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NASH EQUILIBRIUM POINTS AND THEIR FINDING FOR NONSMOOTH CASE
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Abstract. The purpose of this paper is to develop a numerical method for finding an equilibrium point in a model,
in which the loss function of each object (subject) is described by a convex function with respect to one of its
variables. Such models are found in medicine, economics, game theory, and biology. For the more complex case,
with nonsmooth functions describing the state of each element of the system as damage, loss, or gain, the Steklov
average integrals are used that turn nonsmooth functions into smooth ones. Numerical method for finding equi-
librium points in the more general non-smooth case is constructed. In the process of optimization, the diameters
of the sets, over which the averaging takes place, are decreased in accordance with the optimization steps. All
limit points are proved to be equilibrium points. Under some conditions, the convergence rate can be estimated
using the Kantorovich theorem. The necessity to develop new methods for finding Nash equilibrium points in the
nonsmooth case is concluded.
Keywords. Clarke subdifferential; Convex functions; Non-cooperative Nash equilibrium point; Lebesgue inte-
grals; Newton’s optimization methods.
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1. INTRODUCTION

Let the physical or economic state of a system be described by m loss functions f1(x1,x2, . . . ,
xm) : Rm → R, f2(x1,x2, . . . ,xm) : Rm → R, . . . , fm(x1,x2, . . . ,xm) : Rm → R depending on m
variables x1,x2, . . . ,xm, where Rm is m-dimensional Euclidean space. Then an equilibrium point
is a state x∗1,x

∗
2, . . . ,x

∗
m for which changing any x∗j leads to an increase in the corresponding

function f j(·), i.e.

f j(x∗1,x
∗
2, . . . ,x

∗
j , . . . ,x

∗
m)≤ f j(x∗1,x

∗
2, . . . ,x

∗
j−1,x j,x∗j+1, . . . ,x

∗
m). (1.1)

Equilibrium states were introduced into economics by J. Nash. In 1950-1953, his published
many results on the existence of equilibrium points; see, e.g., [1]-[4]. The problem of equilib-
rium points finding in biology or economics is closely related to game theory and is of practical
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2 I. M. PROUDNIKOV

importance. Equilibrium points arise from interspecific competition in biology and intercom-
pany competition in economics. Equilibrium points in medicine are homeostasis points [5].
These are points of balance between various states of the human body, e.g. blood pressure,
temperature, blood cholesterol level, pulse rate. Some balance is achieved between different
pills when we take medication. Here we consider non-cooperative games of m players, none
of whom can influence other players’ behavior (strategies). A player i chooses independently a
pure strategy xi from a compact convex set Si, such that he minimizes his loss function fi(·).

Consider a vector x = (x1,x2, . . . ,xm) ∈Rm, called a multistrategy and comprised of the pure
strategies xi ∈ Si. We assume that the vector x belongs to the compact convex set S = S1×S2×
. . .Sm ∈ Rm, which is the Cartesian product of the compact sets Si, i ∈ 1 : m, and int S 6= /0.

Definition 1.1. A multistrategy x∗ = (x∗1,x
∗
2, . . . ,x

∗
m) ∈ S of a non-cooperative game is called a

non-cooperative equilibrium if inequality (1.1) is true for every j ∈ 1 : m and x j ∈ S j.

The definitions of equilibrium points in game theory, medicine, and economics are similar.
In 1950, J. Nash proved the following theorem.

Theorem 1.1. [1]. Let Si be a compact convex set for any i ∈ 1 : m and fi(·) be convex with
respect to xi ∈ Si. Then there is a non-cooperative equilibrium in a non-cooperative game with
m players.

The aim of the paper is to develop numerical methods for finding equilibrium points in the
nonsmooth case. To our knowledge, there are papers describing numerical methods for find-
ing equilibrium points in special cases [6], however, there are no papers describing numerical
methods for finding equilibrium points in the general case.

