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Abstract. In this paper, we introduce a new predictor-corrector interior-point algorithm (PC IPA) for solving
P∗(κ)-linear complementarity problems. For the determination of search directions, we use the algebraically
equivalent transformation (AET) technique. In this method, we apply the function ϕ(t) = t2 − t +

√
t which

has inflection point. It is interesting that the kernel corresponding to this AET function is neither self-regular, nor
eligible. We present the complexity analysis of the proposed interior-point algorithm and we show that its itera-
tion bound matches the best known iteration bound for this type of PC IPAs given in the literature. It should be
mentioned that usually the iteration bound is given for a fixed update and proximity parameter. In this paper, we
provide a set of parameters for which the PC IPA is well defined. Moreover, we also show the efficiency of the
algorithm by providing numerical results.
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1. INTRODUCTION

Linear complementarity problems (LCPs) are intensively studied due to the fact that they
have several applications in different fields, such as economics, optimization theory and en-
gineering, see [4, 15]. The Karush-Kuhn-Tucker optimality conditions of linear programming
(LP) and quadratic optimization problems lead to LCPs. The Arrow-Debreu competitive market
equilibrium problem with linear and Leontief utility functions can also be formulated as LCP
[42]. Bras et al. [2] showed that LCP can be used to test copositivity of matrices. Wang and
Sun analysed sparse Markowitz portfolio selection by using stochastic LCP approach, see [41].

The LCPs can be solved by using several methods, such as different pivot and criss-cross
algorithms [5, 6, 16, 17]. Fukuda and Terlaky gave a general form of the dual of the LCPs for
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oriented matroids [17]. Later, Csizmadia and Illés analysed it for LCPs related to the criss-
cross algorithm [5]. Several interior-point algorithms (IPAs) have been also introduced for
P∗(κ)-LCPs, see [4, 22, 23, 29, 30, 36]. Illés et al. gave existentially polytime (EP) theorem for
the dual LCP with arbitrary matrix and they proposed IPAs to solve LCPs with general matrices
in EP-sense. This means that their generalized IPAs either solve the problems with rational
coefficient matrix in polynomial time or give a polynomial size certificate that the matrix is not
P∗(κ̄) with apriori fixed, positive κ̄ , see [22–24]. These results have been summarized in [33].

For detailed study on LCPs, we refer the reader to the books of Cottle et al. [4] and Kojima
et al. [29]. In the book of Kojima et al. [29] the theory of interior-point algorithms for solving
LCPs is highlighted. The LCPs belong to the class of NP-complete problems, see [3, 29].
However, Kojima et al. [29] proved that assuming that the problem’s matrix has a special
property, i.e. it is P∗(κ)-matrix, the IPAs give approximate solution for LCPs in polynomial time
in the size of the problem, the handicap of the problem’s matrix and the starting point’s duality
gap. Illés [25] et al. proposed a rounding procedure that computes a maximally complementary
(exact) solution in polynomial time from an ε-optimal solution produced by IPAs for P∗(κ)-
LCPs with appropriate ε > 0.

Predictor-corrector (PC) IPAs turned out to be efficient in practice. They perform in a major
iteration a predictor and one or several corrector steps. The predictor step is a greedy step
and aims to approach the optimal solution set of the corresponding problem. After a predictor
step the obtained strictly feasible solution may not be in a small neighbourhood of the central
path. Hence, the corrector step is responsible for returning the iterate in the designated small
neighbourhood. Mizuno, Todd and Ye [32] provided the first PC IPA for LP problems, which
uses only one corrector step in a main iteration. Miao [31] extended this IPA to P∗(κ)-LCPs.
When only one step is needed to return into the small neighbourhood of the central path, then
we call these methods Mizuno-Todd-Ye-type (MTY-type) of PC IPAs. Potra and Sheng [36]
introduced a MTY-type PC IPA for P∗(κ)-LCPs. Illés and Nagy [21], Kheirfam [27], Darvay et
al. [8, 9] also introduced MTY-type PC IPAs.

Defining a proper search direction plays an important role in the analysis of the IPAs. As
mentioned before, Peng et al. [34] provided the notion of self-regular barrier and they de-
termined new long-step IPAs. Later on, Darvay [7] introduced the algebraically equivalent
transformation (AET) technique to determine search directions in case of LP problems. He
applied a continuously differentiable and invertible function on the nonlinear equation of the
system characterizing the central path. In his work, Darvay used the square root function in the
AET technique. Following his result, a large amount of papers appeared, where IPAs based on
the AET technique were proposed, see [8, 9, 26, 28, 37]. In [26], the authors defined a new class
of AET functions in order to define primal-dual IPAs for solving P∗(κ)-LCPs and the function
ϕ(t) = t2− t+

√
t is member of this class. In this paper, we introduce a new PC IPA for solving

P∗(κ)-LCPs which is based on the AET function ϕ(t) = t2− t +
√

t.
The paper is organized as follows. In Section 2, some basic concepts and results related to

the theory of P∗(κ)-LCPs are presented. Section 3 is devoted to define the new PC IPA which
is based on a new search direction. Section 4 contains the complexity analysis of the new PC
IPA. In Section 5, we provide a set of parameters for which the PC IPA is well defined. Section
6 summarizes numerical results that show the efficiency of the algorithm. In Section 7, some
concluding remarks and further research plans are enumerated.
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2. PRELIMINARIES

2.1. Linear complementarity problems and P∗(κ)-matrices. In the linear complementarity
problems (LCPs), we search for vectors x,s ∈ Rn that satisfy the following constraints:

−Mx+ s = q, x,s≥ 0, xs = 0, (LCP)

where M ∈ Rn×n, q ∈ Rn and xs is the componentwise product of vectors x and s. We use the
following notations to denote feasible region, the interior and the solutions set of LCPs:

F := {(x,s) ∈ Rn
⊕×Rn

⊕ :−Mx+ s = q},
F+ := {(x,s) ∈ Rn

+×Rn
+ :−Mx+ s = q},

F ∗ := {(x,s) ∈F : xs = 0}.

