{2}\left(D_{s}\right)}$. Therefore, since $\Theta_{s}^{\prime}(\cdot)$ is Lipschitz with the constant $\frac{2 L}{d^{2}\left(D_{s}\right)}$ [8], we obtain

$$
\left\|o_{s, k}\left(\Delta x_{k}\right)\right\| \leq\left\|\left(\Theta_{s}^{\prime}(\xi)-\Theta_{s}^{\prime}\left(x_{k}\right)\right) \Delta x_{k}\right\| \leq \frac{2 L\left\|\Delta x_{k}\right\|}{d^{2}\left(D_{s}\right)}\left\|\Delta x_{k}\right\| .
$$

It follows that

$$
\begin{equation*}
\frac{\left\|o_{s, k}\left(\Delta x_{k}\right)\right\|}{\left\|\Delta x_{k}\right\|} \leq \frac{2 L\left\|\Delta x_{k}\right\|}{d^{2}\left(D_{s}\right)} . \tag{3.10}
\end{equation*}
$$

Hence, if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\Delta x_{k}\right\|}{d^{2}\left(D_{s(k)}\right)}=0 \tag{3.11}
\end{equation*}
$$

holds true during optimization, then uniform infinitesimality of $o_{s(k), k}(\cdot)$ with respect to $s=s(k)$ and k follows from here. However, we organize our process in such a way that limit equality (3.11) was correct. The limit equality

$$
\begin{equation*}
\lim _{k \rightarrow \infty} L_{s(k)}\left\|x_{k+1}-x_{k}\right\|=\lim _{k \rightarrow \infty} L_{s(k)} \Delta x_{k}=\lim _{k \rightarrow \infty} \frac{L}{d\left(D_{s(k)}\right)} \Delta x_{k} \leq \lim _{k \rightarrow \infty} \frac{L}{d^{2}\left(D_{s(k)}\right)} \Delta x_{k}=0 \tag{3.12}
\end{equation*}
$$

follows from the inequality (3.7) as we decrease $d\left(D_{s(k)}\right)$ in the process of optimization. The equality (3.8) follows from (3.5), (3.9) and (3.12). It follows from the upper semicontinuity of the Clarke subdifferential and from equality (3.8) that the sequence $\left\{x_{k}\right\}$ converges to a limit point x^{*}, in which $0 \in \partial_{x_{i}} f_{i}\left(x^{*}\right)$ for all $i \in 1: m$, i.e. x^{*} is the equilibrium point.

All of the above stated is true if we reach a small neighborhood of the equilibrium point. In order to do this, we are to use the coordinate descent method with some modifications for the functions $\varphi_{i}(\cdot), i \in 1: m$. Thus, the following theorem is proved.

Theorem 3.1. Any limit points of the sequence obtained by Newton's method with starting points from small neighborhoods of the equilibrium points, are the equilibrium points if the equality (3.11) is satisfied in the process of optimization for the convex with respect to x_{i}, Lipschitzian functions $f_{i}(\cdot), i \in 1: m$, respectively.

The given Newton's method is also called the modified Newton's method. It is possible to show that there is a majorant Kantorovich function for any step k [9]. The step length and the convergence rate of the optimization method are estimated under the conditions of consistency (3.11) and some conditions indicated in the theorem given below. We can state the convergence of the whole sequence $\left\{x_{k}\right\}$ under the below given conditions in the theorem 3.1.

This is true for the reason that $\left\|\Delta x_{k}\right\|$ is compared with the step length of the majorant function. The conditions of the Kantorovich theorem [9, pp. 689-690], are fulfilled if we satisfy some requirements.

We will construct a sequence $\left\{x_{k}\right\}$ converging to the solution of the equation $\Theta\left(x^{*}\right)=0$ for a ball $B_{r}^{m}\left(x_{0}\right)=\left\{y \in \mathbb{R}^{m} \mid\left\|y-x_{0}\right\| \leq r\right\}$. Suppose $Q_{s, 0}=\left[\tilde{\Theta}_{s, 0}^{\prime}\left(x_{0}\right)\right]^{-1},\left\|Q_{s, 0} \Theta_{s}\left(x_{0}\right)\right\| \leq A_{s}$, and $\left\|Q_{s, 0} \tilde{\Theta}_{s, 0}^{\prime \prime}(x)\right\| \leq B_{s}$ for any $x \in B_{r}^{m}\left(x_{0}\right), \Delta x_{k}=-\left[\tilde{\Theta}_{s, 0}^{\prime}\left(x_{k}\right)\right]^{-1,} \tilde{\Theta}_{s, k}\left(x_{k}\right)$. We set $x_{k+1}=x_{k}+\triangle x_{k}$. During the optimization process, we change $s=s(k)$ and decrease the diameter $d\left(D_{s}\right)$ so that the requirements of Theorem 3.2 were satisfied.