2. DISCUSSION OF THE PROBLEM

We describe a method of searching for an equilibrium state, provided that the functions
fi(x−i,xi) : S → R, where x−i = (x1,x2, . . . ,xi−1,xi+1, . . . ,xm), are convex with respect to xi.
We assume that the inclusion {x ∈Rm | fi(x)< fi(x0)} ⊂ int S is true for any i ∈ 1 : m, in which
x0 is a starting point. We can conclude from here that equilibrium points x∗ belong to intS. Here
intS means the interior of the set S.

Let us denote the coordinate vectors by e1 = (1,0,0, . . . ,0),e2 = (0,1,0, . . . ,0),
. . . ,em = (0,0,0, . . . ,1). It is known that coordinate descent method admits no convergence for
nonsmooth functions [7]. Therefore, we will use the ideas from [8].

Equilibrium points finding algorithms for the smooth case
One way is to use gradient and second-order methods for the smooth case, i.e., fi(·), i ∈ 1 :

m, are differentiable functions with respect to the variables x j, j ∈ 1 : m. Denote the partial
derivative of the function fi(·) with respect to the variable xi by f ′i,xi

(·).
Consider the vector function Θ(·) : Rm→ Rm :

Θ(x) =


f ′1,x1

(x)
f ′2,x2

(x)
. . .

f ′m,xm
(x)

 (2.1)

We search a vector x∗ = (x∗1,x
∗
2, . . . ,x

∗
m), for which Θ(x∗) = 0. It is clear that the vector x∗ is an

equilibrium point.
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First, we give the general description of the Newton’s method. From expansion accurate to
the higher order terms Θ(x+∆x) = Θ(x)+Θ′(x)∆x+o(∆x), in which

lim
∆x→0

o(∆x)
‖∆x‖

= 0,

we obtain the value for the step ∆x. Suppose

Θ(x+∆x)≈Θ(x)+Θ
′(x)∆x = 0.

It follows that ∆x =−(Θ′(x))−1Θ(x), where

Θ
′(x) =


f ′′1,x1,x1

f ′′1,x1,x2
· · · f ′′1,x1,xm

f ′′2,x2,x1
f ′′2,x2,x2

· · · f ′′2,x2,xm
...

... . . . ...
f ′′m,xm,x1

f ′′m,xm,x2
· · · f ′′m,xm,xm

 (2.2)

Algorithm 1 (The Newton’s method for twice continuously differentiable functions f i(·))

At each step k, if the inverse matrix (Θ′(xk))
−1 exists, we find

∆xk =−(Θ′(xk))
−1

Θ(xk). (2.3)

We set xk+1 = xk +2−l ∆xk, in which l is the smallest number from the set M = {0,1,2, · · ·} for
which the inequality ‖Θ(xk+1)‖ < ‖Θ(xk)‖ is correct and xk+1 ∈ intS. It is easy to prove that
there exists a number l for which the inequality ‖Θ(xk+1)‖< ‖Θ(xk)‖ is true. Indeed,

Θ(xk+1) = Θ(xk +2−ls∆xk) = Θ(xk)+2−lsΘ′(xk)∆xk +o(2−ls∆xk) =

= Θ(xk)−2−lsΘ(xk)+o(2−ls∆xk) = Θ(xk)(1−2−ls)+o(2−ls∆xk).

Since ‖o(2−ls∆x)‖ ≤ 2−lsε(ls)‖Θ(xk)‖, in which ε(ls)→ 0 as ls→ ∞, we have for big enough
ls

‖Θ(xk+1)‖ ≤ (1−2−ls +2−lsε(ls))‖Θ(xk)‖< ‖Θ(xk)‖
what needed to be proven. Repeat the process as long as ‖Θ(xk)‖ ≤ ε, in which ε is a positive
small number.

