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OPTIMAL QUOTA FOR A MULTI-SPECIES FISHING MODEL

OLIVIER PIRONNEAU
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Abstract. A Stochastic Control Problem can be solved by Dynamic Programming or Distributed Optimal Control
with the Kolmogorov equation for the probability density of the Markov process of the problem. It can be solved
also with Supervised Learning. We shall compare these two classes of methods for the control of fisheries. Fishing
quotas are unpleasant but efficient to control the productivity of a fishing site. A popular model has a vector-valued
stochastic differential equation for the biomass of the different species. Optimization of quota will be obtained
by a gradient method applied to the least square difference with an ideal state weighted by the probability density
of the biomasses. Alternatively a deep neural network which preserves the Markov property of the problem can
be trained with a stochastic gradient algorithm. The model is extended to distributed fishing sites and biomass is
stabilized by adjusting the quota to its time derivative.
Keywords. Control of fisheries; Neural networks; Partial differential equations; Population dynamics; Stochastic
optimal control.
2020 Mathematics Subject Classification. 93E20, 3504, 9B20, 92D25.

1. INTRODUCTION

The increasing need for food has led to over fishing everywhere. To avoid extinction one must
measure or model the biomass and experiment with various ways to control it. The mathemat-
ics of population dynamics are old (see Verhulst [19]). For competing species (fish included)
Volterra [20] introduced the logistic predator-prey model in 1931. Since then, the model has
been extended and used by many (see for instance [1, 8, 9]) and the literature is enormous.
For fisheries Schaefer [18] introduced an effort function E(t) – conveniently representing the
number of fishing boats at sea– and a catchability coefficient q for each class of boats. In [6],
an extension relating the fishing effort to the market price p of fish is analyzed.

Multi-species models are straightforward vector generalizations of single species models,
however their mathematical analysis and computer solutions are much harder. The special
case of a single species with different aging groups is usually analyzed by standard population
dynamics arguments (see “aged structured models” in [9]). Nevertheless, the complexity of the
modeling can be grasped from [12], p73.
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The Mathematical literature on fishing quota is scarce [17]. In [7, 11, 21], the models are ei-
ther too simple or analyzed in general terms for profitability and preservation without numerical
simulations.

Our purpose, in this article, is to show what stochastic optimization can offer to fisheries. We
heave no competence to discuss the accuracy of the models in practice.

In [2], Supervised Learning was shown to be efficient to calibrate the parameters of the fishing
model of [6]. In [13], a stochastic control problem was derived for the computation of optimal
quotas, a solution by Supervised Learning was proposed and compared to standard stochastic
control solutions using the Hamilton-Jacobi-Bellman equations (HJB).

In this article we compare a Distributed Control Method (an alternative to HJB) to a new deep
neural network which is an interesting modification (due to P. Bras [4]) of the one used in [13].
A final remark about “common sense control” is made.

In the last section, the model of [16] and [13] is extended to distributed fishing sites and
solved numerically by “common sense control” for the Atlantic ocean facing Senegal. Some
references to multi-sites models are available in [14] and for open sea models in [11].

2. THE SINGLE FISHING SITE MODEL

In simple situations, depleting of a site due to fishing is proportional to the fish biomass B
and related to the fishing effort E (the number of boats at sea) by

dB
dt

= B(r−κB)−qBE, (1)

Here r is the natural birth minus death rate, r/κ is the capacity of the site and q is the catcha-
bility. The rate of the fishing effort is proportional to the difference between profit pB – where
p is the price of fish – and the cost c of operating a fishing boat:

dE
dt

= pqBE− cE. (2)

When the market is liquid the price adjusts daily to balance supply qBE and demand D(p),
taken here inversely proportional to 1+bp with b fitted from past data. Thence a value for p is
found and the model can be rescaled to

dB
dt

= B(r−κB−qE),
dE
dt

= a− (qB+ c)E, B(0) = B0, E(0) = E0. (3)