Theorem 3.2. Assume that there exists a linear operator $Q_{s, 0}=\left[\tilde{\Theta}_{s, 0}^{\prime}\left(x_{0}\right)\right]^{-1}$ for $s=s(0)$ and $k=0$. If $q_{s}=A_{s} B_{s} \leq q<\frac{1}{2}$ is true for any s and the consistency condition $\lim _{k \rightarrow \infty} \frac{\Delta x_{k}}{d^{2}\left(D_{s(k)}\right)}=0$ is satisfied, then the equation $\Theta(x)=0$ has a solution x^{*} to which the Newton's method converges with the rate

$$
\begin{equation*}
\left\|x^{*}-x_{k}\right\| \leq \frac{1}{2^{k}}[2 q]^{2^{k}} C \tag{3.13}
\end{equation*}
$$

for a constant C. The convergence rate of the modified Newton's method (for $q<\frac{1}{2}$) is estimated by the following inequality

$$
\begin{equation*}
\left\|x^{*}-x_{k}\right\| \leq C(1-\sqrt{1-2 q})^{k+1}, k=0,1,2, \ldots \tag{3.14}
\end{equation*}
$$

Remark 3.1. The proof of the convergence rate follows with some changes from [9, p. 690], since the convergence rate depends on the values q_{k} and A_{k}. The first value is limited by the value $\frac{1}{2}$. The second value tends to zero as $k \rightarrow \infty$.
Proof. It is easy to satisfy to the conditions of the theorem since $A_{s(k)} \rightarrow_{k} 0$ and we can decrease the diameters of the sets D_{s} when $q_{s}=A_{s} B_{s}<\frac{1}{2}$ and the point x_{k} can be considered as a new starting point. At each step k, there is a majorant function $\psi_{s, k}(\cdot)$ with $\psi_{s}(t)=B_{s} t^{2}-2 t+2 A_{s}$. Since $\left\|Q_{s, 0} \Theta_{s}^{\prime \prime}\left(x_{k}\right)\right\| \leq \psi_{s}^{\prime \prime}\left(x_{k}\right)$, the step length $\triangle_{k}=\left\|x_{k+1}-x_{k}\right\|$ does not exceed the step length $t_{k+1}-t_{k}$ of the Newton's method for the equation $\psi_{s}(t)=0$. It e solution is denoted by t_{s}. Thus the following can be written:

$$
\begin{equation*}
\left\|x_{k+1}-x_{k}\right\| \leq t_{k+1}-t_{k} \tag{3.15}
\end{equation*}
$$

For the existence of the majorant equation $\psi_{s}(t)=0, t \in \mathbb{R}$, for the operator equation $\Theta(x)=0$, as it follows from the Taylor formula XVII.2.5 [9], it is sufficient that the following integral inequality holds true

$$
\left\|\int_{x_{k}}^{x_{k+1}} Q_{0} \Theta_{s}^{\prime \prime}(x)\left(x_{k+1}-x, \cdot\right) d x\right\| \leq \int_{t_{k}}^{t_{k+1}} c_{0} \psi_{s}^{\prime \prime}(t)\left(t_{k+1}-t\right) d t
$$

for big enough k, which is true if

$$
\left\|Q_{0} \Theta_{s}^{\prime \prime}(x)\right\|\left\|x_{k+1}-x_{k}\right\| \leq c_{0} \psi_{s}^{\prime \prime}(t)\left(t_{k+1}-t_{k}\right)
$$

Let us denote by $c_{s, k}=-\frac{1}{\psi_{s}^{\prime}\left(t_{k}\right)}, A_{s, k}=c_{s, k} \psi_{s}\left(t_{k}\right), B_{s, k}=c_{s, k} \psi_{s}^{\prime \prime}\left(t_{k}\right)=2 B_{s} c_{s, k}$, and $q_{s, k}=B_{s, k} A_{s, k}$. Let us note that

$$
\begin{equation*}
t_{k+1}-t_{k}=-\frac{\psi_{s}\left(t_{k}\right)}{\psi_{s}^{\prime}\left(t_{k}\right)}=A_{s, k}, k=0,1, \ldots \tag{3.16}
\end{equation*}
$$

