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Abstract. This paper considers the nonsmooth fractional semi-infinite programming problems with vanishing
constraints. Using Clarke subdifferentials, we first obtain both necessary and sufficient Karush-Kuhn-Tucker opti-
mality conditions for nonsmooth fractional semi-infinite programming problems with vanishing constraints. Then,
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generalized convexity assumptions.
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1. INTRODUCTION

Some problems in structural topology optimization in certain engineering applications could
be reformulated by mathematical programming problems with vanishing constraints, see [1, 13].
For some recent results in this direction, see, e.g., the papers [14, 15, 17, 20]. In [11], the
mathematical programming problem with vanishing constraints with an infinite number of con-
straints, or semi-infinite programming [10], was proposed and investigated the optimality con-
ditions by employing the Clarke subdifferentials. The Karush-Kuhn-Tucker optimality con-
ditions and Mond-Weir and Wolfe type duality for semi-infinite programming with vanishing
constraints were also considered in [2, 23, 24, 25]. In addition, to deal with some optimization
problems that involve ratio terms, fractional optimization problems were investigated, see e.g.
[6, 7, 16, 22] and references therein. However, to the best of our knowledge, there is no pa-
per dealing with the fractional semi-infinite programming problems with vanishing constraints.
Moreover, Lagrange duality and saddle point criteria for nonsmooth semi-infinite programming
problems with vanishing constraints have also not been investigated yet. It is well known that
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Lagrange duality may be easier to deal from algorithmic point of view rather than other duali-
ties; see, e.g., [5, 21].

Motivated by the above observations, in this paper, we establish Karush-Kuhn-Tucker opti-
mality conditions and investigate Lagrange duality problems for the nonsmooth fractional semi-
infinite programming problems with vanishing constraints. The paper is organized as follows.
The basic concepts and some preliminaries are recalled in Section 2. The KKT necessary and
sufficient optimality conditions for the nonsmooth fractional semi-infinite programming prob-
lems with vanishing constraints in terms of Clarke subdifferentials are discussed in Section 3.
Section 4 is devoted to delving into Lagrange dual problems and saddle point criteria of the
nonsmooth fractional semi-infinite programming problems with vanishing constraints.

2. PRELIMINARIES

In this paper, the notation 〈·, ·〉 is used to denote the inner product in the Euclidean space
Rn. By B(x,δ ) we designate the open ball centered at x with radius δ > 0. For A ⊆ Rn, intA,
clA, ∂A, spanA and coA stand for its interior, closure, boundary, linear hull, convex hull of A,
respectively. The cone and the convex cone (containing the origin) generated by A are denoted
resp by coneA, posA. It should be mentioned that, for the given sets A1,A2 in Rn,

span(A1∪A2) = spanA1 + spanA2 and pos(A1∪A2) = posA1 +posA2.

The negative polar cone, the strictly negative polar cone and the orthogonal complement of A
are defined respectively by

A− := {x∗ ∈ Rn|〈x∗,x〉 ≤ 0, ∀x ∈ A},

As := {x∗ ∈ Rn|〈x∗,x〉< 0, ∀x ∈ A},

A⊥ := {x∗ ∈ Rn|〈x∗,x〉= 0, ∀x ∈ A}.
It is easy to check that As ⊂ A− and if As 6= /0 then clAs = A−. Moreover, the bipolar theorem
(see, e.g., [3]) states that A−− = cl posA. For a given nonempty subset A of Rn, the contingent
cone [3] of A at x̄ ∈ clA is

T (A, x̄) := {x ∈ Rn | ∃τk ↓ 0,∃xk→ x, ∀k ∈ N, x̄+ τkxk ∈ A}.

Note that if A is a convex set then T (A, x̄) = clcone(A− x̄). If 〈x∗,x〉 ≥ 0(〈x∗,x〉 = 0) for
all x∗ ∈ A∗, where A∗ is a subset of the dual space of Rn, we write 〈A∗,x〉 ≥ 0 (〈A∗,x〉 = 0,
resp.). The cardinality of the index set I is denoted by |I|. For an index subset I ⊂ {1, ...,n},
xI = 0(xI ≥ 0) stands for xi = 0 (xi ≥ 0, respectively ) for all i ∈ I.

Definition 2.1. [8] Let x̄ ∈ Rn and φ : Rn → R be a locally Lipschitz function. The Clarke
directional derivative of φ : Rn→ R at x̄ in direction u is defined by

φ
o(x̄,u) := limsup

τ↓0,x→x̄

φ(x+ τu)−φ(x)
τ

.

The Clarke subdifferential of φ at x̄ is

∂
C

φ(x̄) := {x∗ ∈ Rn|〈x∗,d〉 ≤ φ
o(x̄,d), ∀d ∈ Rn}.

We recall the following properties from [8].
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Lemma 2.2. Let φ ,ψ be the functions from Rn to R, which are Lipschitz near x̄. Then, the
following assertions hold:

(i) The function v→ φ o(x̄,v) is finite, positively homogenous, subadditive on Rn, φ o(x̄,0) =
0, φ o(x̄,v) = max

x∗∈∂Cφ(x̄)
〈x∗,v〉 and ∂ (φ o(x̄, .))(0) = ∂Cφ(x̄), where ∂ denotes the subdif-

ferential in sense of convex analysis.
(ii) ∂Cφ(x̄) is a nonempty, convex and compact subset of Rn.

(iii) ∂C(λφ)(x̄) = λ∂Cφ(x̄),∀λ ∈ R and ∂C(φ +ψ)(x̄)⊆ ∂Cφ(x̄)+∂Cψ(x̄).
(iv) If φ is convex on Rn then ∂Cφ(x̄) = ∂φ(x̄). If φ is continously differentiable at x̄, then

∂Cφ(x̄) = {∇φ(x̄)}.
(v) ∂Cφ(x̄) = co{x∗ ∈ Rn | ∃xk → x̄,xk 6∈ S ∪Ωφ ,∇φ(xk) → x∗}, where S is any set of

Lebesgue measure 0 in Rn and Ωφ is the set of points at which a given function φ

fails to be differentiable.
(vi) If φ is locally Lipschitz on an open set containing [x,y], then φ(x)−φ(y) = 〈x∗,y− x〉,

for some c ∈ [x,y) and x∗ ∈ ∂Cφ(c).

In this paper, we consider the following nonsmooth fractional semi-infinite programming
with vanishing constraints (P):

min f (x) = u(x)
v(x)

s.t. gt(x)≤ 0, t ∈ T ,
hi(x) = 0, i = 1, ...,q,
Hi(x)≥ 0, i = 1, ..., l,
Gi(x)Hi(x)≤ 0, i = 1, ..., l,

where u,v, gt(t ∈ T ), hi(i = 1, ...,q) and Gi,Hi(i = 1, ..., l) are Lipschitzian functions from
Rn to R. The index set T is an arbitrary nonempty set, not necessary finite. Let us denote
Ih := {1, ...,q} and Il := {1, ..., l}. The feasible solution set of (P) is

Ω := {x ∈ Rn | gt(x)≤ 0(t ∈ T ),hi(x) = 0(i ∈ Ih),Hi(x)≥ 0,Gi(x)Hi(x)≤ 0(i ∈ Il)}.