Let the inequality
L1‖∆x‖ ≤ ‖Θ′(x)∆x‖ ≤ L2‖∆x‖ (2.4)

hold true for some L1,L2 > 0 and any ∆x. We assume that x belongs to a small neighborhood
of an equilibrium point x∗, in which Θ(x∗) = 0 and the optimization process takes place with
full step ∆xk i.e. l = 0. Then it is possible to obtain an estimation of the convergence rate of the
Newton’s method. We have

‖Θ(xk+1)‖= ‖Θ(xk +∆xk)−Θ(x∗)‖= ‖Θ′(ξ )∆xk‖,

in which ξ is a point on the line, connecting xk+1 and x∗, and between them. Let us substitute
the expression for ∆xk from (2.3). Therefore, we obtain

‖Θ′(ξ )∆xk‖= ‖Θ′(ξ )(Θ′(xk))
−1

Θ(xk)‖.
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Due to the continuity of the matrix Θ′(·) and the fact that at each step k according to the choice
of the step Θ(xk) = o(∆xk−1), and also the assumption (2.4), we obtain a chain of inequalities

L1‖∆xk‖ ≤ ‖Θ′(ξ )∆xk‖= ‖Θ′(ξ )(Θ′(xk))
−1

Θ(xk)‖ ≤ ck‖Θ(xk)‖.

Here ck = ‖Θ′(ξ )(Θ′(xk))
−1‖. We also have ‖o(∆x)‖ ≤ ε(∆x)‖∆x‖, in which ε(∆x)→ 0 as

∆x→ 0. Let us define

Nk = N(∆xk) =
1

ε(∆xk)
,

in which Nk = N(∆xk)→k ∞ as ‖∆xk‖→ 0. Therefore,

‖o(∆xk−1)‖ ≤
‖∆xk−1‖

Nk−1
.

We also have

‖Θ(xk)‖= ‖o(∆xk−1)‖ ≤
‖∆xk−1‖

Nk−1
.

As a result,

L1‖∆xk‖ ≤ ck
‖∆xk−1‖

Nk−1
.

From the inequalities, we have

‖∆xk‖ ≤ ck
‖∆xk−1‖
L1 Nk−1

= qk‖∆xk−1‖,

where qk =
ck

L1 Nk−1
. Superlinear convergence follows directly due to qk→k 0.

Finally, e obtain the following theorem.

Theorem 2.1. Let assumption (2.4) hold true for the twice continuously differentiable functions
fi(·), i∈ 1 : m. Then the Newton method converges with superlinear rate in a small neighborhood
of x∗.

This optimization process requires the existence of continuous second mixed derivatives with
respect to the variables xi,x j, i, j ∈ 1 : m, of the functions fi(·), i ∈ 1 : m, and the existence of the
inverse matrix (Θ′(xk))

−1 at any step k. Unfortunately, assumption (2.4) does not always hold.
Moreover, Theorem 2.1 is true in a small neighborhood of the point x∗ which is to be reached.

3. SOLUTION OF THE PROBLEM FOR THE NONSMOOTH CASE

Let us use the ideas from [8]. We assume that fi(·), i ∈ 1 : m, are Lipschitz functions with
constants Li, i.e., ‖ fi(u)− fi(v)‖ ≤ Li‖u− v‖ for all u,v ∈ Rm. We construct functions

ϕi(x) =
1

µ(D)

∫
D

fi(z+ x)dz. (3.1)

in which D is an arbitrary convex compact set, 0 ∈ intD,µ(D)> 0 is the Lebesgue measure of
set D, and the integral is the Lebesgue integral. It is not difficult to verify that function ϕi(·) is
convex with respect to its variable xi.
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The function fi(·) has the partial derivative with respect to xi almost everywhere (a.e.) on set
S. In [8], it was proven that function ϕi(·) is continuously differentiable with respect to variable
xi. The partial derivative ϕi(·) with respect to xi can be calculated by the formula [8]

ϕ
′
i,xi
(x) =

∂ϕi(x)
∂xi

=
1

µ(D)

∫
D

∂ fi(x+ y)
∂xi

dy.