Note that Rn
⊕ denotes the n-dimentional nonnegative orthant and Rn

+ the positive orthant.
Thorughout the paper, we assume that F+ 6= /0 and M is a P∗(κ)-matrix, see [29]. We present

the central path problem for (LCP) as follows:

−Mx+ s = q x,s > 0, xs = µe. (CPP)

where e denotes the n-dimensional all-one vector and µ > 0. Kojima et al. [29] proved the
uniqueness of the central path for P∗(κ)-LCPs. They also showed that the sequence {(x(µ),s(µ)) |
µ > 0} of solutions lying on the central path parameterised by µ > 0 approaches the solution
(x,s) of the (LCP).

2.2. Algebraic equivalent transformation technique. We present the AET technique in case
of P∗(κ)-LCPs. Note that the AET method was introduced by Darvay [7] for LP problem. Let
ϕ : (ξ̄ ,∞)→ R, with 0 ≤ ξ̄ < 1, be a continuously differentiable function, such that ϕ ′(t) >
0, ∀t > ξ̄ . We also use the notation ϕ(x) = [ϕ(x1),ϕ(x2) . . . ,ϕ(xn)]

T . In this way, system
(CPP) can be written in the following form:

−Mx+ s = q x,s > 0, ϕ

(
xs
µ

)
= ϕ(e), (CPPϕ )

The Newton-system is

−M∆x+∆s = 0,
S∆x+X∆s = aϕ , (2.3)

where X = diag(x), S = diag(s) and

aϕ = µ

ϕ(e)−ϕ

(
xs
µ

)
ϕ ′
(

xs
µ

) . (2.4)

It can be observed that for different functions ϕ we obtain different search directions. Let

v =

√
xs
µ
, d =

√
x
s
, dx =

d−1 ∆x
√

µ
=

v∆x
x

, ds =
d∆s
√

µ
=

v∆s
s

. (2.5)

Using (2.5) we get

∆x =
xdx

v
and ∆s =

sds

v
.
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Substituting these in the second equation of system (2.3) we obtain:

xsdx

v
+

xsds

v
= µ

ϕ(e)−ϕ

(
xs
µ

)
ϕ ′
(

xs
µ

) . (2.6)

The scaled system of the transformed Newton system (2.3) is

− M̄dx +ds = 0,
dx +ds = pϕ , (2.7)

where M̄ = DMD, D = diag(d) and

pϕ =
ϕ(e)−ϕ(v2)

vϕ ′(v2)
. (2.8)

It can be shown that the scaled transformed Newton system (2.7) has a unique solution, see [8].

2.3. Special case of the new class of AET. In this paper, we deal with the AET function
ϕ : (0,∞)→ R

ϕ(t) = t2− t +
√

t. (2.9)

This function was firstly used in [26], where the authors introduced a whole new class of
AET functions for primal-dual IPAs. Up to our best knowledge, this is the first AET function
analysed in the literature of IPAs which has inflection point.
Using (2.4) and (2.8), we can calculate the corresponding aϕ and pϕ in this case:

aϕ = µ

e− x2s2

µ2 + xs
µ
−
√

xs
µ

2xs
µ
− e+ 1

2

√
µ

xs

=
4µ2√xs+2µxs

√
xs−3µxs√µ

2(4xs
√

xs−2µ
√

xs+µ
√

µ)
− xs

2
(2.10)

and

pϕ =
e−v4 +v2−v
2v3−v+ 1

2e
=

2(e−v)(e+v2 +v3)

4v3−2v+ e
. (2.11)

Hence, in our case the coordinate function c f of pϕ is

c f (t) =
2(1− t4 + t2− t)

4t3−2t +1
. (2.12)

In the following section, we present the new PC IPA for solving P∗(κ)-LCPs.

3. PREDICTOR-CORRECTOR INTERIOR POINT ALGORITHM BASED ON A NEW AET
FUNCTION

Several IPAs use firstly corrector steps and after that predictor step, these algorithms are
called corrector-predictor IPAs, see Potra [35]. The reason for using these methods is that after
a corrector step we reach a proper neighbourhood of the central path. Our IPA also performs
firstly a corrector step and after that a predictor one.

4



3.1. Corrector step. The scaled corrector system coincides with system (2.7) with pϕ given
in (2.11).
This system has the following solution:

dc
x = (I + M̄)−1pϕ , dc

s = M̄(I + M̄)−1pϕ .

Using this and (2.5) the search directions ∆cx and ∆cs can be calculated. The point after a
corrector step is

x+ = x+∆
cx, s+ = s+∆

cs.
In the next subsection, we deal with the predictor step.

3.2. Predictor step. Based on (2.10), vector aϕ can be represented as

aϕ = f (x,s,µ)+g(x,s),

where f : Rn
+×Rn

+×R⊕→ Rn with f (x,s,0) = 0 and g : Rn
+×Rn

+→ Rn. Since, we would
like to make as greedy predictor step as possible, we set µ = 0 in this decomposition.
Then, we obtain:

−M∆
px+∆

ps = 0,
S∆

px+X∆
ps = g(x,s). (3.1)

In the specific case, when we set µ = 0 in aϕ then g(x,s) =−1
2 xs is computed. Using (2.5) and

(3.1), we get the scaled predictor system

−M̄+dp
x +dp

s = 0,

dp
x +dp

s = −1
2

v+, (3.2)

where v+ =
√

x+s+
µ

, d+ =
√

x+
s+ , D+ = diag(d+), M̄+ = D+MD+ and which has the solution:

dp
x =−1

2
(I + M̄+)

−1v+ and dp
s =−1

2
M̄+(I + M̄+)

−1v+.