The model is easily extended to multi-species including a fishing quota Qi < q on each species
i = 1, ...,d and noise:

dBt = B? [(r−κκκB−QE)dt +σσσdWt ] , B(0) = B0 +σσσ”N1
0,

dEt = (a− (B : Q+ c)E)dt +Eσσσ ′dW′t , E(0) = E0 +σN0,1. (4)

where κκκ is the capacity matrix, A ?B is the vector of component AiBi and where A : B is the
sum of AiBi. W, W′, N1

0,N0,1 are Gaussian noises and σσσ , σσσ ′, σσσ ′′, σ are the variance-correlation
matrices and variance coefficient. Note that the sign of κκκ i j indicates whether species i eat
or is eaten by species j. Noises are mathematical representations of the uncertainties on the
parameters and on the model.
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3. IDENTIFICATION OF COEFFICIENTS

Consider for simplicity a single species in absence of noise and assuming that q is known;
then z := [r,κ,a,c] must be identified. The easiest is to choose two dates t1, t2 and measure Zd :=
[X(t1),E(t1),X(t2),E(t2)]. It amounts to counting the number of boats at sea and how much fish
were caught, on two different days. Surprisingly, a root finding algorithm like broyden1 (from
the Python library scipy) works very well [2] on synthetic data (i.e. choose a set z0 to compute
Z(z0), then invert numerically the mapping z 7→ Z). The same can be achieved by least squares
on the gap between the current state Z and an ideal state Zd . With noise, E being the expected
value, one must solve.

min
z

E[|Z−Zd|2] : subject to (3).

This is a hard nonlinear stochastic optimization problem which is most likely not well posed
before discretization because it uses discrete times. Using Dynamic Programming and Ito’s
formula to establish the optimality conditions a numerical solution requires to solve at each
iteration of the optimization algorithm two partial differential equations [13]; so it also expen-
sive.

An easier solution can be obtained with a neural network to represent Z(z) 7→ z (two inner
layers of 50 neurons + ReLU seem appropriate) and train the network as follows:

(1) Prepare M synthetic solutions {Z(z j)}M
1 by solving (3).

(2) Train the network with the samples inputs {Z(z j)}M
1 and outputs {z j}M

1 , using a least-
square loss.

Table 1 shows typical results for 3 values of the noise (σ ′′ = σ ′ = σ ) computed with a Neural
Network made of 2 hidden layers with 100 neurons each and compared with Dynamic Program-
ming solutions.

TABLE 1. Identification of the parameters with a Neural Network in the random
case. Relative errors from the noiseless solution of (3) with B0 = 0.1, E0 = 0.1,
r = 2,κ = 1, c = 1, a = 1.1 using 1000 solutions (samples) of (3) at t1 = 1/14,
t2 = 1, q = 1 and 200 iterations (epochs). Dynamic Programming minimized the
criteria around 5 ·10−3 with gradient values around 10−6.

σ rNN κNN cNN aNN rDP κDP cDP aDP

0.01 1.99± 0.09 1.01± 0.30 0.97± 0.06 1.09± 0.04 1.95 0.74 1.47 1.46
0.125 2.04± 0.11 1.13± 0.20 1.14± 0.16 1.29± 0.10 1.76 1.027 0.65 0.85
0.25 1.97± 0.16 1.03± 0.34 0.90± 0.23 1.15± 0.15 1.80 1.5 1.5 1.37

Supervise Learning gives a better solution in this case.

4. FISHING QUOTAS

Consider the problem of finding a suitable quota Q(t) given to each fisherman for each
species. We assume that Qi < q for all i, otherwise the fishermen are not affected and the
quota is theoretical. Accordingly the total daily catch will be less than B ?QE; this then is a
global quota. Let u := QE; searching for u instead of Q no longer requires the knowledge of
E and u ≤ uM means that a global quota of B?uM is imposed. To translate it at the fisherman



4 O. PIRONNEAU

level requires an estimate of E (the number of boats at sea) before declaring the quota. As
illegal fishing is hard to estimate, randomness in the model is welcome!