Functions ϕi(·), i ∈ 1 : m, have an equilibrium point according to Nash’s theorem. Substitute
fi(·), i ∈ 1 : m, for Φi(·) : Rm→ R, i ∈ 1 : m, defined by

Φi(x) =
1

µ(D)

∫
D

ϕi(x+ y)dy,

in which the functions ϕi(·), i ∈ 1 : m, and the set D are defined above (see (3.1)). We take
the integral of the integral, since in this way we obtain the twice continuously differentiable
functions Φi(·), i ∈ 1 : m, and the stationary points of Φi(·) are ε(D)−stationary points of f (·)
[8]. Since ϕi(·) is a Lipschitz [8], we have

Φ
′
i(x) =

1
µ(D)

∫
D

ϕ
′
i (z+ x)dz. (3.2)

.
We have proved that Φi(·), i ∈ 1 : m, have Lipschitz second derivatives [8]. If D is a ball or

a cube centered at zero with the diameter d(D), then functions Φi(·), i ∈ 1 : m, have Lipschitz
second derivatives Φ′′i (·) with constant [8]

L′i =
2Li

d2(D)
.

We can apply the Newton’s method to Φi(·), i ∈ 1 : m, to find the equilibrium points. In the
process of optimization, we will consistently decrease the step λk and the diameter d(Dk) so
that the inequality

λk

d2(Dk)
< εk, (3.3)

was true for some sequence {εk} in which εk→+0 as k→∞. We will prove that the inequality
(3.3) guarantees that any limit point of a sequence obtained by the Newton’s method using the
functions Φ′i(·),Φ′′i (·), i ∈ 1 : m, is an equilibrium point of the functions fi(·), i ∈ 1 : m.

The Newton’s method for finding equilibrium points for fi(·), i ∈ 1 : m, using the func-
tions Φi(·)

Calculate Θ(zk) and Θ′(zk)

Θ(x) =


Φ′1,x1

(x)
Φ′2,x2

(x)
. . .

Φ′m,xm
(x),



Θ
′(x) =


Φ′′1,x1,x1

Φ′′1,x1,x2
· · · Φ′′1,x1,xm

Φ′′2,x2,x1
Φ′′2,x2,x2

· · · Φ′′2,x2,xm
...

... . . . ...
Φ′′m,xm,x1

Φ′′m,xm,x2
· · · Φ′′m,xm,xm
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accordingly to (3.2) for the twice differentiable functions Φi(·), i ∈ 1 : m, when D is a ball or a
cube.

Take a sequence of sets {Ds},s = 1,2, . . . with non-empty interior, the diameters d(Ds) of
which tend to zero in s→ ∞. Let Ds = Bm

rs
(0) = {v ∈ Rn | ‖v‖‖ ≤ rs} for rs→+0 and s→ ∞.

Let us introduce for i ∈ 1 : m the following sequence of functions

ϕi,s(x) =
1

µ(Ds)

∫
Ds

fi(x+ y)dy

and

Φi,s(x) =
1

µ(Ds)

∫
Ds

ϕi,s(x+ y)dy. (3.4)

The difference between (3.2) and (3.4) is that (3.2) is written for a constant D, while (3.4) is
written for a set Ds depending on the parameter s.

Construct the functions Θs(·) for the functions Φi,s(·), i ∈ 1 : m, as written above. Let the
inequality ‖Φ′′i,s(·)‖≤ Ls hold true in which Φ′′i,s(·) is the matrix of the second mixed derivatives.
In [8], it was proved that Ls =

L
d(Ds)

, in which L = max i∈1:mLi.
It follows from here that, depending on the selected metric of the space Rm, the norm ‖Θ′s(·)‖

is proportional to Ls. Suppose ‖Θ′s(·)‖ ≤ Ls. Define the vector-function Θ̃s(·) : Rm→ Rm as a
function of y:

Θ̃s(y,x) = Θs(y)+2Ls(y− x). (3.5)

Then we have the inequality for the matrix Θ̃′s(·)

Ls‖z‖2 ≤ (Θ̃′s(x,x)z,z)≤ 3Ls‖z‖2 ∀z ∈ Rn. (3.6)

Let us construct the Newton’s method for finding the roots of the equation Θs(x) = 0 using
the function Θ̃s(·). We will use the rule of consistent reduction of the length λk of kth step and
the diameter d(Dk).