We further assume that vi(x) > 0, i ∈ I for all x ∈ Rn, and that ui(x̄) ≤ 0 for the reference
point x̄ ∈ Ω. The point x̄ is a locally solution of (P), denoted by x̄ ∈ locS(P), if there exists a
neighborhood U ∈ U (x̄) such that u(x)

v(x) ≥
u(x̄)
v(x̄) ,∀x ∈ Ω∩U . If U = Rn, the word “locally” is

omitted.
The notation R|T |+ signifies the collection of all the functions λ : T → R taking values λt’s

positive only at finitely many points of T , and equal to zero at the other points. For a given
x̄ ∈Ω, Ig(x̄) := {t ∈ T |gt(x̄) = 0} indicates the index set of all active constraints at x̄. The set of
active constraint multipliers at x̄ ∈Ω is

Λ(x̄) := {λ ∈ R|T |+ |λtgt(x̄) = 0,∀t ∈ T}.

Notice that λ ∈ Λ(x̄) if there exists a finite index set J ⊂ Ig(x̄) such that λt > 0 for all t ∈ J and
λt = 0 for all t ∈ T \ J. For each x̄ ∈Ω, define

I+(x̄) := {i ∈ Il | Hi(x̄)> 0}, I0(x̄) := {i ∈ Il | Hi(x̄) = 0},

I+0(x̄) := {i ∈ Il | Hi(x̄)> 0,Gi(x̄) = 0},
I+−(x̄) := {i ∈ Il | Hi(x̄)> 0,Gi(x̄)< 0},
I0+(x̄) := {i ∈ Il | Hi(x̄) = 0,Gi(x̄)> 0},
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I00(x̄) := {i ∈ Il | Hi(x̄) = 0,Gi(x̄) = 0},
I0−(x̄) := {i ∈ Il | Hi(x̄) = 0,Gi(x̄)< 0}.

Definition 2.3. Let x̄ ∈Ω.
(i) The point x̄ is called a strong stationary point of (P) iff there exists (λ g,λ h,λ G,λ H) ∈
×Λ(x̄)×Rq ×Rl ×Rl with λ H

I+(x̄)
= 0, λ H

I00(x̄)∪I0−(x̄)
≥ 0, λ G

I+−(x̄)∪I0+(x̄)∪I00(x̄)∪I0−(x̄)
= 0 and

λ G
I+0(x̄)

≥ 0 such that

0 ∈ ∂
Cu(x̄)− u(x̄)

v(x̄)
∂

Cv(x̄)+ ∑
t∈T

λ
g
t ∂

Cgt(x̄)+ ∑
i∈Ih

λ
h
i ∂

Chi(x̄)−∑
i∈Il

λ
H
i ∂

CHi(x̄)+∑
i∈Il

λ
G
i ∂

CGi(x̄).

(ii) The point x̄ is said to be a VC-stationary point of (P) iff there exists (λ g,λ h,λ G,λ H)∈Rm
+×

Λ(x̄)×Rq×Rl×Rl with λ H
I+(x̄)

= 0, λ H
I00(x̄)∪I0−(x̄)

≥ 0, λ G
I+−(x̄)∪I0+(x̄)∪I0−(x̄)

= 0 and λ G
I+0(x̄)∪I00(x̄)

≥
0 satisfying

0 ∈ ∂
Cu(x̄)− u(x̄)

v(x̄)
∂

Cv(x̄)+ ∑
t∈T

λ
g
t ∂

Cgt(x̄)+ ∑
i∈Ih

λ
h
i ∂

Chi(x̄)−∑
i∈Il

λ
H
i ∂

CHi(x̄)+∑
i∈Il

λ
G
i ∂

CGi(x̄).

It is easy to see that if x̄ ∈Ω is a strong stationary point of (P) then x̄ is a VC-stationary point
of (P).

For x̄ ∈Ω and (λ g,λ h,λ G,λ H) ∈ R|T |+ ×Rq×Rl×Rl , let us define

I+g (x̄) := {t ∈ Ig(x̄) | λ g
t > 0},

I+h (x̄) := {i ∈ Ih(x̄) | λ h
i > 0}, I−h (x̄) := {i ∈ Ih(x̄) | λ h

i < 0},

Î++ (x̄) := {i ∈ I+(x̄) | λ H
i > 0},

Î+0 (x̄) := {i ∈ I0(x̄) | λ H
i > 0}, Î−0 (x̄) := {i ∈ I0(x̄) | λ H

i < 0},
Î+0+(x̄) := {i ∈ I0+(x̄) | λ H

i > 0}, Î−0+(x̄) := {i ∈ I0+(x̄) | λ H
i < 0},

Î+00(x̄) := {i ∈ I00(x̄) | λ H
i > 0}, Î−00(x̄) := {i ∈ I00(x̄) | λ H

i < 0},
Î+0−(x̄) := {i ∈ I0−(x̄) | λ H

i > 0},

I++0(x̄) := {i ∈ I+0(x̄) | λ G
i > 0}, I−+0(x̄) := {i ∈ I+0(x̄) | λ G

i < 0},
I++−(x̄) := {i ∈ I+−(x̄) | λ G

i > 0},
I+0+(x̄) := {i ∈ I0+(x̄) | λ G

i > 0}, I−0+(x̄) := {i ∈ I0+(x̄) | λ G
i < 0},

I+00(x̄) := {i ∈ I00(x̄) | λ G
i > 0}, I−00(x̄) := {i ∈ I00(x̄) | λ G

i < 0},
I+0−(x̄) := {i ∈ I0−(x̄) | λ G

i > 0}.

Definition 2.4. (see [4, 18]) Let φ : Rn→R be a locally Lipschitz function, Ω⊂Rn and x̄ ∈Ω.
(i) φ is said to be ∂C-convex at x̄ on Ω if, for all x ∈Ω, φ(x)−φ(x̄)≥ 〈∂Cφ(x̄),x− x̄〉.

(ii) φ is called strictly ∂C-convex at x̄ on Ω if, for all x ∈Ω\{x̄},
φ(x)−φ(x̄)> 〈∂C

φ(x̄),x− x̄〉.
(iii) φ is termed ∂C-pseudoconvex at x̄ on Ω if for any x ∈Ω,

φ(x)−φ(x̄)< 0⇒ 〈∂C
φ(x̄),x− x̄〉< 0.
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(iv) φ is declared strictly ∂C-pseudoconvex at x̄ on Ω if for all x ∈Ω\{x̄},

φ(x)−φ(x̄)≤ 0⇒ 〈∂C
φ(x̄),x− x̄〉< 0.

(v) φ is called ∂C-quasiconvex at x̄ on Ω if for any x ∈Ω,

φ(x)−φ(x̄)≤ 0⇒ 〈∂C
φ(x̄),x− x̄〉 ≤ 0.