From this and (2.5), we can calculate the predictor search directions ∆px and ∆ps. The point
after a predictor step is

xp = x++θ∆
px, sp = s++θ∆

ps, µ
p =

(
1− θ

2

)
µ,

where θ ∈ (0,1) is the update parameter.
Let us define the proximity measure, which is used to measure the distance of the iterates

(x,s) from the central path:

δ (x,s,µ) := δ (v) :=
‖pϕ‖

2
=

∥∥∥∥(e−v)(e+v2 +v3)

4v3−2v+ e

∥∥∥∥ . (3.3)

The neighbourhood is given in the following way:

N2(τ,µ) := {(x,s) ∈F+ : δ (x,s,µ)≤ τ}, (3.4)

where δ is given in (3.3), τ is a threshold parameter and µ > 0.
The PC IPA for solving P∗(κ)-LCPs is given in Algorithm 1.
In the next section, we present the complexity analysis of the proposed PC IPA.
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Algorithm 1: New PC IPA for P∗(κ)-LCPs

Let ε > 0 be the accuracy parameter, 0 < θ < 1 the update parameter and τ the
proximity parameter. Furthermore, a known upper bound κ of the handicap κ̂(M) is
given. Assume that for (x0,s0) the

(
x0)T s0 = nµ0, µ0 > 0 holds such that

δ (x0,s0,µ0)≤ τ.
begin

k := 0;
while

(
xk)T sk > ε do begin

(corrector step)
compute (∆cxk,∆csk) from system (2.7) using (2.5);
let (x+)k := xk +∆cxk and (s+)k := sk +∆csk;

(predictor step)
compute (∆pxk,∆psk) from system (3.2) using (2.5);
let (xp)k := (x+)k

+θ∆pxk and (sp)k := (s+)k
+θ∆psk;

(update of the parameters and the iterates)
(µ p)k =

(
1− θ

2

)
µk;

xk+1 := (xp)k , sk+1 := (sp)k , µk+1 := (µ p)k ;
k := k+1;

end
end.

4. ANALYSIS OF THE PREDICTOR-CORRECTOR ALGORITHM

In this section, we present the complexity analysis of the proposed PC IPA. In the first part,
we deal with the corrector step. This is a full-Newton step, so the analysis of this part is very
similar to that of small-update IPA presented in [26] for the special case when ϕ(t)= t2−t+

√
t.

We summarize the lemmas and corollaries used in this case.
The first lemma refers to the strict feasibility of the corrector step.

Lemma 4.1. [Corollary 3.1 in [26]] Let (x,s) ∈F+ be given, such that δ (x,s; µ)< 1√
1+4κ

. In

case of ϕ(t) = t2− t +
√

t we have that (x+,s+) ∈F+.

The next lemma shows the quadratic convergence of the corrector step.

Lemma 4.2. [Corollary 3.2 in [26]] Let (x,s) ∈ F+ and v̄ =

√
x+s+

µ
be given, such that

δ (x,s; µ)≤ 1√
1+4κ

. In case of ϕ(t) = t2− t +
√

t we have that

δ (x+,s+; µ)≤ 2(10+4κ)δ (x,s; µ)2.

In the following lemma, an upper bound is given on the duality gap.

Lemma 4.3. [Corollary 3.3 in [26]] Let δ := δ (x,s; µ) and suppose that the vectors x+ and
s+ are obtained using a full-Newton step, thus x+ = x+∆x and s+ = s+∆s. In case of ϕ(t) =
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t2− t +
√

t we have (
x+
)T s+ ≤ µ(n+9δ

2).

We present technical lemmas that will be used later in the analysis. The following result is
independent from the selection of the AET function. Let

qϕ = dc
x−dc

s. (4.1)

Lemma 4.4. [Lemma 5.4 in [8]] The following inequality holds:

‖qϕ‖ ≤ 2
√

1+4κ δ ,

where δ = δ (x,s,µ).

Throughout this section, we assume that M is a P∗(κ)-matrix for a given κ ≥ κ̂(M)≥ 0 upper
bound.

Easy computations lead (for details see [8], page 2641) to the following inequality

(1+4κ) ∑
i∈I+

dp
xi

dp
si
+ ∑

i∈I−

dp
xi

dp
si
≥ 0, (4.2)

The next lemma is a technical one which will be used later in the analysis.

Lemma 4.5. Let f̄ : (d̄,+∞)→ R+ be a function, where d̄ > 0 and | f̄ (t)| ≥ k̄ |1− t|, for t > d̄,
where k̄ > 0. Then,

‖ f̄ (v)‖ ≥ k̄‖e−v‖.

Proof. We have

‖ f̄ (v)‖ =

√
n

∑
i=1

(
f̄ (vi)

)2 ≥ k̄

√
n

∑
i=1

(1− vi)
2 = k̄‖e−v‖,

which leads to the result. �

The following result depends on the current AET function ϕ(t) = t2− t +
√

t, therefore we
need to prove a similar result to that of Lemma 5.3. in [8]. Since many steps of the proof of
our new lemma are very similar to the proof of the earlier result, therefore we only focus on the
differences caused by the new AET function.