Description of the Newton’s method for finding for the equilibrium points using Φi,s(·).
Let a point xk was constructed at the step k. Construct the point xk+1. Take by definition

Θ̃s,k(·) = Θ̃s(·,xk). The dependence of s on k is be written as s = s(k). We calculate ∆xk =

−(Θ̃′s,k(xk))
−1Θ̃s,k(xk) at each step k. We set xk+1 = xk + 2−l ∆xk, in which l is the smallest

number from the set M = {0,1,2, · · ·} for which ‖Θ̃s,k(xk+1)‖< ‖Θ̃s,k(xk)‖ and xk+1 ∈ intS.
It is possible to prove that ‖Θ̃s,k(xk+1)‖ < ‖Θ̃s,k(xk)‖ for small ‖∆xk‖ and ‖∆xk‖ → 0 as

k→∞ for fixed s in a small neighborhood of the equilibrium point x∗. We assume that we reach
a small surrounding of the equilibrium point x∗ for big k in which the process takes place with
the full step ∆xk.

If the inequality
‖∆xk‖

d2(Ds(k))
< εk (3.7)

is fulfilled for a sequence {εk},εk → +0 as k→ ∞, then we decrease the diameter d(Ds(k)) of
Ds(k) and increase k,s = s(k). Inequality (3.6) holds true for Θ̃′s(k),k(·) and all s,k. Firstly, we
prove that

lim
k→∞

Θs(k)(xk) = 0 (3.8)

and the sequence {xk} has a limit point x∗.
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We have the expansion of the function Θ̃s(k),k(·) in the neighborhood of the point xk

Θ̃s(k),k(xk+1) = Θ̃s(k),k(xk))+ Θ̃
′
s(k),k(xk))∆xk +os(k),k(∆xk).

After substitution ∆xk =−(Θ̃′s(k),k(xk))
−1Θ̃s,k(xk) in this expansion we obtain

Θ̃s(k),k(xk+1) = os(k),k(∆xk). (3.9)

Let us prove that os(k),k(∆xk) is an infinitesimal function with respect to ∆xk as k→ ∞. Since
Θ̃s(k),k(·) was obtained from Θs(·) through adding the linear function, os(k),k(·) is the same
infinitesimal function in the expansion of Θs(·) in the surrounding of xk.

Now we will obtain the upper bound for os(k),k(·). The following expansion takes place

Θs(xk+1) = Θs(xk)+Θ
′
s(xk)∆xk +os,k(∆xk).

Since the function Θs(·) is continuously differentiable for each s, according to the midpoint
theorem, we have

Θs(xk+1)−Θs(xk) = Θ
′
s(ξ )(xk+1− xk) = Θ

′
s(ξ )∆xk,

in which ξ ∈ [xk,xk+1]. Let us substitute this difference in the Taylor series and use the Lips-
chitzness of Θ′s(·) with the constant 2L

d2(Ds)
. Therefore, since Θ′s(·) is Lipschitz with the constant

2L
d2(Ds)

[8], we obtain

‖os,k(∆xk)‖ ≤ ‖(Θ′s(ξ )−Θ
′
s(xk))∆xk‖ ≤

2L‖∆xk‖
d2(Ds)

‖∆xk‖.