Mathematically we may solve

minu∈U

{
J̄ :=

∫ T

0
E
[
|B(t)−Bd|2dt−ααα ·u+βββ · [u]0,Tt

]
dt :

dBt = B? [(r−u−κκκB)dt +σσσdWt ] , B(0) = B0 +σσσ
′N1

0

}
. (5)

The expectation is with respect to the laws on Wt and B(0). To preserve the Markovian feature
of the problem we assume that u is a deterministic function x and t. Also U = {u : u j ∈
[um,uM], j = 1..d}. The quadratic variation is,

[u]0,Tt = lim
‖P‖

tk<t

∑
k=1..
|utk−utk−1|

2,

where P ranges over partitions of the interval (0, t) = ∪k(tk−1, tk), t < T and the limit is in
probability when maxk |tk− tk−1| → 0. Here Itô calculus [3] tells us that:

E[u]0,Tt =
∫ t

0
E[|σB ·∇Bu|2]dt.

The term ααα · u encourages large quotas and represents the political cost of constraining the
fishermen with small quotas; the term with βββ is added to prevent large oscillations of u from
one day to the next. In [13] it is shown that the problem is well posed. A solution exists but
it may not be unique. Three numerical methods for solutions have been analyzed in [13]:
Stochastic Dynamic Programming, Hamilton-Jacobi-Bellman dynamic programming (HJB),
and using Deep Neural Networks (DNN). Here we present a modified DNN proposed in [4]
and compare the results with the solution of the (equivalent) distributed control problem using
Kolmogorov’s forward equation for the probability density of B.

4.1. The Distributed Control Problem. Assume for clarity that σσσ = σI,σ constant and βββ i =
β for all i. The Kolmogorov equation for ρ(B, t), the PDF of {Bt}T

0 is ,

∂tρ +∇ · (ρ(r−κκκB−u)?B)−∇ ·∇ · [ρ σ2

2
B⊗B] = 0, ρ(B,0) = ρ

0(B), (6)

for all t ∈ (0,T ) and all B ∈ R := R+d . The solution of (5) is also the solution of

min
u∈U

J(u) :=
∫

R×(0,T )

[
|B−Bd|2−ααα ·u(B, t)+β |σB∇u(B, t)|2

]
ρ(B, t)dBdt, (7)

subject to (6). The conditions for having equivalence between the two control problems are
detailed in [5].

4.2. Computation of gradients. Consider the variational form of the Kolmogorov equation:
find ρ such that, for all ρ̂ ,∫

R

(
ρ̂∂tρ−ρ(r−κκκB−u)?B ·∇ρ̂ +

σ2

2
∇ρ̂ ·∇ · (B⊗Bρ)

)
= 0, ρ(0) = ρ

0.

Calculus of variations says that a variation δu yields a δρ with δρ(0) = 0 and∫
R

(
ρ̂∂tδρ−δρ(r−κκκB−u)?B ·∇ρ̂ +

σ2

2
∇ρ̂ ·∇ · (B⊗Bδρ)

)
=−

∫
R

ρB?δu∇ρ̂. (8)
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Define the adjoint ρ∗ by ρ∗(T ) = 0 and, for all ρ̂ ,∫
R

(
∂tρ
∗
ρ̂ +ρ̂(r−κκκB−u)?B ·∇ρ

∗− σ2

2
∇ρ
∗ ·∇ · (B⊗Bρ̂)

+ρ̂(|B−Bd|2−ααα ·u+β |σB∇u|2)
)
= 0. (9)

Adding (8) with ρ̂ = ρ∗ to (9) with ρ̂ = δρ gives∫
R
[∂t(ρ

∗
δρ)+(|B−Bd|2−ααα ·u+β |σB∇u|2)δρ] =−

∫
R

ρB?δu∇ρ
∗.

As ρ∗(T ) = 0 and δρ(0) = 0, an integration in time gives∫
R×]0,T [

(|B−Bd|2−ααα ·u+β |σB∇u|2)δρ =−
∫

R×]0,T [
ρB?δu∇ρ

∗.