Lemma 4.6. Let ϕ(t) = t2− t +
√

t. Then,

‖dp
x dp

s ‖ ≤
n
(
1+ κ

2

)
(1+4δ+)2

2
,

where δ+ = δ (x+,s+,µ) =
∥∥∥∥(e−v+)(e+(v+)2 +(v+)3)

4(v+)3−2v++ e

∥∥∥∥ .
Proof. We use the second equation of the scaled predictor system (3.2), and we obtain the
following:

∑
i∈I+

dp
xi

dp
si
≤ 1

4
‖dp

x +dp
s ‖2 =

‖v+‖2

16
.
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Using the previous bound and (4.2), we have

‖v+‖2 ≥ 1
4
‖v+‖2 = ‖dp

x +dp
s ‖2 = ‖dp

x‖2 +‖dp
s ‖2 +2

(
∑

i∈I+

dp
xi

dp
si
+ ∑

i∈I−

dp
xi

dp
si

)
≥ ‖dp

x‖2 +‖dp
s ‖2−8κ ∑

i∈I+

dp
xi

dp
si

≥ ‖dp
x‖2 +‖dp

s ‖2− 1
2

κ ‖v+‖2.

This means that ‖dp
x‖2 + ‖dp

s ‖2 ≤
(
1+ κ

2

)
‖v+‖2. Exactly on the same way as in [8] (page

2642), we have

‖v+‖ ≤
√

n(σ++1), (4.3)

where σ+ = ‖e−v+‖. Now we need to compute a lower bound on δ+. Using Lemma 4.5, we
derive

δ
+ =

1
2

∥∥∥∥2(e−v+)(e+(v+)2 +(v+)3)

4(v+)3−2v++ e

∥∥∥∥= ‖ f̄ (v)‖ ≥ 1
4

∥∥e−v+
∥∥= σ+

4
, (4.4)

where f̄ (t) = (1−t)(1+t2+t3)
4t3−2t+1 and it can be shown that | f̄ (t)| ≥ 1

4 |1− t|. Using (4.3) and (4.4), we
obtain

‖v+‖ ≤
√

n(1+4δ
+). (4.5)

From the previous steps,

‖dp
x dp

s ‖ ≤
1
2
(
‖dp

x‖2 +‖dp
s ‖2)≤ 1

2

(
1+

κ

2

)∥∥v+
∥∥2 ≤

n(1+ κ

2 )(1+4δ+)2

2
,

which yields the result. �

In the next part, we deal with the predictor step. Consider the following notations:

xp(α) = x++α θ ∆
px, sp(α) = s++α θ ∆

ps,

for 0≤ α ≤ 1 and θ ∈ (0,1). We have

xp(α) =
x+

v+
(v++α θ dp

x ), sp(α) =
s+

v+
(v++α θ dp

s ).

Using the second equation of the scaled predictor system (3.2) and the computations given in
(5.17), page 2643 in [8], we get the following:

xp(α)sp(α) = µ

((
v+
)2

+αθv+
(
−1

2
v+
)
+α

2
θ

2 dp
x dp

s

)
= µ

((
1− 1

2
αθ

)(
v+
)2

+α
2

θ
2 dp

x dp
s

)
. (4.6)
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From (4.6) and following the same ideas as in [8], we have the following:

min

(
xp(α)sp(α)

µ
(
1− 1

2αθ
)) = min

((
v+
)2

+
α2θ 2

1− 1
2αθ

dp
x dp

s

)

≥ min

((
v+
)2− α2θ 2

1− 1
2αθ
‖dp

x dp
s ‖∞e

)

≥ min

((
v+
)2− θ 2

1− 1
2θ
‖dp

x dp
s ‖∞e

)
(4.7)

The last inequality follows from the fact that

h(α) =
α2θ 2

1− 1
2αθ

is strictly increasing for 0≤ α ≤ 1 and each fixed 0 < θ < 1. Moreover, using

|1− v+i | ≤ ‖e−v+‖, ∀i = 1, . . . ,n

we have
1−σ

+ ≤ v+i ≤ 1+σ
+, ∀i = 1, . . . ,n.

Using this and (4.4) we have

min
(
v+
)2 ≥ (1−σ

+)2 ≥ (1−4δ
+)2 (4.8)

From Lemma 4.6 and (4.8) and using that ‖ · ‖∞ ≤ ‖ ·‖, we obtain

min

(
xp(α)sp(α)

µ (1− 1
2 α θ)

)
≥ (1−4δ

+)2−
n
(
1+ κ

2

)
(1+4δ+)2 θ 2

2−θ
=: u(δ+,θ ,n). (4.9)

Now, it is clear that u(δ+,θ ,n)> 0 is sufficient for strict feasibility, namely xp(α)sp(α)> 0 for
0≤α ≤ 1. Therefore, xp(α) and sp(α) do not change sign on 0≤α ≤ 1. Since xp(0) = x+ > 0
and sp(0) = s+ > 0, we can conclude that xp(1) = xp > 0 and sp(1) = sp > 0.

We are ready to summarize the previous analysis in the following lemma.

Lemma 4.7. Let (x+,s+) > 0 and µ > 0 such that δ+ := δ (x+,s+,µ) < 1
4 . Furthermore, let

0 < θ < 1. Let xp = x++θ∆px, sp = s++θ∆ps be the iterates after a predictor step. Then,
in case of ϕ(t) = t2− t +

√
t, we have xp,sp > 0 if u(δ+,θ ,n)> 0, where

u(δ+,θ ,n) := (1−4δ
+)2−

n
(
1+ κ

2

)
(1+4δ+)2 θ 2

2−θ
.

This result is very similar to Lemma 5.5. [8] and the proof differs only in those parts that are
affected by the AET function ϕ . Later, we will present how could we fix the parameters to get
u(δ+,θ ,n)> 0.

Let us introduce

vp =

√
xpsp

µ p , (4.10)

where µ p =
(
1− θ

2

)
µ.
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The next lemma analyses the effect of a predictor step and the update of µ on the proximity
measure.