It follows that
‖os,k(∆xk)‖
‖∆xk‖

≤ 2L‖∆xk‖
d2(Ds)

. (3.10)

Hence, if

lim
k→∞

‖∆xk‖
d2(Ds(k))

= 0 (3.11)

holds true during optimization, then uniform infinitesimality of os(k),k(·) with respect to s= s(k)
and k follows from here. However, we organize our process in such a way that limit equality
(3.11) was correct. The limit equality

lim
k→∞

Ls(k)‖xk+1− xk‖= lim
k→∞

Ls(k)∆xk = lim
k→∞

L
d(Ds(k))

∆xk ≤ lim
k→∞

L
d2(Ds(k))

∆xk = 0. (3.12)

follows from the inequality (3.7) as we decrease d(Ds(k)) in the process of optimization. The
equality (3.8) follows from (3.5), (3.9) and (3.12). It follows from the upper semicontinuity of
the Clarke subdifferential and from equality (3.8) that the sequence {xk} converges to a limit
point x∗, in which 0 ∈ ∂xi fi(x∗) for all i ∈ 1 : m, i.e. x∗ is the equilibrium point.

All of the above stated is true if we reach a small neighborhood of the equilibrium point. In
order to do this, we are to use the coordinate descent method with some modifications for the
functions ϕi(·), i ∈ 1 : m. Thus, the following theorem is proved.

Theorem 3.1. Any limit points of the sequence obtained by Newton’s method with starting
points from small neighborhoods of the equilibrium points, are the equilibrium points if the
equality (3.11) is satisfied in the process of optimization for the convex with respect to xi,
Lipschitzian functions fi(·), i ∈ 1 : m, respectively.
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The given Newton’s method is also called the modified Newton’s method. It is possible to
show that there is a majorant Kantorovich function for any step k [9]. The step length and the
convergence rate of the optimization method are estimated under the conditions of consistency
(3.11) and some conditions indicated in the theorem given below. We can state the convergence
of the whole sequence {xk} under the below given conditions in the theorem 3.1.

This is true for the reason that ‖∆xk‖ is compared with the step length of the majorant func-
tion. The conditions of the Kantorovich theorem [9, pp. 689-690], are fulfilled if we satisfy
some requirements.

We will construct a sequence {xk} converging to the solution of the equation Θ(x∗) = 0 for
a ball Bm

r (x0) = {y ∈ Rm | ‖y− x0‖ ≤ r}. Suppose Qs,0 = [Θ̃′s,0(x0)]
−1, ‖Qs,0Θs(x0)‖ ≤ As, and

‖Qs,0Θ̃′′s,0(x)‖ ≤ Bs for any x ∈ Bm
r (x0),4xk =−[Θ̃′s,0(xk)]

−1Θ̃s,k(xk). We set xk+1 = xk +4xk.
During the optimization process, we change s = s(k) and decrease the diameter d(Ds) so that
the requirements of Theorem 3.2 were satisfied.

Theorem 3.2. Assume that there exists a linear operator Qs,0 = [Θ̃′s,0(x0)]
−1 for s = s(0) and

k = 0. If qs = AsBs≤ q < 1
2 is true for any s and the consistency condition limk→∞

∆xk
d2(Ds(k))

= 0 is

satisfied, then the equation Θ(x) = 0 has a solution x∗ to which the Newton’s method converges
with the rate

‖x∗− xk‖ ≤
1
2k [2q]2

k
C (3.13)

for a constant C. The convergence rate of the modified Newton’s method (for q< 1
2 ) is estimated

by the following inequality

‖x∗− xk‖ ≤C(1−
√

1−2q)k+1, k = 0,1,2, . . . (3.14)

Remark 3.1. The proof of the convergence rate follows with some changes from [9, p. 690],
since the convergence rate depends on the values qk and Ak. The first value is limited by the
value 1

2 . The second value tends to zero as k→ ∞.