Lemma 2.5. [19] Let {Ct |t ∈ Γ} be an arbitrary collection of nonempty convex sets in Rn and

K = pos
(⋃

t∈Γ

Ct

)
. Then, every nonzero vector of K can be expressed as a non-negative linear

combination of n or fewer linear independent vectors, each belonging to a different Ct .

Lemma 2.6. [10] Suppose that S,T,P are arbitrary (possibly infinite) index sets, as = a(s) =
(a1(s), ...,an(s)) maps S onto Rn, and so do at and ap. Suppose that the set co{as,s ∈ S}+
pos{at , t ∈ T}+ span{ap, p ∈ P} is closed. Then the following statements are equivalent:

I :


〈as,x〉< 0,s ∈ S,S 6= /0
〈at ,x〉 ≤ 0, t ∈ T
〈ap,x〉= 0, p ∈ P

has no solution x ∈ Rn;

II : 0 ∈ co{as,s ∈ S}+pos{at , t ∈ T}+ span{ap, p ∈ P}.

Lemma 2.7. [12] If A is a nonempty compact subset of Rn, then

(i) coA is a compact set;
(ii) if 0 6∈ coA, then posA is a closed cone.

3. KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS

In this section, both KKT necessary and sufficient optimality conditions for the nonsmooth
fractional semi-infinite programming with vanishing constraints are established. We write the
index set Ig instead of Ig(x̄) for the convenience. The other index sets are wrote similarly.
Firstly, we present the following constraint qualifications, which are similar to Abadie constraint
qualification in the literature:
(i) (ACQ) holds at x̄ ∈Ω if

(
⋃
t∈Ig

∂
Cgt(x̄))−∩ (

⋃
i∈Ih

∂
Chi(x̄))⊥∩ (

⋃
i∈I0+

∂
CHi(x̄))⊥∩ (

⋃
i∈I00∪I0−

−∂
CHi(x̄))−∩ (

⋃
i∈I+0

∂
CGi(x̄))−

⊆T (Ω, x̄),

(ii) (VC-ACQ) holds at x̄ ∈Ω if

(
⋃
t∈Ig

∂
Cgt(x̄))−∩ (

⋃
i∈Ih

∂
Chi(x̄))⊥∩ (

⋃
i∈I0+

∂
CHi(x̄))⊥∩ (

⋃
i∈I00∪I0−

−∂
CHi(x̄))−∩ (

⋃
i∈I+0∪I00

∂
CGi(x̄))−

⊆T (Ω, x̄).

It is straightforward that (ACQ) implies (VC-ACQ).

Proposition 3.1. Let x̄ ∈ locS(P).
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(i) If (ACQ) holds at x̄ and the set

∆ := pos

⋃
t∈Ig

∂
Cgt(x̄)∪

⋃
i∈I00∪I0−

(−∂
CHi(x̄))∪

⋃
i∈I+0

∂
CGi(x̄)


+ span

(⋃
i∈Ih

∂
Chi(x̄)∪

⋃
i∈I0+

∂
CHi(x̄)

)
is closed, then x̄ is a strong stationary point of (P).
(ii) If (VC-ACQ) holds at x̄ and the set

∆1 := pos

⋃
t∈Ig

∂
Cgt(x̄)∪

⋃
i∈I00∪I0−

(−∂
CHi(x̄))∪

⋃
i∈I+0∪I00

∂
CGi(x̄)


+ span

(⋃
i∈Ih

∂
Chi(x̄)∪

⋃
i∈I0+

∂
CHi(x̄)

)
is closed, then x̄ is a VC-stationary point of (P).

Proof. Owing to the similarity, we only prove (ii). As x̄ ∈ locS(P), there exists U ∈U (x̄) such
that

u(x)
v(x)

≥ u(x̄)
v(x̄)

,∀x ∈Ω∩U. (3.1)

This together with v(x)> 0 implies that

u(x)− u(x̄)
v(x̄)

v(x)≥ 0 = u(x̄)− u(x̄)
v(x̄)

v(x̄),∀x ∈Ω∩U. (3.2)

Hence, x̄ is the solution of the following nonsmooth semi-infinite programming with vanishing
constraints

(P1) : min u(x)− u(x̄)
v(x̄)v(x)

s.t. x ∈Ω.
Applying Theorem 3.1 in [25], there exists (λ g,λ h,λ G,λ H) ∈ Λ(x̄)×Rq×Rl ×Rl with

λ H
I+(x̄)

= 0, λ H
I00(x̄)∪I0−(x̄)

≥ 0, λ G
I+−(x̄)∪I0+(x̄)∪I0−(x̄)

= 0 and λ G
I+0(x̄)∪I00(x̄)

≥ 0 satisfying

0 ∈ ∂
C
(

u− u(x̄)
v(x̄)

.v
)
(x̄)+ ∑

t∈T
λ

g
t ∂

Cgt(x̄)+ ∑
i∈Ih

λ
h
i ∂

Chi(x̄)−∑
i∈Il

λ
H
i ∂

CHi(x̄)+∑
i∈Il

λ
G
i ∂

CGi(x̄).

It follows from Lemma 2.6 (iii) that

∂
C
(

u− u(x̄)
v(x̄)

.v
)
(x̄)⊂ ∂

Cu(x̄)− u(x̄)
v(x̄)

.∂Cv(x̄),

and hence, the conclusion is obtained. �

Proposition 3.2. Let x̄ be a strong stationary point of (P). Suppose that Î−0+ ∪ I++0 = /0 and
gt(t ∈ Ig),hi(i ∈ I+h ),−hi(i ∈ I−h ),−Hi(i ∈ Î+0+ ∪ Î+00 ∪ Î+0−) are ∂C-quasiconvex at x̄ on Ω. If

u− u(x̄)
v(x̄)v are ∂C-pseudoconvex at x̄ on Ω, then x̄ is a solution of (P).
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Proof. Since x̄ is a strong stationary point of (P), there exists (λ g
J ,λ

h,λ G,λ H) ∈ R|J|+ ×Rq×
Rl×Rl , where J is a finite subset of Ig, with λ H

I+ = 0, λ H
I00∪I0−

≥ 0, λ G
I+−∪I0+∪I00∪I0−

= 0, λ G
I+0
≥ 0

and ξ u ∈ ∂Cu(x̄),ξ v ∈ ∂Cv(x̄),ξ g
t ∈ ∂Cgi(x̄)(t ∈ J),ξ h

i ∈ ∂Chi(x̄)(i∈ Ih),ξ
H
i ∈ ∂CHi(x̄)(i∈ I0+∪

I00∪ I0−),ξ
G
i ∈ ∂CGi(x̄)(i ∈ I+0) such that

ξ
u− u(x̄)

v(x̄)
ξ

v +∑
t∈J

λ
g
t ξ

g
t + ∑

i∈Ih

λ
h
i ξ

h
i − ∑

i∈I0+∪I00∪I0−

λ
H
i ξ

H
i + ∑

i∈I+0

λ
G
i ξ

G
i = 0. (3.3)

For an arbitrary x∈Ω, one gets that gt(x)≤ 0= gt(x̄) for each t ∈ Ig. Thus, the ∂C-quasiconvexity
at x̄ on Ω of gt(t ∈ Ig) give us that 〈ξ g

t ,x− x̄〉 ≤ 0 for all t ∈ J, which in turn together with
λ

g
J ∈ R|J|+ leads that 〈

∑
t∈J

λ
g
t ξ

g
t ,x− x̄

〉
≤ 0. (3.4)

We deduce from x, x̄ ∈Ω that hi(x) = hi(x̄) = 0,∀i ∈ Ih, and hence,

hi(x)≤ hi(x̄),∀i ∈ I+h and −hi(x)≤−h(x̄),∀i ∈ I−h .