Lemma 4.8. Let ϕ(t) = t2−t+
√

t, δ+ := δ (x+,s+,µ)< 1
4 , µ p =

(
1− θ

2

)
µ , where 0 < θ < 1,

and let xp and sp denote the iterates after a predictor step. Then,

δ
p := δ (xp,sp,µ p)≤ 2(10+4κ)δ 2 +

2θ 2

2−θ
n
(

1+
κ

2

)
(1+4δ

+)2,

where δ := δ (x,s,µ).

Proof. Let us compute δ p by using (2.11)

δ
p :=

∥∥∥∥∥∥
(e−vp)

(
e+(vp)2 +(vp)3

)
4(vp)3−2vp + e

∥∥∥∥∥∥
=

∥∥∥∥∥∥(e− (vp)2)

(
e+(vp)2 +(vp)3

)
(e+vp)

(
4(vp)3−2vp + e

)
∥∥∥∥∥∥

=
∥∥∥(e− (vp)2) g(v)

∥∥∥≤ 2
∥∥∥e− (vp)2

∥∥∥ , (4.11)

where we used that for the function g : R+→ R, g(t) = 1+t2+t3

(1+t)(4t3−2t+1) we have |g(t)| ≤ 2, for
all t > 0. It should be mentioned that the last inequality of (4.11) can be obtained by using a
modified version of Lemma 4.5. From (4.6), we have

(vp)2 =
(
v+
)2

+
θ 2

1− 1
2θ

dp
x dp

s , (4.12)

which implies

δ
p ≤ 2

∥∥∥∥∥e−
(
v+
)2− θ 2

1− 1
2θ

dp
x dp

s

∥∥∥∥∥≤ 2

(∥∥∥e−
(
v+
)2
∥∥∥+ θ 2

1− 1
2θ
‖dp

x dp
s ‖
)
. (4.13)

Using (4.12) and inequality (5.25) given in [8], we get∥∥∥e−
(
v+
)2
∥∥∥≤ ‖e−v2−vpϕ‖+

∥∥∥∥∥p2
ϕ

4

∥∥∥∥∥+
∥∥∥∥∥q2

ϕ

4

∥∥∥∥∥ , (4.14)

where qϕ is as given in (4.1). Using (2.11), after some calculations, we obtain∥∥e−v2−vpϕ

∥∥ =

∥∥∥∥−2v5 +4v3 +v2−4v+ e
4v3−2v+ e

∥∥∥∥
=

∥∥∥∥∥(4v3−2v+ e)(−2v5 +4v3 +v2−4v+ e)
(e−v)2(e+v2 +v3)2 ·

p2
ϕ

4

∥∥∥∥∥
=

∥∥∥∥∥h(v)
p2

ϕ

4

∥∥∥∥∥≤ 8

∥∥∥∥∥p2
ϕ

4

∥∥∥∥∥ , (4.15)
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where in the last inequality we used that |h(t)| ≤ 8, for all t > 0, where

h(t) =
(4t3−2t +1)(−2t5 +4t3 + t2−4t +1)

(1− t)2(1+ t2 + t3)2 =
(−4t3 +2t−1)(2t3 +4t2 +2t−1)

(1+ t2 + t3)2 .

Note that the last inequality of (4.15) can be derived by using a modified version of Lemma 4.5.
Using Lemma 4.4, (3.3), (4.14) and (4.15), we have∥∥∥e−

(
v+
)2
∥∥∥ ≤ 9

∥∥∥∥∥p2
ϕ

4

∥∥∥∥∥+
∥∥∥∥∥q2

ϕ

4

∥∥∥∥∥≤ 9
(
‖pϕ‖

2

)2

+

(
‖qϕ‖

2

)2

≤ (10+4κ)δ 2. (4.16)

From Lemma 4.6, (4.11) and (4.16), we have

δ
p ≤ 2(10+4κ)δ 2 +

2θ 2

2−θ
n
(

1+
κ

2

)
(1+4δ

+)2, (4.17)

which gives the result. �

The next lemma provides an upper bound for the duality gap after a main iteration.

Lemma 4.9. Let ϕ(t) = t2− t +
√

t and 0 < θ < 1. If xp and sp are the iterates obtained after
the predictor step of the algorithm, then

(xp)T sp ≤
(

1− θ

2
+

θ 2

8

)(
x+
)T s+ <

2(n+9δ 2)µ p

2−θ
.

Proof. Using (4.6) with α = 1 and (4.10), we have

(xp)T sp = µ
peT (vp)2 = µeT

((
1− θ

2

)(
v+
)2

+θ
2dp

x dp
s

)
=

(
1− θ

2

)(
x+
)T s++µθ

2 (dp
x )

T dp
s . (4.18)

Using the technique given in the proof of Lemma 5.7 given in [8], we obtain

(xp)T sp ≤
(

1− θ

2
+

θ 2

8

)(
x+
)T s+.

If 0 < θ < 1, then

1− θ

2
+

θ 2

8
< 1. (4.19)

Using this, µ p =
(
1− θ

2

)
µ , (4.19) and Lemma 4.3, we have

(xp)T sp ≤
(

1− θ

2
+

θ 2

8

)(
x+
)T s+

<
(
x+
)T s+ < µ(n+9δ

2) =
2(n+9δ 2)µ p

2−θ
, (4.20)

which yields the result. �

In the following section, we provide a set of parameters for which the PC IPA is well defined.
This means that if we have a feasible solution for which δ (x,s,µ) ≤ τ , then after a corrector
and predictor step, we get that δ p(xp,sp,µ p)≤ τ . We use some ideas given in [11].
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5. COMPLEXITY BOUND

We introduce the following notation:

L(τ) =
(1−2τ)2

(1+2τ)2 . (5.1)

The next lemma gives a condition related to the parameters τ and θ for which the PC IPA is
well defined.