Proof. It is easy to satisfy to the conditions of the theorem since As(k)→k 0 and we can decrease
the diameters of the sets Ds when qs = AsBs <

1
2 and the point xk can be considered as a new

starting point. At each step k, there is a majorant function ψs,k(·) with ψs(t) = Bst2−2t +2As.
Since ‖Qs,0Θ′′s (xk)‖ ≤ψ ′′s (xk), the step length4k = ‖xk+1−xk‖ does not exceed the step length
tk+1− tk of the Newton’s method for the equation ψs(t) = 0. It e solution is denoted by ts. Thus
the following can be written:

‖xk+1− xk‖ ≤ tk+1− tk. (3.15)

For the existence of the majorant equation ψs(t) = 0, t ∈R, for the operator equation Θ(x) = 0,
as it follows from the Taylor formula XVII.2.5 [9], it is sufficient that the following integral
inequality holds true

‖
∫ xk+1

xk

Q0Θ
′′
s (x)(xk+1− x, ·)dx‖ ≤

∫ tk+1

tk
c0ψ

′′
s (t)(tk+1− t)dt

for big enough k, which is true if

‖Q0Θ
′′
s (x)‖‖xk+1− xk‖ ≤ c0ψ

′′
s (t)(tk+1− tk).
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Let us denote by cs,k =− 1
ψ ′s(tk)

, As,k = cs,kψs(tk), Bs,k = cs,kψ ′′s (tk) = 2Bscs,k, and qs,k = Bs,kAs,k.

Let us note that

tk+1− tk =−
ψs(tk)
ψ ′s(tk)

= As,k, k = 0,1, . . . (3.16)

According to the Taylor expansion for a second degree polynomial we have

As,k = cs,kψs(tk) = csψs(tk−1 +As,k−1) =

= cs,k

[
1
2

ψ
′′
s (tk−1)A2

s,k−1 +ψ
′
s(tk−1)As,k−1 +ψs(tk−1)

]
=

= cs,k

[
BsA2

s,k−1−
As,k−1

cs,k−1
+

As,k−1

cs,k−1

]
= cs,kBsA2

s,k−1 =

=
1
2

cs,k

cs,k−1
2Bscs,k−1A2

s,k−1 =
1
2

cs,k

cs,k−1
Bs,k−1A2

s,k−1

However,

cs,k

cs,k−1
=

ψ ′s(tk)
ψs(tk−1)

=
ψs(tk−1)+ψ ′s(tk−1)As,k−1

ψs(tk−1)
= 1−Bs,k−1As,k−1 = 1−qs,k−1. (3.17)

Therefore,

As,k =
1
2

Bs,kA2
s,k−1

1−qs,k−1
=

As,k−1

2
qs,k−1

1−qs,k−1
. (3.18)

Similarly, from (3.17) we obtain

Bs,k = 2cs,kBs = 2Bscs,k−1
cs,k

cs,k−1
=

Bs,k−1

1−qs,k−1
.

It follows that

qs,k = Bs,kAs,k =
1
2

Bs,k−1As,k−1qs,k−1

(1−qs,k−1)2 =
1
2

[
qs,k−1

1−qs,k−1

]2

. (3.19)

From (3.18) and (3.19), taking into account qs,k ≤ 1
2 , we obtain the following estimations

As,k ≤ qs,k−1As,k, qs,k ≤ 2q2
s,k−1 n = 1,2, . . . (3.20)

Consequently, qs,k ≤ 1
2 [2qs,0]

2k
= 1

2 [2qs]
2k

As,k ≤ qs,k−1As,k−1 ≤ qs,k−1qs,k−2As,k−2 ≤ . . .qs,k−1qs,k−2 . . .qs,0As,0,

in which qs,0 = qs and As,0 = As. From (3.15) and (3.16), we obtain

‖xk+1− xk‖+‖xk+2− xk+1‖+ · · · ≤ (tk+1− tk)+(tk+2− tk+1)+ · · · ≤

≤ 1
2k [2qs]

2k−1As ≤
1
2k [2qs]

2k As

qs
≤ 1

2k [2q]2
k
C, (3.21)

since As
qs
= 1

Bs
≤C and Bs is an upper bound for the norm of the second derivatives and can only

increase as s→ ∞. Passing to the limit on k = k(s)→ ∞ in (3.21), we obtain inequality (3.13).
We will use the modified Newton method ∆xk =−(Θ̃′s,0(x0))