We deduce from the above inequalities, the ∂C-quasiconvexity at x̄ on Ω of hi(i ∈ I+h ) and
−hi(i ∈ I−h ) and ∂C(−hi)(x̄) =−∂Chi(x̄)(i ∈ I−h ) that

〈ξ h
i ,x− x̄〉 ≤ 0,∀i ∈ I+h and 〈−ξ

h
i ,x− x̄〉 ≤ 0,∀i ∈ I−h .

This, taking into account the definitions of I+h , I−h , results in〈
∑
i∈Ih

λ
h
i ξ

h
i ,x− x̄

〉
≤ 0. (3.5)

Again, we derive from x∈Ω that−Hi(x)≤ 0,∀i∈ Il , and thus,−Hi(x)≤−Hi(x̄), i∈ Î+0+∪ Î+00∪
Î+0−. Therefore, by the ∂C-quasiconvexity of −Hi, i ∈ Î+0+∪ Î+00∪ Î+0− at x̄ on Ω, one yields that

〈−ξ
H
i ,x− x̄〉 ≤ 0,∀i ∈ Î+0+∪ Î+00∪ Î+0−. (3.6)

As I++0∪ Î−0+ = /0, we infer from (3.3) - (3.6) that〈
ξ u− u(x̄)

v(x̄)ξ v,x− x̄
〉

=−

〈
∑
t∈T

λ
g
t ξ

g
t + ∑

i∈Ih

λ
h
i ξ

h
i − ∑

i∈I0+∪I00∪I0−

λ
H
i ξ

H
i + ∑

i∈I+0

λ
G
i ξ

G
i ,x− x̄

〉
≥ 0, (3.7)

for all x ∈Ω.
Suppose to the contrary that x̄ is not a solution of (P). This amounts to the existence of a

feasible point x̃ ∈Ω such that
u(x̃)
v(x̃)

<
u(x̄)
v(x̄)

,

or equivalently,

u(x̃)− u(x̄)
v(x̄)

v(x̃)< u(x̄)− u(x̄)
v(x̄)

v(x̄).
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This together with the ∂C-pseudoconvexity at x̄ on Ω of u− u(x̄)
v(x̄)v give us the conclusion〈

ξ
u− u(x̄)

v(x̄)
ξ

v,x− x̄
〉
< 0,

contradicting with (3.7). �

Proposition 3.3. Let x̄ be a VC-stationary point of (P). Assume that Î−0+ ∪ I++0 ∪ I+00 = /0 and
gt(t ∈ Ig),hi(i ∈ I+h ),−hi(i ∈ I−h ),−Hi(i ∈ Î+0+ ∪ Î+00 ∪ Î+0−) are ∂C-quasiconvex at x̄ on Ω. If

u− u(x̄)
v(x̄)v are ∂C-pseudoconvex at x̄ on Ω, then x̄ is a solution of (P).

Proof. The proof is analogous to those in Proposition 3.2. �

Example 3.4. Consider the following (P):

min f (x) = |x1|+x2
2

x2
2+1

,

s.t. gt(x) =−tx1 ≤ 0, t ∈ T = N,
H1(x) = x3

1 +3x2 ≥ 0,
G1(x)H1(x) = |x1|(x3

1 +3x2)≤ 0.
Then, Ω = {x ∈R2 | x1 > 0,x3

1+3x2 = 0}∪{x ∈R2 | x1 = 0,x2 ≥ 0}. For x̄ = (0,0) ∈Ω, direct
calculations give that

T (Ω, x̄) = {x ∈ R2 | x1 ≥ 0,x2 = 0}∪{x ∈ R2 | x1 = 0,x2 ≥ 0},

u(x̄) = 0,v(x̄) = 1,u(x)− u(x̄)
v(x̄)

.v(x) = u(x),

∂
Cu(x̄) = [−1,1]×{0},∂Cv(x̄) = {(0,0)},

Ig = N,∂Cgt(x̄) = {(−t,0)}, t ∈ T,

I+ = I0+ = I0− = /0, I00 = {1},∂CG1(x̄) = [−1,1]×{0},∂CH1(x̄) = {(0,3)},

(
⋃
t∈Ig

∂
Cgt(x̄))− = {x ∈ R2 | x1 ≥ 0},

(
⋃

i∈I00

(−∂
CHi(x̄))− = (−∂

CH1(x̄))− = {x ∈ R2 | x2 ≥ 0},

(
⋃

i∈I00

∂
CGi(x̄))− = (∂CG1(x̄))− = {x ∈ R2 | x1 = 0},

(
⋃
t∈Ig

∂
Cgt(x̄))−∩ (

⋃
i∈I00

(−∂
CHi(x̄)))−∩ (

⋃
i∈I00

∂
CGi(x̄))− = {x ∈ R2 | x1 = 0,x2 ≥ 0}.

Hence,
(
⋃
t∈Ig

∂
Cgt(x̄))−∩ (

⋃
i∈I00

(−∂
CHi(x̄)))−∩ (

⋃
i∈I00

∂
CGi(x̄))− ⊂T (Ω, x̄).

Thus, (VC-ACQ) holds at x̄. Moreover,

∆1 = pos

⋃
t∈Ig

∂
Cgt(x̄)∪

⋃
i∈I00

(−∂
CHi(x̄))∪

⋃
i∈I00

∂
CGi(x̄)

= {x ∈ R2 | x2 ≤ 0}
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is closed. Because of the fact u(x)
v(x) =

|x1|+x2
2

x2
2+1
≥ 0 = u(x̄)

v(x̄) , ∀x ∈ Ω, we assert that x̄ ∈ S(P). Thus,
all assumptions in Proposition 3.1 (ii) are fulfilled. Hence, we deduce from the conclusion f
Proposition 3.1 (ii) that x̄ is a VC-stationary point of (P).

Now, we can check directly that x̄ is a VC-stationary point of (P) as follows. Let λ H
1 = 0,

λ G
1 = 0 and λ g : T → R be defined by

λ
g(t) =

{ 1
2 , if t = 1,
0, otherwise.