Lemma 5.1. Let ϕ(t) = t2− t +
√

t, τ = 1
2r(10+4κ) , where r≥ 2 and 0 < θ ≤ 1

q(10+4κ)
√

n , where
q≥ 2. If

i. r ≤ 2
5q,

ii.
n(1+ κ

2 )θ 2

2−θ
< L(τ),

then the PC IPA proposed in Algorithm 1 is well defined.

Proof. Let (x,s) ∈F+ such that δ (x,s,µ)≤ τ . After a corrector step, applying Lemma 4.2 we
have

δ
+ := δ (x+,s+,µ)≤ 2(10+4κ)δ 2,

which is monotonically increasing with respect to δ . Using this and r ≥ 2 we get

δ
+ ≤ 2(10+4κ)τ2 =

1
2r2(10+4κ)

=
1
r

τ ≤ 1
2

τ. (5.2)

Using
n(1+ κ

2 )θ 2

2−θ
< L(τ) and (5.2), we obtain

(1−4δ
+)2−

n
(
1+ κ

2

)
θ 2(1+4δ+)2

2−θ
> (1−2τ)2−

n
(
1+ κ

2

)
θ 2

2−θ
(1+2τ)2 > 0, (5.3)

where we used that the function appearing on the left hand side is increasing with respect to
δ+. Condition ū(δ c,θ ,r) > 0 from Lemma 4.7 is satisfied. Furthermore, using τ = 1

2r(10+4κ) ,

r ≥ 2 and (5.2) we have δ+ ≤ 1
4r(10+4κ) <

1
80 < 1

4 . From Lemma 4.8, after a predictor step and
a µ-update we have

δ
p ≤ 2(10+4κ)δ 2 +

2θ 2

2−θ
n
(

1+
κ

2

)
(1+4δ

+)2, (5.4)

where δ := δ (x,s,µ). Using θ ≤ 1
q(10+4κ)

√
n and κ ≥ 0, we get

2
2−θ

≤ 20q
20q−1

. (5.5)

We also consider
θ ≤ 1

q(10+4κ)
√

n
≤ 1

q
(
1+ κ

2

)√
n
. (5.6)

Using (5.5) and (5.6), we get

2n
(
1+ κ

2

)
θ 2

2−θ
≤ n

(
1+

κ

2

) 20q
20q−1

1
q(10+4κ)

√
n

1
q
(
1+ κ

2

)√
n

=
20

q(20q−1)
1

10+4κ
=

40r
(20q−1)q

τ. (5.7)
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Using (5.2) and κ ≥ 0, we obtain

δ
+ ≤ 2(10+4κ)δ

2 ≤ 1
r

τ =
1

2r2(10+4κ)
≤ 1

20r2 . (5.8)

From (5.7) and (5.8) we get

2n
(
1+ κ

2

)
θ 2 (1+4δ+)2

2−θ
≤ 40r

(20q−1)q

(
1+

1
5r2

)2

τ. (5.9)

From r ≥ 2, q≥ 2 and r ≤ 2
5q we obtain

40r
(20q−1)q

(
1+

1
5r2

)2

= 40
r
q

1
20q−1

(
1+

1
5r2

)2

≤ 40
39
· 2

5
· 441

400
<

1
2
. (5.10)

From (5.2), (5.4), (5.9) and (5.10) we get

δ
p <

(
1
2
+

1
2

)
τ = τ, (5.11)

hence the PC IPA is well defined, hence if we have a feasible solution for which δ (x,s,µ)≤ τ ,
then after a corrector and predictor step we will get that δ p(xp,sp,µ p)≤ τ . �

The following lemma gives a sufficient condition for satisfying Condition ii. from Lemma 5.1.

Lemma 5.2. Let ϕ(t) = t2− t +
√

t, τ = 1
2r(10+4κ) , where r≥ 2 and 0 < θ ≤ 1

q(10+4κ)
√

n , where
q≥ 2. Consider L given in (5.1). If

1
q2 < L

(
1

20r

)
, (5.12)

then condition ii. of Lemma 5.1 is satisfied.

Proof. From 0 < θ ≤ 1
q(10+4κ)

√
n and q≥ 2 we have

1
2−θ

≤ 1. (5.13)

Furthermore, using the properties of the function ϕ , (5.6) and κ ≥ 0 we get

n
(
1+ κ

2

)
θ 2

2−θ
≤ n

(
1+

κ

2

) 1

q2
(
1+ κ

2

)2 n
=

1
q2
(
1+ κ

2

) ≤ 1
q2 . (5.14)

Besides this, from τ = 1
2r(10+4κ) and κ ≥ 0 we obtain

τ ≤ 1
20r

. (5.15)

It should be mentioned that the function L(τ) is strictly decreasing with respect to τ , hence
using (5.15) we obtain

L(τ)≥ L
(

1
20r

)
. (5.16)

13



In this way, using (5.12), (5.13), (5.14) and (5.16) we obtain

n
(
1+ κ

2

)
θ 2

2−θ
≤ 1

q2 < L
(

1
20r

)
≤ L(τ),

which yields the result. �

Lemma 5.3. Let ϕ(t) = t2− t +
√

t, τ = 1
2r(10+4κ) , where r≥ 2 and 0 < θ ≤ 1

q(10+4κ)
√

n , where
q ≥ 2. If Condition i. from Lemma 5.1 is satisfied, then Condition ii. from Lemma 5.1 also
holds.