According to the Taylor expansion for a second degree polynomial we have

$$
\begin{gathered}
A_{s, k}=c_{s, k} \psi_{s}\left(t_{k}\right)=c_{s} \psi_{s}\left(t_{k-1}+A_{s, k-1}\right)= \\
=c_{s, k}\left[\frac{1}{2} \psi_{s}^{\prime \prime}\left(t_{k-1}\right) A_{s, k-1}^{2}+\psi_{s}^{\prime}\left(t_{k-1}\right) A_{s, k-1}+\psi_{s}\left(t_{k-1}\right)\right]= \\
=c_{s, k}\left[B_{s} A_{s, k-1}^{2}-\frac{A_{s, k-1}}{c_{s, k-1}}+\frac{A_{s, k-1}}{c_{s, k-1}}\right]=c_{s, k} B_{s} A_{s, k-1}^{2}= \\
=\frac{1}{2} \frac{c_{s, k}}{c_{s, k-1}} 2 B_{s} c_{s, k-1} A_{s, k-1}^{2}=\frac{1}{2} \frac{c_{s, k}}{c_{s, k-1}} B_{s, k-1} A_{s, k-1}^{2}
\end{gathered}
$$

However,

$$
\begin{equation*}
\frac{c_{s, k}}{c_{s, k-1}}=\frac{\psi_{s}^{\prime}\left(t_{k}\right)}{\psi_{s}\left(t_{k-1}\right)}=\frac{\psi_{s}\left(t_{k}-1\right)+\psi_{s}^{\prime}\left(t_{k}-1\right) A_{s, k-1}}{\psi_{s}\left(t_{k-1}\right)}=1-B_{s, k-1} A_{s, k-1}=1-q_{s, k-1} \tag{3.17}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
A_{s, k}=\frac{1}{2} \frac{B_{s, k} A_{s, k-1}^{2}}{1-q_{s, k-1}}=\frac{A_{s, k-1}}{2} \frac{q_{s, k-1}}{1-q_{s, k-1}} \tag{3.18}
\end{equation*}
$$

Similarly, from (3.17) we obtain

$$
B_{s, k}=2 c_{s, k} B_{s}=2 B_{s} c_{s, k-1} \frac{c_{s, k}}{c_{s, k-1}}=\frac{B_{s, k-1}}{1-q_{s, k-1}}
$$

It follows that

$$
\begin{equation*}
q_{s, k}=B_{s, k} A_{s, k}=\frac{1}{2} \frac{B_{s, k-1} A_{s, k-1} q_{s, k-1}}{\left(1-q_{s, k-1}\right)^{2}}=\frac{1}{2}\left[\frac{q_{s, k-1}}{1-q_{s, k-1}}\right]^{2} \tag{3.19}
\end{equation*}
$$

From (3.18) and (3.19), taking into account $q_{s, k} \leq \frac{1}{2}$, we obtain the following estimations

$$
\begin{equation*}
A_{s, k} \leq q_{s, k-1} A_{s, k}, q_{s, k} \leq 2 q_{s, k-1}^{2} n=1,2, \ldots \tag{3.20}
\end{equation*}
$$

Consequently, $q_{s, k} \leq \frac{1}{2}\left[2 q_{s, 0}\right]^{2^{k}}=\frac{1}{2}\left[2 q_{s}\right]^{2^{k}}$

$$
A_{s, k} \leq q_{s, k-1} A_{s, k-1} \leq q_{s, k-1} q_{s, k-2} A_{s, k-2} \leq \ldots q_{s, k-1} q_{s, k-2} \ldots q_{s, 0} A_{s, 0}
$$

in which $q_{s, 0}=q_{s}$ and $A_{s, 0}=A_{s}$. From (3.15) and (3.16), we obtain

$$
\begin{align*}
\left\|x_{k+1}-x_{k}\right\| & +\left\|x_{k+2}-x_{k+1}\right\|+\cdots \leq\left(t_{k+1}-t_{k}\right)+\left(t_{k+2}-t_{k+1}\right)+\cdots \leq \\
& \leq \frac{1}{2^{k}}\left[2 q_{s}\right]^{2^{k}-1} A_{s} \leq \frac{1}{2^{k}}\left[2 q_{s}\right]^{2^{k}} \frac{A_{s}}{q_{s}} \leq \frac{1}{2^{k}}[2 q]^{2^{k}} C \tag{3.21}
\end{align*}
$$

since $\frac{A_{s}}{q_{s}}=\frac{1}{B_{s}} \leq C$ and B_{s} is an upper bound for the norm of the second derivatives and can only increase as $s \rightarrow \infty$. Passing to the limit on $k=k(s) \rightarrow \infty$ in (3.21), we obtain inequality (3.13).