−1Θ̃s,k(xk) for solving the equal-
ity Θs(x) = 0. We denote the obtained sequence as {x′k}. Suppose ϕs(t) = t + c0ψs(t), where
c0 = − 1

ψ ′s(t0)
= 1

2 and t0 = 0. Let us replace the modified Newton method for the equation
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ψs(t) = 0 with the equation t = ϕs(t), and we will solve it by using the successive approxima-
tions method. Suppose t∗s = ϕs(t∗s ). We can write

t∗s − t ′k = ϕs(t∗s )−ϕs(t ′k−1) = ϕ
′
s(t̃k)(t

∗− t ′k−1), t̃k =
t∗+ t ′k−1

2
.

However ϕ ′s(t) = 1+ coψ ′s(t) = Bst, so that

ϕ
′(t̃k) = Bst̃k ≤ Bst∗ = 1−

√
1−2qs.

Therefore, t∗s − t ′k ≤ [1−
√

1−2qs](t∗s − t ′k−1). We can obtain the similar inequality for t∗s − t ′k−1.
Consequently,

t∗s − t ′k ≤ [1−
√

1−2qs]
k(t∗s − t ′0) =

As

qs
[1−

√
1−2qs]

k+1.

The inequality ‖x∗s −x′k‖ ≤ t∗s − t ′k, similar to inequality (3.15), is correct for the modified New-
ton’s method. Using this inequality, we obtain

‖x∗s − x′k‖ ≤
As

qs
[1−

√
1−2qs]

k+1.

Passing to the limit in s and considering
As

qs
=

1
Bs
≤C, qs ≤ q <

1
2
,

in which C is a constant for all s, we obtain inequality (3.14). �

4. CONCLUSION

We proposed a method for finding equilibrium points as the limit points of a sequence ob-
tained by applying the numerical method described above. The coordinate descent method
slowly converges to an equilibrium point in the general case, but by changing the initial points,
one can obtain all equilibrium points with minimal intermediate calculations. A method for
finding Nash equilibrium points using the matrices of second mixed derivatives (generalized
matrices of second mixed derivatives) of the original functions was suggested. Such methods,
under certain conditions, converge much faster than the coordinate descent method, but require
more calculations at each step.

To speed up the convergence of the method, it was proposed to decrease consistently the
diameter of the set Dm on which the integration is performed, and the step length of the opti-
mization process. We gave the rules for successive decrease of the diameter of the set Dm and
the step length. The Kantorovich theorem was used to estimate the convergence rate.

REFERENCES

[1] J.F. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci. 36 (1950), 48-49.
[2] J.F. Nash, The bargaining problem, Econometrics 18 (1950), 155-162.
[3] J.F. Nash, Non-cooperative games, Ann. Math. 54 (1951), 286-295.
[4] J.F. Nash, Two-person cooperative games, Econometrics 21 (1953), 128-140.
[5] P.D. Gorizontova, Homeostasis, Medicine. 1981.
[6] Minarchenko, Application of branch-boundary method for finding equilibrium points in Kurno’s model, Proc.

Irkutsk State Univ. Series Math. 10 (2014), 62-75.
[7] V.F. Demyanov, V.N. Malozemov, Introduction to Minimax. M: Nauka, 1972.



NASH EQUILIBRIUM POINTS AND THEIR FINDING 11

[8] I.M. Prudnikov, C2(D) integral approximation of nonsmooth functions, preserving ε(D) local minimals,
Work papers of Institute of Mathematics and Mechanics Ur. Dep. RAN. T. 16. N 5. Add. Issue. Ekaterinburg:
IMM Ur. Dep. RAN. pp. 159-169. 2010.

[9] L.V. Kantorovich, G.P. Akilov, Functional Analysis, M: Nauka, 1984.


	1. Introduction
	2. Discussion of the Problem
	3. Solution of the Problem for the Nonsmooth Case
	4. Conclusion
	References