Proof. Consider the following function

z(r) =
2
(
1+ 1

10r

)
5r
(
1− 1

10r

) ,
which is decreasing with respect to r. Thus, for r ≥ 2 we have

z(r)≤ z(2)< 1. (5.17)

Using (5.17) and Condition i. of Lemma 5.1 we obtain that

q≥ 5
2

r >
1√

L
( 1

20r

) .
Hence, if Condition i. of Lemma 5.1 holds, then (5.12) is satisfied. Using Lemma 5.2, we

obtain that Condition ii. from Lemma 5.1 also holds. �

Corollary 5.4. Let ϕ(t) = t2− t +
√

t, τ = 1
2r(10+4κ) , where r ≥ 2 and 0 < θ ≤ 1

q(10+4κ)
√

n . If

q≥ 5
2r, then the PC IPA proposed in Algorithm 1 is well defined.

Lemma 5.5. Let ϕ(t) = t2− t +
√

t, (x0,s0) ∈F+, τ = 1
2r(10+4κ) , where r ≥ 2 and 0 < θ ≤

1
q(10+4κ)

√
n , where q ≥ 5

2r. Furthermore, let µ0 =
(x0)

T s0

n and δ (x0,s0,µ0) ≤ τ . Moreover, let

xk and sk be the iterates obtained after k iterations of Algorithm 1. Then,
(
xk)T sk ≤ ε for

k ≥ 1+

⌈
2
θ

log
3
(
x0)T s0

2ε

⌉
.

Proof. Using τ = 1
2r(10+4κ) , r ≥ 2, n≥ 1 and κ ≥ 0, we get

δ
2 ≤ 1

16(10+4κ)2 <
n

1600
. (5.18)

Using Lemma 4.9 we have(
xk
)T

sk <
2(n+9δ 2)µk

2−θ
<

1609nµk

1600
(
1− θ

2

) < 3
2

(
1− θ

2

)k−1 (
x0)T s0.

The inequality
(
xk)T sk ≤ ε holds if 3

2

(
1− θ

2

)k−1 (x0)T s0 ≤ ε. We take logarithms, hence

(k−1) log
(

1− θ

2

)
+ log

3
(
x0)T s0

2
≤ logε.
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From log(1+θ)≤ θ , θ ≥−1, it follows that the above inequality holds if

−θ

2
(k−1)+ log

3
(
x0)T s0

2
≤ logε.

This yields the desired result. �

Theorem 5.6. Let ϕ(t) = t2−t+
√

t, τ = 1
2r(10+4κ) , where r≥ 2 and 0< θ ≤ 1

q(10+4κ)
√

n , where

q≥ 5
2n. Then, the PC IPA proposed in Algorithm 1 is well defined and it performs at most

O

(
(10+4κ)

√
n log

3nµ0

2ε

)
iterations. The output is a pair (x,s) satisfying xT s≤ ε .

Proof. The result follows from Corollary 5.4 and Lemma 5.5. �

Corollary 5.7. Let ϕ(t) = t2− t +
√

t and consider 0 < τ ≤ 1
40+16κ

and 0 < θ ≤ 4
5
√

nτ . Then,
the PC IPA proposed in Algorithm 1 is well defined and it performes at most

O

(
(10+4κ)

√
n log

3nµ0

2ε

)
iterations. The output is a pair (x,s) satisfying xT s≤ ε .

Proof. If τ ≤ 1
40+16κ

, then we can find r ≥ 2 such that

τ =
1

2r(10+4κ)
. (5.19)

Using θ ≤ 4
5
√

nτ and τ ≤ 1
40+16κ

we have

θ ≤ 4
5
√

n
τ ≤ 1

5(10+4κ)
√

n
.

Hence, we can find q≥ 5 such that

θ =
1

q(10+4κ)
√

n
. (5.20)

Moreover, from (5.19), (5.20) and θ ≤ 4
5
√

nτ we have

θ =
1

q(10+4κ)
√

n
=

2τr
q
√

n
≤ 4

5
√

n
τ,

therefore q≥ 5
2r holds. All conditions from Lemma 5.1 are satisfied, hence from Corollary 5.4

and Lemma 5.5 we obtain the desired result. �
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6. NUMERICAL RESULTS

We implemented a variant of the proposed PC IPA in the C++ programming language. There
is a detailed explanation about the implementation in [38]. We did all computations on a desktop
computer with Intel quad-core 3.3 GHz processor and 16 GB RAM.

We used Algorithm 2 in our implementation. We set the values θ = 0.999 and ε = 10−5

and the maximum of α to 3. We did not give upper bound for the proximity parameter τ and
we observed that in some cases the value of the proximity measure might become very large.
However, we ensured that feasibility holds in all cases.

Algorithm 2: Implemented PC IPA for P∗(κ)-LCPs

Let ε = 10−5 be the accuracy parameter, θ = 0.999 the update parameter and τ > 0 the
proximity parameter, σ = 0.9999 decrease parameter, 0 < α < 3 the step length.
Assume that for (x0,s0) ∈F+, the

(
x0)T s0 = nµ0, µ0 > 0 holds such that −Mx+ s = q

for a qiven matrix M and vector q.
begin

k := 0;
while

(
xk)T sk > ε do begin

(µ p)k = (1−θ)µk;
(predictor step)
compute (∆pxk,∆psk) from system (3.2) using (2.5);

calculate local κ with κ(∆pxk) =−1
4

∆p(xk)T M∆pxk

∑i∈I+(∆p(xk))∆pxk
i (M∆pxk)i

compute α with
αxh := {− xi

∆xi
: ∆xi < 0} and αsh := {− si

∆si
: ∆si < 0}

αh := σ ·min{αxh,αsh}
α := min{αh,3}
let (xp)k := xk +α∆pxk and (sp)k := sk +α∆psk;

(corrector step)
compute (∆cxk,∆csk) from system (2.7) using (2.5);
compute α with
αxh := {− xi