We will use the modified Newton method $\Delta x_{k}=-\left(\tilde{\Theta}_{s, 0}^{\prime}\left(x_{0}\right)\right)^{-1} \tilde{\Theta}_{s, k}\left(x_{k}\right)$ for solving the equality $\Theta_{s}(x)=0$. We denote the obtained sequence as $\left\{x_{k}^{\prime}\right\}$. Suppose $\varphi_{s}(t)=t+c_{0} \psi_{s}(t)$, where $c_{0}=-\frac{1}{\psi_{s}^{\prime}\left(t_{0}\right)}=\frac{1}{2}$ and $t_{0}=0$. Let us replace the modified Newton method for the equation
$\psi_{s}(t)=0$ with the equation $t=\varphi_{s}(t)$, and we will solve it by using the successive approximations method. Suppose $t_{s}^{*}=\varphi_{s}\left(t_{s}^{*}\right)$. We can write

$$
t_{s}^{*}-t_{k}^{\prime}=\varphi_{s}\left(t_{s}^{*}\right)-\varphi_{s}\left(t_{k-1}^{\prime}\right)=\varphi_{s}^{\prime}\left(\tilde{t}_{k}\right)\left(t^{*}-t_{k-1}^{\prime}\right), \tilde{t}_{k}=\frac{t^{*}+t_{k-1}^{\prime}}{2}
$$

However $\varphi_{s}^{\prime}(t)=1+c_{o} \psi_{s}^{\prime}(t)=B_{s} t$, so that

$$
\varphi^{\prime}\left(\tilde{t}_{k}\right)=B_{s} \tilde{t}_{k} \leq B_{s} t^{*}=1-\sqrt{1-2 q_{s}}
$$

Therefore, $t_{s}^{*}-t_{k}^{\prime} \leq\left[1-\sqrt{1-2 q_{s}}\right]\left(t_{s}^{*}-t_{k-1}^{\prime}\right)$. We can obtain the similar inequality for $t_{s}^{*}-t_{k-1}^{\prime}$. Consequently,

$$
t_{s}^{*}-t_{k}^{\prime} \leq\left[1-\sqrt{1-2 q_{s}}\right]^{k}\left(t_{s}^{*}-t_{0}^{\prime}\right)=\frac{A_{s}}{q_{s}}\left[1-\sqrt{1-2 q_{s}}\right]^{k+1}
$$

The inequality $\left\|x_{s}^{*}-x_{k}^{\prime}\right\| \leq t_{s}^{*}-t_{k}^{\prime}$, similar to inequality (3.15), is correct for the modified Newton's method. Using this inequality, we obtain

$$
\left\|x_{s}^{*}-x_{k}^{\prime}\right\| \leq \frac{A_{s}}{q_{s}}\left[1-\sqrt{1-2 q_{s}}\right]^{k+1}
$$

Passing to the limit in s and considering

$$
\frac{A_{s}}{q_{s}}=\frac{1}{B_{s}} \leq C, q_{s} \leq q<\frac{1}{2}
$$

in which C is a constant for all s, we obtain inequality (3.14).

4. Conclusion

We proposed a method for finding equilibrium points as the limit points of a sequence obtained by applying the numerical method described above. The coordinate descent method slowly converges to an equilibrium point in the general case, but by changing the initial points, one can obtain all equilibrium points with minimal intermediate calculations. A method for finding Nash equilibrium points using the matrices of second mixed derivatives (generalized matrices of second mixed derivatives) of the original functions was suggested. Such methods, under certain conditions, converge much faster than the coordinate descent method, but require more calculations at each step.

To speed up the convergence of the method, it was proposed to decrease consistently the diameter of the set D_{m} on which the integration is performed, and the step length of the optimization process. We gave the rules for successive decrease of the diameter of the set D_{m} and the step length. The Kantorovich theorem was used to estimate the convergence rate.

REFERENCES

[1] J.F. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci. 36 (1950), 48-49.
[2] J.F. Nash, The bargaining problem, Econometrics 18 (1950), 155-162.
[3] J.F. Nash, Non-cooperative games, Ann. Math. 54 (1951), 286-295.
[4] J.F. Nash, Two-person cooperative games, Econometrics 21 (1953), 128-140.
[5] P.D. Gorizontova, Homeostasis, Medicine. 1981.
[6] Minarchenko, Application of branch-boundary method for finding equilibrium points in Kurno's model, Proc. Irkutsk State Univ. Series Math. 10 (2014), 62-75.
[7] V.F. Demyanov, V.N. Malozemov, Introduction to Minimax. M: Nauka, 1972.
[8] I.M. Prudnikov, $C^{2}(D)$ integral approximation of nonsmooth functions, preserving $\varepsilon(D)$ local minimals, Work papers of Institute of Mathematics and Mechanics Ur. Dep. RAN. T. 16. N 5. Add. Issue. Ekaterinburg: IMM Ur. Dep. RAN. pp. 159-169. 2010.
[9] L.V. Kantorovich, G.P. Akilov, Functional Analysis, M: Nauka, 1984.

[^0]: E-mail address: pim_10@hotmail.com.
 Received: May 9, 2023; Accepted: September 22, 2023.