Finally, by differentiating J in (7),

δJ =
∫

R×[0,T ]

[(
|B−Bd|2−ααα ·u+β |σB∇u|2)

)
δρ

− ααα ·ρδu+2ρβσ
2B∇u : B∇δu)

]
= −

∫
R×]0,T [

ρ

[
B?δu∇ρ

∗+ααα ·δu−2βσ
2B∇u : B∇δu

]
(10)

The computation of the gradient follows, because δJ =< graduJ,δu >+o(|δu|).

4.3. Numerical Simulation. Two species are considered (d=2) with σ = σ ′ = 0.1, B1(0) =
1.2, B2(0) = 0.8,

r =
[

1.5
1.5

]
,κκκ =

[
1.2 −0.1
0.1 1.2

]
,ααα =

[
0.1
0.1

]
,βββ =

[
0.02
0.02

]
,q = 1.3,um = 0.4,uM = 1.4.

A numerical simulation has been done using freefem [10], the finite element method and the
optimization module ipopt (see https://github.com/coin-or/Ipopt). Before optimization
J =−0.24 and after optimization J =−0.32.

For simplicity it is assumed that u depends on B but not on t; it was shown numerically in
[13] that the time dependence is small.

The main difficulty is due to the non integrability of the right hand side in the adjoint equation.
At all levels R must be replaced by a finite domain smaller than the infinite integration domain
of the partial differential equations. Results are shown on the following 4 figures. Figure 1, 2
show the surfaces ui, i=1,2, functions of B1,B2.

With this optimal quota, two sample trajectories where chosen randomly. Results are shown
on Figure 3. Similar trajectories without quota are given for comparison on the left.

5. QUOTAS COMPUTED BY A MARKOVIAN NEURAL NETWORK

Here too, let us simplify the problem by forgetting the time dependency of the quota and
represent each component of u(B) by a Neural Network with K = 2 hidden layers of 50 neurons
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FIGURE 1. Kolmogorov solu-
tion: value of u1(B).
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FIGURE 2. Kolmogorov solu-
tion: value of u2(B).
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FIGURE 3. Sample trajectories computed with the control from the Kolmogorov
equation with and without quota for 2 species. The corresponding quotas are also
shown. Without quota the biomass decays with time dangerously.

each and ReLU activations. Denote X = (B,u)T , so that the NN represents also B 7→ u(B):

X0 given ,Xk+1 :=
K

∑
k=0

max{AkXk +bk,0}, uNN(B) :=
[
I 0

]
XK.

Then the coefficients Ak and bk are computed by minimizing J (the ‘loss’) defined by (5) with
uNN in place of u.

This method was proposed and tested in [13] but Pierre Bras [4] gave a convergence proof
when a modified version (called Langevin) of the stochastic optimization algorithm ADAM
is used. For the numerical tests we used his open source implementation with Keras (see
https://github.com/Bras-P/langevin-for-stochastic-control).

The numerical results are shown on Figure 4 on the same problem described above. The
converged value of the loss function is greater than the Kolmogorov solution which is typical
because Supervised Learning does not compute the absolute minimum but on the other hand
the solution proposed is usually more robust.
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FIGURE 4. Solution of the control problem with 2 species using u(B) (called
static) compared with using u(B, t) (dynamic). The loss functions are displayed
on the left. After optimization of the loss (left) J = −0.0315 in the static case
and 0.15 in the dynamic case. In the middled (static) and on the right (dynamic)
two sample trajectories (blue and orange) and their control (green and red) are
displayed. The results with dynamic controls are poor.

The biggest asset of Supervised Learning is that it can be used with any number of species
while Dynamic Programming cannot be used beyond 3 species.