Then,

(0,0) =

(
1
2
(0,0)− 0

1
.(0,0)

)
+

1
2
(1,0)+

1
2
.(−1,0)−0.(0,3)+0.(1,0)

∈
(
[−1,1]×{0}− 0

1
.(0,0)

)
+ ∑

t∈T
λ

g
t (−t,0)−λ

H
1 (0,1)+λ

G
1 .[−1,1]×{0},

which means that x̄ is a VC-stationary point of (P).
Furthermore, Î+00 = Î−00 = I−00 = I+00 = /0. We can check that u− u(x̄)

v(x̄)v = u,gt(t ∈ Ig) are ∂C-
convex at x̄ on Ω. For instance, since

u(x)−u(x̄) = |x1|+ x2
2 ≥ {βx1,β ∈ [−1,1]}= 〈∂Cu(x̄),x− x̄〉,∀x ∈Ω,

u = u− u(x̄)
v(x̄)v is ∂C-convex at x̄ on Ω. Hence, all assumptions in Proposition 3.3 (i) are satisfied.

Then, it follows that x̄ is a solution of (P).

4. LAGRANGE DUALITY AND SADDLE POINT CRITERIA

In this section, we consider the Lagrange duality schemes and saddle point optimality criteria
for (P). For a fixed s ≥ 0, in the line of [9], we could associate (P) with the semi-infinite
programming with vanishing constraints (P)s as follows:

(P)s : min u(x)+ sv(x)
s.t. x ∈Ω.

Proposition 4.1. Let x̄ ∈Ω.

(i) [9] s̄ = u(x̄)
v(x̄) = min{u(x)

v(x) ,x ∈Ω} if and only if Fs̄(x̄) = min{u(x)− s̄v(x),x ∈Ω}= 0.
(ii) The point x̄ is a (local) solution of (P)s if and only if x̄ is a (local) solution of (P).

Proof. (ii) Let x̄ ∈Ω be a local solution of (P)s. Then, there exists U ∈U (x̄) such that

u(x)− u(x̄)
v(x̄)

v(x)≥ u(x̄)− u(x̄)
v(x̄)

v(x̄),∀x ∈Ω∩U.

This leads that
u(x)
v(x)

≥ u(x̄)
v(x̄)

,∀x ∈Ω∩U,

i.e. x̄ is a local solution of (P)s. The conversion is proved analogously. �
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4.1. Lagrange duality. For a fixed s≥ 0, x ∈Ω and λ = (λ g,λ h,λ H ,λ G) ∈R|T |+ ×Rq×Rl×
Rl , we define

Ls(x,λ ) = u(x)+ sv(x)+ ∑
t∈T

λ
g
t gt(x)+ ∑

i∈Ih

λ
h
i hi(x)−∑

i∈Il

λ
H
i Hi(x)+∑

i∈Il

λ
G
i Gi(x),

and ϕs(λ ) = minx∈Ω Ls(x,λ ). We propose the following Lagrange; see, e.g., [5], type dual
model depending on x ∈Ω for (P)s:

Ds(x) : maxϕs(λ )

s.t. λ
g
T\Ig(x)

≥ 0,λ H
I+(x) ≥ 0,

λ
G
I+−(x)∪I0−(x)

≥ 0,λ G
I0+(x)

≤ 0.

Denote ΩDs(x) the feasible region of the Ds(x). Now, we consider the Lagrange type duality
which is independent on a feasible point of (P)s as follows:

(Ds) : maxϕs(λ )

s.t. λ ∈ΩDs := ∩x∈ΩΩDs(x),

where ΩDs = ∩x∈ΩΩDs(x) 6= /0 is the feasible set of the (Ds).

Proposition 4.2. (Weak duality)

(i) If x is a feasible point of (P)s and λ is a feasible point of Ds(x), then ϕs(λ ) ≤ u(x)+
sv(x).

(ii) If x is a feasible point of (P)s and λ is a feasible point of Ds, then ϕs(λ )≤ u(x)+ sv(x).

Proof. (i) Since ϕs(λ ) = minx∈Ω Ls(x,λ ), one has, for all x ∈Ω,

ϕs(λ )≤ u(x)+ sv(x)+ ∑
t∈T

λ
g
i gt(x)+ ∑

i∈Ih

λ
h
i hi(x)−∑

i∈Il

λ
H
i Hi(x)+∑

i∈Il

λ
G
i Gi(x). (4.1)

We deduce from x∈Ω that gt(x)≤ 0(t ∈ T ), hi(x) = 0(i∈ Ih),−Hi(x)≤ 0(i∈ Il), Gi(x)Hi(x)≤
0(i ∈ Il). Hence,

∑
t∈Ig(x)

λ
g
t gt(x) = 0 and gt(x)< 0,λ g

t ≥ 0,∀t ∈ T \ Ig(x),

∑
i∈I0(x)

λ
H
i Hi(x) = 0 and −Hi(x)< 0,λ H

i ≥ 0,∀i ∈ I+(x),

∑
i∈I+0(x)∪I00(x)

λ
G
i Gi(x) = 0 and Gi(x)> 0,λ G

i ≤ 0,∀i ∈ I0+(x),

Gi(x)< 0,λ G
i ≥ 0,∀i ∈ I+−(x)∪ I0−(x).

The above inequalities imply that

∑
t∈T

λ
g
t gt(x)+ ∑

i∈Ih

λ
h
i hi(x)−∑

i∈Il

λ
H
i Hi(x)+∑

i∈Il

λ
G
i Gi(x)≤ 0. (4.2)

This, together with (4.1), leads that ϕs(λ )≤ u(x)+ sv(x), which completes the proof.
(ii) The conclusion follows from ΩDs = ∩x∈ΩΩDs(x). �
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Corollary 4.3. Let s̄ = −u(x̄)
v(x̄) . If x̄ and λ̄ are feasible points for (P)s̄ and Ds̄(x̄), resp, and

u(x̄)+ s̄v(x̄) = ϕs̄(λ̄ ), then x̄ and λ̄ are optimal solutions for (P)s̄ and Ds̄(x̄), resp. Thus, x̄ is
also an optimal solution for (P).

Proposition 4.4. (Strong duality) Let x̄ be a local optimal solution of (P) such that the (VC-
ACQ) holds at x̄ and ∆1 is closed. If u,v,gt(t ∈ I+g (x̄)),hi(i ∈ I+h (x̄)),−hi(i ∈ I−h (x̄)),Hi(i ∈
Î−0+(x̄)),−Hi(i∈ Î+0+(x̄)∪ Î+00(x̄))∪ Î+0−(x̄)),Gi(i∈ I++0(x̄)∪ I+00(x̄)) are ∂C-convex at x̄, then there

exists λ̄ such that λ̄ is a solution of Ds̄(x̄) and u(x̄)+ s̄v(x̄) = ϕs̄(λ̄ ), where s̄ =−u(x̄)
v(x̄) .