6. A SIMPLE STRATEGY

Common sense tells us that if the biomass is decreasing (resp. increasing) then the quota
should be made smaller (resp. bigger). In practical terms this means

u(t +δ t) = u(t)+ω(B(t)−B(t−δ t)). (11)

Figure 5 shows the results for the same problem as above with ω = 100. This simple solution
may stabilize the biomasses at their initial levels but it cannot bring them to a desire level
different from the initial value. Furthermore, it does not account for the political cost of the
quota, ααα ·u.

7. A FISHING MODEL WITH QUOTAS IN THE OPEN SEA

7.1. A Behavioral model for fishermen. All variables are now function of spatial x and time
t. Recognizing that ∇B is a local indicator for a better fishing site, the position of a fishing boat
Z(t) is driven by

Ż(t) =UM
∇B
|∇B|

|Z(t),t , B(0) = B0. (12)

where UM is the cruise speed of the boat. To be profitable the amount of fish caught should be
greater that the operating cost, itself proportional to the square of the velocity of the boat, i.e.

γγγ ·B(Z(t), t)>U2
M, otherwise the fisherman returns home. (13)
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FIGURE 5. Stabilization of the biomass of 2 species by the simple
control of (11). The constraints u1,u2 ∈ [0.4,1.4] do not break the
method in this case.

FIGURE 6. Sketched map of Senegal (Wikipedia).

7.2. The Logistic equation for the Biomass. Assume that fish move with a velocity v and a
small randomness ν . The velocity v could be the sea current plus their own velocity to follow
the plankton gradient ∇P where P is the plankton biomass.

Fishing depletes the fish population as before but only where fishing occurs. So if M is the
number of boats, then at point x of the domain studied Ω ⊂ R2, and time t, the fish biomass
B(x, t) is driven by a PDE in Ω× (0,T ),

∂tB+∇ · (v(∇P)B)−ν∆B = B?

(
Pr−

M

∑
1

u(Zi, t)−κκκB

)
, B(0) = B0, (14)
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with ∂B/∂n = 0 on the border Γ of Ω where n is its outer normal to Ω. Plankton contributes
to the reproductive welfare of fish by a positive factor for each species Pr. The total catch is
B?u; as before κ is the capacity matrix of the site. In practice it is strongly dependent on x but
in absence of information we ran the model with κ constant.

The problem is

min
u∈U

J :=
∫ T

0

(∫
Ω

|B(t)−Bd(t)|2−
M

∑
1
(ααα ·u(Zi, t)−βββ [u](Zi, t))

)
dt (15)

subject to (14)

Remark 1. It may be feasible to replace (14) by a system equivalent at the limit δ t→ 0:

B(x, t) = B(x−v(x, t)δ t, t−δ t)

+δ tB?

[
Pr−

M

∑
1

u(Zi, t)−κκκB

]
|x,t−δ t

+2
√

νδ tN1
0, for all x, (16)

The long time limit could be studied with the stationary Kolmogorov equation for the invariant
measure of the process.

7.3. A Logistic Equation for the Plankton. Letting the fish drift with the currents is too sim-
ple. If fish follows a plankton density P then v∇B in (14) is replaced by ∇ · (B∇P). Assume
plankton is regenerated at rate one and eaten by some fish species at rate b. The logistic equation
for P is:

∂tP+v ·∇P−µ∆P = P(1−P−b ·B), ∂P
∂n
|Γ = 0 or P|Γ = 0, P(0) = P0 (17)

where P0(x) is the plankton density at initial time. The model assumes that in absence of fish
the long time limit (the fishing site plankton capacity) of P is one. Here v is the sea current
velocity. Other models, perhaps more realistic, can be found in [15].

Remark 2. If b ·B< 1, then P is positive and bounded by 1−b ·B, if it is initially so. Otherwise
P may become negative and the model is no longer meaningful.

Remark 3. When c′ := 1−b ·B is constant and v = 0 and µ = 0, the solution of Ṗ = P(c′−P)
is P = c′ec′t/(1+ ec′t), and it tends to c′ when t → ∞. When µ > 0, v = 0 and Ω is bounded,
then limt→∞ P = c′.