Proof. It follows from Proposition 4.1 that x̄ is also a solution of (P)s̄, where s̄ = −u(x̄)
v(x̄) . We

derive from the assumptions and Proposition 3.1 that there exists (λ̄ g
J , λ̄

h, λ̄ G, λ̄ H)∈R|J|+ ×Rq×
Rl×Rl , where J is a finite subset of Ig(x̄), with λ̄ H

I+(x̄)
= 0, λ̄ H

I00(x̄)∪I0−(x̄)
≥ 0, λ̄ G

I+−(x̄)∪I0+(x̄)∪I0−(x̄)
=

0, λ̄ G
I+0(x̄)∪I00(x̄)

≥ 0 and ξ u ∈ ∂Cu(x̄),ξ v ∈ ∂Cv(x̄),ξ g
t ∈ ∂Cgi(x̄)(t ∈ J),ξ h

i ∈ ∂Chi(x̄)(i∈ Ih),ξ
H
i ∈

∂CHi(x̄)(i ∈ I0+(x̄)∪ I00(x̄)∪ I0−(x̄)),ξ G
i ∈ ∂CGi(x̄)(i ∈ I+0(x̄)∪ I00(x̄)) such that

ξ
u− u(x̄)

v(x̄)
ξ

v +∑
t∈J

λ̄
g
t ξ

g
t + ∑

i∈Ih

λ̄
h
i ξ

h
i − ∑

i∈I0+∪I00∪I0−

λ̄
H
i ξ

H
i + ∑

i∈I+0∪I00

λ̄
G
i ξ

G
i = 0. (4.3)

λ̄
H
I+(x̄) = 0, λ̄ H

I00(x̄)∪I0−(x̄) ≥ 0, (4.4)

λ̄
G
I+−(x̄)∪I0+(x̄)∪I0−(x̄)

= 0, λ̄ G
I+0(x̄)∪I00(x̄)

≥ 0. (4.5)

Since λ̄ g ∈ Λ(x̄), one has λ̄
g
t gt(x̄) = 0 for all t ∈ T , and thus, ∑

t∈T
λ̄

g
t gt(x̄) = 0. As gt(x̄) <

0(t ∈ T \ Ig(x̄)), one has λ
g
T\Ig(x)

= 0, leading that λ̄ ∈ ΩDs̄(x̄). The fact that x̄ ∈ Ω asserts

that ∑
i∈Ih

λ̄ h
i hi(x̄) = 0. Moreover, we deduce from λ̄ H

I+(x̄)
= 0 and Hi(x̄) = 0 for all i ∈ I0(x̄)

that ∑
i∈Il

λ̄ H
i Hi(x̄) = 0. Analogously, since λ̄ G

I+−(x̄)∪I0+(x̄)∪I0−
(x̄) = 0 and Gi(x̄) = 0 for all i ∈

I+0(x̄)∪ I00(x̄), one has ∑
i∈Il

λ̄ G
i Gi(x̄) = 0. Therefore,

∑
t∈T

λ̄tgt(x̄)+ ∑
i∈Ih

λ̄
h
i hi(x̄)−∑

i∈Il

λ̄
H
i Hi(x̄)+∑

i∈Il

λ̄
G
i Gi(x̄) = 0,

which implies
u(x̄)+ s̄v(x̄) = Ls̄(x̄, λ̄ ). (4.6)

Moreover, we infer from the ∂C-convexity of u,v,gt(t ∈ I+g (x̄)),hi(i ∈ I+h (x̄)),−hi(i ∈ I−h (x̄)),
Hi(i ∈ Î−0+(x̄)),−Hi(i ∈ Î+0+(x̄)∪ Î+00(x̄))∪ Î+0−(x̄)),Gi(i ∈ I++0(x̄)∪ I+00(x̄)) at x̄ and the definitions
of the index sets that, for any x ∈Ω,

u(x)−u(x̄)≥ 〈ξ u,x− x̄〉,

v(x)− v(x̄)≥ 〈ξ v,x− x̄〉,
gt(x)−gt(x̄)≥ 〈ξ g

t ,x− x̄〉, λ̄ g
t > 0,∀t ∈ I+g (x̄),

hi(x)−hi(x̄)≥ 〈ξ h
i ,x− y〉, λ̄ h

i > 0,∀i ∈ I+h (x̄),

−hi(x)− (−hi(x̄))≥ 〈−ξ
h
i ,x− x̄〉, λ̄ h

i < 0,∀i ∈ I−h (x̄),

Hi(x)−Hi(x̄)≥ 〈ξ H
i ,x− x̄〉, λ̄ H

i < 0,∀i ∈ Î−0+(x̄),
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−Hi(x)− (−Hi(x̄))≥ 〈−ξ
H
i ,x− x̄〉, λ̄ H

i > 0,∀i ∈ Î+0+(x̄)∪ Î+00(x̄)∪ Î+0−(x̄),

Gi(x)−Gi(x̄)≥ 〈ξ G
i ,x− x̄〉, λ̄ G

i > 0,∀i ∈ I++0(x̄)∪ I+00(x̄).
The above inequalities together with (4.4) and (4.5) entail that

u(x)+ s̄v(x)+ ∑
t∈T

λ̄tgt(x)+ ∑
i∈Ih

λ̄
h
i hi(x)−∑

i∈Il

λ̄
H
i Hi(x)+∑

i∈Il

λ̄
G
i Gi(x)

−

(
u(x̄)+ s̄v(x̄)+ ∑

t∈T
λ̄tgt(x̄)+ ∑

i∈Ih

λ̄
h
i hi(x̄)−∑

i∈Il

λ̄
H
i Hi(x̄)+∑

i∈Il

λ̄
G
i Gi(x̄)

)
〈

ξ
u + s̄ξ

v + ∑
t∈T

λ̄
g
t ξ

g
t (x̄)+ ∑

i∈Ih

λ̄
h
i ξ

h
i (x̄)−∑

i∈Il

λ̄
H
i ξ

H
i (x̄)+∑

i∈Il

λ̄
G
i ξ

G
i (x̄),x− x̄

〉
≥ 0.

Granting this, taking into account (4.3), we get

Ls̄(x, λ̄ )≥ Ls̄(x̄, λ̄ ),∀x ∈Ω. (4.7)

This, together with (4.6), shows that

u(x̄)+ s̄v(x̄) = Ls̄(x̄, λ̄ ) = min
x∈Ω

Ls̄(x, λ̄ ) = ϕs̄(λ̄ ). (4.8)

Moreover, by invoking Proposition 4.2, we have ϕs̄(λ )≤ u(x̄)+ s̄v(x̄),∀λ ∈ΩDs̄(x̄). Combining
this and (4.8), one yields ϕs̄(λ )≤ ϕs̄(λ̄ ),∀λ ∈ΩDs̄(x̄). �

Example 4.5. Consider the following (P):

min f (x) =
x2

1 + x2
2 + x1

|x2|+1
s.t. gt(x) =−x1 + t−1≤ 0, ∀t ∈ T := [0,1],

H1(x) = x1− x2 ≥ 0,G1(x)H1(x) = |x1|(x1− x2)≤ 0.

Then, Ω =∪3
i=1Ωi, where Ω1 =

{
x ∈ R2 | x1 > 0,x1− x2 = 0

}
, Ω2 =

{
x ∈ R2 | x1 = 0,x2 = 0

}
and Ω3 =

{
x ∈ R2 | x1 = 0,x2 < 0

}
. For a fixed s≥ 0, the (P)s is

min u(x)+ sv(x) = x2
1 + x2

2 + x1 + s(|x2|+1)

s.t. x ∈Ω.

As gt(x) =−x1+ t−1≤ 0(∀t ∈ T = [0,1]) is equivalent to g1(x) =−x1 ≤ 0, we could consider
the Lagrange function for (P)s as follows

Ls(x,λ ) = x2
1 + x2

2 + x1 + s(|x2|+1)+λ
g
1 (−x1)−λ

H
1 (x1− x2)+λ

G
1 |x1|

=
1
2
(x2

1 +2λ
G
1 |x1|)+

1
2
(x2

1−2(λ g
1 +λ

H
1 −1)x1)+

1
2
(x2

2 +2s|x2|)+
1
2
(x2

2 +2λ
H
1 x2)+ s.

Therefore, we have λ = (λ g
1 ,λ

H
1 ,λ G

1 ) and

ϕs(λ ) = min
x∈Ω

Ls(x,λ ) =−
(λ G

1 )2 +(λ g
1 +λ H

1 −1)2 + s2 +(λ H
1 )2

2
+ s.

Since Ω = ∪3
i=1Ωi, one has the three Lagrange type dual problems as follows.

For any x ∈Ω1, Ig(x) = /0, I0+(x) = {1}, I+(x) = I00(x) = I0−(x) = /0,

D1
s (x) : max{ϕs(λ ) | λ g

1 ≥ 0,λ H
1 ∈ R,λ G

1 ≤ 0}.
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For any x ∈Ω2, Ig(x̄) = {1}, I+(x) = I0+(x) = I0−(x) = /0, I00(x) = {1},

D2
s (x) : max{ϕs(λ ) | λ g

1 ∈ R,λ H
1 ∈ R,λ G

1 ∈ R}.

For any x ∈Ω3, Ig(x̄) = /0, I+−(x) = I0(x) = /0, I+0(x) = {1},

D3
s (x) : max{ϕs(λ ) | λ g

1 ≥ 0,λ H
1 ≥ 0,λ G

1 ∈ R}.

Denote ΩDi
s(x) the feasible region of Di

s(x) for i = 1,2,3. Then, one gets

(Ds) : max{ϕs(λ ) | λ ∈ΩDs :=
⋂

x∈ΩDi
s(x)

,i=1,2,3

ΩDi
s(x)},

and thus, ΩDs = {λ | λ g ≥ 0,λ H ≥ 0,λ G ≤ 0}. Hence, it follows from Proposition 4.2 that
for all x ∈ Ω and λ ∈ ΩDs(ΩDi

s(x), i = 1,2,3), u(x)+ sv(x) ≥ ϕs(λ ). This conclusion could be
checked directly as follows. For all x ∈Ω and λ ∈ΩDs(ΩDi

s(x), i = 1,2,3),

u(x)+ sv(x) = x2
1 + x2

2 + x1 + s(|x2|+1)

≥ s

≥ −
(λ G

1 )2 +(λ g
1 +λ H

1 −1)2 + s2 +(λ H
1 )2

2
+ s = ϕs(λ ).

Now, taking x̄ = (0,0), one can justify that s̄ = 0 and x̄ is a local solution of (P). By some
calculations, we have

T (Ω, x̄) = Ω,∂Cu(x̄) = (1,0),∂Cv(x̄) = {0}× [−1,1], Ig(x̄) = {1},

∂
Cg1(x̄) = {(−1,0)},(

⋃
t∈Ig(x̄)

∂
Cgt(x̄))− = {x ∈ R2 | x1 ≥ 0},

I+(x̄) = I0+(x̄) = I0−(x̄) = /0, I00(x̄) = {1},∂CG1(x̄) = [−1,1]×{0},∂CH1(x̄) = {(1,−1)},
(
⋃

i∈I00(x̄)

(−∂
CHi(x̄)))− = {x ∈ R2 | x1− x2 ≥ 0},(

⋃
i∈I00(x̄)

∂
CGi(x̄))− = {x ∈ R2 | x1 = 0},

(
⋃
t∈Ig

∂
Cgt(x̄))−∩ (

⋃
i∈I00

(−∂
CHi(x̄)))−∩ (

⋃
i∈I00

∂
CGi(x̄))− = {x ∈ R2 | x1 = 0}.

Hence, (VC-ACQ) holds at x̄. Moreover,

∆1 = pos

 ⋃
t∈Ig(x̄)

∂
Cgt(x̄)∪

⋃
i∈I00(x̄)

(−∂
CHi(x̄))∪

⋃
i∈I00(x̄)

∂
CGi(x̄)

= {x ∈ R2 | x2 ≥ 0}

is closed. We can check that u,v,gt(t ∈ I+g (x̄)),−H1,G1 are ∂C-convex at x̄ on Ω. Thus, all
assumptions in Proposition 4.4 holds. It is easy to see that, ∀x ∈Ω,∀λ ∈ΩDs̄(x),

x2
1 + x2

2 + x1 + s̄(|x2|+1) =−
(λ G

1 )2 +(λ g
1 +λ H

1 −1)2 + s̄2 +(λ H
1 )2

2
+ s̄

is only possible for x1 = x2 = 0 and λ
g
1 = 1,λ G

1 = λ H
1 = 0. Hence, there exists λ̄ = (1,0,0)

such that u(x̄)+ s̄v(x̄) = ϕs̄(λ̄ ) and

ϕs̄(λ̄ ) = 0≥ ϕs̄(λ ),∀λ ∈ΩDs̄(x),

i.e., the conclusion of Proposition 4.4 holds.
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4.2. Saddle point optimality criteria. In this section, we propose saddle point conditions for
(P)s and investigate the relationships between strong duality and saddle point conditions.

Definition 4.6. A point (x̄, λ̄ ) with x̄ ∈ Ω and λ̄ ∈ ΩDs(x̄) is said to be a saddle point of the
Lagrange function Ls, if

Ls(x̄,λ )≤ Ls(x̄, λ̄ )≤ Ls(x, λ̄ ),∀x ∈Ω,∀λ ∈ΩDs(x̄).

Proposition 4.7. Let x̄ be a local optimal solution of the (P) and the assumptions of Proposition
4.4 hold. Then, there exists λ̄ ∈ Λ(x̄)×Rq×Rl ×Rl , such that (x̄, λ̄ ) is a saddle point of Ls̄,
where s̄ = −u(x̄)

v(x̄) . Conversely, if (x̄, λ̄ ) ∈ Ω×ΩDs̄(x̄) is a Lagrange saddle point of Ls̄, then

ϕ(λ̄ ) = u(x̄)+ s̄v(x̄) and x̄ and λ̄ are optimal solutions to (P)s̄ and Ds̄(x̄), resp.

Proof. From (4.7), we have for all x ∈Ω,

Ls̄(x̄, λ̄ )≤ Ls̄(x, λ̄ ). (4.9)

From (4.8) and (4.2), one gets that, for all λ ∈ΩDs̄(x̄), we have

Ls̄(x̄, λ̄ ) = u(x̄)+ s̄v(x̄)

≥ u(x̄)+ s̄v(x̄)+ ∑
t∈T

λ
g
t gt(x̄)+ ∑

i∈Ih

λ
h
i hi(x̄)−∑

i∈Il

λ
H
i Hi(x̄)+∑

i∈Il

λ
G
i Gi(x̄)

= Ls̄(x̄,λ ).