7.4. Numerical Simulation Without Quota. We ran the model with one species only but
with plankton, with Ω a portion of the Atlantic Ocean facing Senegal (see Figure 5), with the
following parameters,

T = 2,δ t = 0.02,c = 0.7,a = 0.2,b = 1,µ = 0.1,r = 1,κ = 1,K = 100,UM = 2,γ = 1.

A random noise of variance σ = 0.05 is added to the position of the boats at each time iteration.
Initialization is

Qt=0 = 0.05, P0 = [1− 1
40

((x−4)2 +(y−6)2)]+, B0 = [1− 1
40

((x−4)2 +(y−6)2)]+.

To obtain a meaningful sea current we set

v = 10cos(2πt)∇ψ where ∆ψ = 0, ψ|Γ1 = x1−6, ψ|Γ2 = 0.
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where Γ1 and Γ2 are the upper and lower boundaries of the domain.
The following plots in Figure 7 show 1/ the initial position of the 50 boats on the coast and

the level lines of B (left) and 2P (right), 2/ their position and the values of B and P at time at
0.4, then 3/, 4/ are the same but at time 0.8 and 1.2. The integrals of P and B in Ω are displayed
on top of the plots of B and also on Figure 9..

We see that the fishing boats move towards the maximum zone of B and then spread because
the biomass reduces drastically. Shortly after t = 1 the catch is too small for profit (see (13)) so
the boats return to the coast and stay there until t = T .

FIGURE 7. From left to right and top to bottom: Level lines of fish (left) and
plankton (right) biomass at times t = 0.,0.4,0.8,1.2. The color map legends
apply to B and P/2. The total biomass and plankton are indicated above the B-
plots. The positions of the 50 fishing boats are indicated by small red squares.
In this case without quota the fishermen fish extensively until t = 1 and then run
out of resource (fishing is no longer profitable) and go back to the coast.

7.5. Numerical Simulation with Quota. All parameters are as above but now Q is adjusted
by

Q(t +δ t) = Q(t)+δ t
∫

Ω

(Bt−Bt−δ t)dx. (18)

We see on Figure 8 that the behavior is very different with quota. The boats move to the
maximum zone of B but stay there because the quota prevents to fishermen from depleting the
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biomass. The boats stay at the same spot till B plateaus and the boat positions spread due to the
noise added to Z at each time step.

This is seen too on Figure 9 which shows the evolution with time of the mean of B, the mean
of P and the mean of Q.

FIGURE 8. From left to right and top to bottom: Level lines of fish (left) and
plankton (right) biomass at times 0.,0.4,1.2,1.6. The color map legends apply to
B and P/2. The total biomass and plankton are indicated above the B-plots. The
positions of the 50 fishing boats are indicated by small red squares. In this case
with quota the fishermen sail to the maximum of the biomass but as the catch is
limited by the quota, B stays above the level of profitability at all time. Later B
plateaus over a large area in the center of the domain and so the fishermen do not
correct the spatial scattering due to the noise.

8. CONCLUSION

With the single site model of [13], we have confronted two methods to adjust the quotas for
single sites fisheries and shown that Supervised Learning does fairly well on a problem with 2
species. For more than 2 species only Supervise Learning is applicable. Then we have put some
foundation stones for a distributed model for fishing in the Atlantic ocean facing Senegal and
shown that a common sense strategy to keep the biomass constant works. We have seen that the
effect of quotas on the fishing strategy of fishermen is striking. A more sophisticated strategy is
yet to be found for the control of the biomasses in large areas like the Atlantic ocean. Whatever
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FIGURE 9. Evolution of the total biomass
∫

Ω
B and scaled total plankton

∫
Ω

P/2
with and without quota. Notice (on the right) that the quota strategy (18) is very
efficient at maintaining the biomass constant. The quotas are displayed in green,
it is constant by hypothesis on the left figure.

has been said for fisheries translates to several other population control problems but once again
these are theoretical case studies which are far from applicable directly to real life situations.
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