This together with (4.9) implies that (x̄, λ̄ ) is a saddle point of Ls̄.
Now, let (x̄, λ̄ ) ∈Ω×ΩDs̄(x̄) be a saddle point of Ls̄. Then, for all λ ∈ΩDs̄(x̄),

u(x̄)+ s̄v(x̄)+ ∑
t∈T

λ
g
t gt(x̄)+ ∑

i∈Ih

λ
h
i hi(x̄)−∑

i∈Il

λ
H
i Hi(x̄)+∑

i∈Il

λ
G
i Gi(x̄)

≤ u(x̄)+ s̄v(x̄)+ ∑
t∈T

λ̄
g
t gt(x̄)+ ∑

i∈Ih

λ̄
h
i hi(x̄)−∑

i∈Il

λ̄
H
i Hi(x̄)+∑

i∈Il

λ̄
G
i Gi(x̄). (4.10)

Letting λ = 0 in (4.10), we obtain

∑
t∈T

λ̄
g
t gt(x̄)+ ∑

i∈Iq

λ̄
h
i hi(x̄)−∑

i∈Il

λ̄
H
i Hi(x̄)+∑

i∈Il

λ̄
G
i Gi(x̄)≥ 0. (4.11)

As (x̄, λ̄ ) ∈Ω×ΩDs̄(x̄), we derive from (4.2) that

∑
t∈T

λ̄
g
t gt(x̄)+ ∑

i∈Iq

λ̄
h
i hi(x̄)−∑

i∈Il

λ̄
H
i Hi(x̄)+∑

i∈Il

λ̄
G
i Gi(x̄)≤ 0. (4.12)

From (4.11) and (4.12), we get

∑
t∈T

λ̄
g
t gt(x̄)+ ∑

i∈Iq

λ̄
h
i hi(x̄)−∑

i∈Il

λ̄
H
i Hi(x̄)+∑

i∈Il

λ̄
G
i Gi(x̄) = 0, (4.13)

which, along with Ls̄(x̄, λ̄ )≤ Ls̄(x, λ̄ ) for all x ∈Ω, brings us that

u(x̄)+ s̄v(x̄) = Ls̄(x̄, λ̄ ) = min
x∈Ω

Ls̄(x, λ̄ ) = ϕs̄(λ̄ ).

By Corollary 4.3, x̄ and λ̄ are optimal solutions to (P)s̄ and Ds̄(x̄), resp. �
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Proposition 4.8. Let x̄ ∈ Ω be a VC-stationary point of (P). Suppose that u,v,gt(t ∈ I+g (x̄)),
hi(i ∈ I+h (x̄)),−hi(i ∈ I−h (x̄)),Hi(i ∈ Î−0+(x̄)), −Hi(i ∈ Î+0+(x̄)∪ Î+00(x̄))∪ Î+0−(x̄)), Gi(i ∈ I++0(x̄)∪
I+00(x̄)) are ∂C-convex at x̄. Then (x̄, λ̄ ) is a saddle point of Ls̄, where s̄ =−u(x̄)

v(x̄) .

Proof. For an arbitrary x ∈Ω, we have

Ls̄(x, λ̄ )−Ls̄(x̄, λ̄ ) = u(x)+ s̄v(x)+ ∑
t∈T

λ̄tgt(x)+ ∑
i∈Ih

λ̄
h
i hi(x)−∑

i∈Il

λ̄
H
i Hi(x)+∑

i∈Il

λ̄
G
i Gi(x)

−

(
u(x̄)+ s̄v(x̄)+ ∑

t∈T
λ̄

g
t gt(x̄)+ ∑

i∈Iq

λ̄
h
i hi(x̄)−∑

i∈Il

λ̄
H
i Hi(x̄)+∑

i∈Il

λ̄
G
i Gi(x̄)

)
.

By analyzing similarly to the proof in Proposition 4.4, we derive from the fact x̄ is a VC-
stationary point of (P) that

Ls̄(x, λ̄ )−Ls̄(x̄, λ̄ )≥ 0,∀x ∈Ω. (4.14)
It follows from (4.2) and (4.13) that, for all λ ∈ΩDs̄(x̄),

Ls̄(x̄,λ ) = u(x̄)+ s̄v(x̄)+ ∑
t∈T

λ
g
t gt(x̄)+ ∑

i∈Iq

λ
h
i hi(x̄)−∑

i∈Il

λ
H
i Hi(x̄)+∑

i∈Il

λ
G
i Gi(x̄)

≤ u(x̄)+ s̄v(x̄) = u(x̄)+ s̄v(x̄)+ ∑
t∈T

λ̄
g
t gt(x̄)+ ∑

i∈Iq

λ̄
h
i hi(x̄)−∑

i∈Il

λ̄
H
i Hi(x̄)+∑

i∈Il

λ̄
G
i Gi(x̄)

= Ls̄(x̄, λ̄ ).

This along with (4.14) leads that (x̄, λ̄ ) is a saddle point of Ls̄. �

Example 4.9. Consider the problem (P)

min f (x) =
x1 + |x2|
x2

2 +1
s.t. gt(x) = x1− x2 +1− t ≤ 0,∀t ∈ T = [0,1],

H1(x) =−x2
1− x2

2 +1≥ 0,G1(x)H1(x) = x2(−x2
1− x2

2 +1)≤ 0.

The feasible region is Ω= {(x1,x2)∈R2 | 0≤ x2≤ 1,x1 =−
√

1− x2
2}. Choosing x̄= (−1,0)∈

Ω and λ̄ = (λ̄ g
0 , λ̄

H
1 , λ̄ G

1 ) = (1,1,0), one obtains that x̄ is a VC-stationary point of (P), where
Ig(x̄) = {0}, I+(x̄) = I0+(x̄) = I0−(x̄) = /0 and I00(x̄) = {1}.

Moreover, we can check that u,v,gt(t ∈ I+g (x̄)),−H1,G1 are ∂C-convex at x̄ on Ω, i.e., the

provisos of Proposition 4.8 are fulfilled at x̄. Furthermore, as u(x̄) = 0,v(x̄) = 1, s̄ =−u(x̄)
v(x̄) = 0

and
Ls̄(x,λ ) = x1 + |x2|+λ

g
0 (x1− x2 +1)−λ

H
1 (−x2

1− x2
2 +1)+λ

G
1 x2,

one has
Ls̄(x̄,λ ) = Ls̄(x̄, λ̄ ) =−1,L(x, λ̄ ) = x2

1 + x2
2 +2x1 + |x2|− x2.

For x ∈Ω, we get that 0≤ x2 ≤ 1 and

L(x, λ̄ ) = (−
√

1− x2
2)

2 + x2
2 +2(−

√
1− x2

2)+ x2− x2 = 1−2
√

1− x2
2 ≥−1,

and hence,
Ls̄(x̄,λ )≤ Ls̄(x̄, λ̄ )≤ Ls̄(x, λ̄ ),∀x ∈Ω,∀λ ∈ΩDs̄(x̄).

Therefore, the conclusion of Proposition 4.8 is verified.
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