∆xi
: ∆xi < 0} and αsh := {− si

∆si
: ∆si < 0}

αh := σ ·min{αxh,αsh}
α := min{αh,3.0}
let (x+)k := (xp)k +α∆cxk and (s+)k := (sp)k +α∆csk;

(update of the parameters and the iterates)

xk+1 := (x+)k
, sk+1 := (s+)k

, µk+1 :=
(
(xk+1)T sk+1

n

)k
;

k := k+1;

end
end.
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In the literature there are only a few numerical results about LCPs, where the problem’s
matrix has positive handicap. Gurtuna et al. [19] and Asadi et al. [1] provided numerical
results based on 2×2 or 3×3 matrices that are related to P∗(κ)-LCPs having positive handicap.
Darvay et al. [8] presented numerical results on P∗(κ)-problems that were generated by Illés
and Morapitiye [20] and on P∗(κ)-LPCs with matrix having exponential handicap, see (6.1).
They also used their PC IPA to solve special, non-sufficient LCPs. They tested copositivity of
matrices and they obtained promising results in spite of the fact that they did not have P∗(κ)-
matrices in those cases.

It is proven by De Klerk and E.-Nagy [12] that the handicap of the matrix can be exponential
in the size of the problem. They considered a matrix which was proposed by Csizmadia:

M =


1 0 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 · · · 0

...
...

...
. . .

...
−1 −1 −1 · · · 1

 , (6.1)

and E.-Nagy proved that κ̂(M) = 22n−8−0.25, see [13].
We tested our implementation on problems generated by using matrix (6.1) in order to show promising

results on problems with matrix having exponential handicap. We generated test examples based on the
results of E.-Nagy and Varga showed in [14].

We considered 10-10 problems by using the matrix (6.1) with generating random starting point pairs
(x,s) of sizes of 0, 30, 50, 70, 100.

With these starting points we calculated the right hand side vector by q = −Mx+ s. The number of
the generated examples from the corresponding intervals can be found in Table 1. These examples can
be found on the website [39].

values of svalues of x [0,1]n [0,10]n [0,100]n [9,11]n [9900,11000]n

[0,1]n 50 0 0 50 0
[0,10]n 0 50 0 0 0
[0,100]n 0 0 50 0 50
[9,11]n 50 0 0 0 0

[9900,11000]n 0 0 50 0 0
Table 1. Testing data generated from (6.1).

We compared our algorithm with other PC IPA that was presented in [8]. We also used another
versions of our implemented IPA by changing the right hand side of the Newton system and scaled
system and using other AET functions and a kernel function. In this way we compared these versions
with our new PC IPA using the AET function ϕ1(t)= t2−t+

√
t. The chosen AET functions are ϕ2(t)= t

and ϕ3(t) =
√

t. The parametric kernel function used here is Ψp,σ = t p+1−1
p+1 + eσ(1−t)−1

σ
, p ∈ [0,1], σ ≥ 1,

see [18, 40]. We set p = 1 and σ = 5 in our computations based on the kernel function Ψp,σ .
Table 2 contains the average iteration numbers for each IPA on the problems with size 100x100. We

can see in Table 2 that if x and s are from the same interval, the size of the interval does not significantly
change the number of iterations. Furthermore, it can be seen in these cases that the number of iterations
seems to be slightly increasing if the size of the problem is increasing in spite of the exponential handicap.
We show this observation on Figure 1.
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IPAProblems x,s ∈ [0,1]100 x,s ∈ [0,10]100 x,s ∈ [0,100]100

ϕ1(t) 51.85 56.1 55.15
ϕ2(t) 51.7 55.7 55.0
ϕ3(t) 52.15 56.2 55.45
Ψp,σ 62.2 67.0 65.75

Table 2. Average iteration num-
bers on problems of size 100x100.

Figure 1. Iteration numbers for
all different variants are far from
the theoretical ones.

It can be seen from Table 3, Figure 2 and Figure 3 that if the values of x are significantly smaller than
the values of s, then the problem can be solved with almost constant iteration number, even in case of
larger-sized problems. This observation can be seen in Table 3 in case of problems with size 100x100
and 200x200.

IPAProblems x ∈ [0,1]100,s ∈ [9,11]100 x ∈ [0,100]100,s ∈ [9900,11000]100 x ∈ [0,1]200,s ∈ [9,11]200 x ∈ [0,100]200,s ∈ [9900,11000]200

ϕ1(t) 6.0 4.45 7.0 4.0
ϕ2(t) 6.0 5.05 7.0 4.8
ϕ3(t) 6.5 5.55 8.1 6.8
Ψp,σ 7.0 5.05 9.7 6.0

Table 3. Average iteration numbers on problems with size 100x100 and 200x200.

Figure 2. Iteration numbers for
all different variants are slightly
increasing.

Figure 3. Iteration numbers for
all different variants are almost
constant.

However, if the values of s are the smaller ones (see in Table 4 and Figure 4), the solution can be
computed with more iteration numbers than in the case when the values of x are similar or even smaller
than the values of s. We showed this result in Table 4 in the cases of problems with size 100x100.
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IPAProblems x ∈ [9,11]100,s ∈ [0,1]100 x ∈ [9900,11000]100,s ∈ [0,100]100

ϕ1(t) 201.1 377.7
ϕ2(t) 200.65 370.3
ϕ3(t) 201.4 379.8
Ψp,σ 249.5 490.4

Table 4. Average iteration
numbers on problems with size
100x100.

Figure 4. Iteration numbers are
larger than in the case shown in Fig-
ure 2

Finally, we showed that, the used kernel function has slightly worse iteration numbers than the shown
three AET functions in most of the cases. Furthermore, the new AET function ϕ1(t) gives slightly
better results than ϕ3(t), as well. In Table 3 and Figure 3 it can be seen that in these cases the function
ϕ1(t) works slightly better than the other variants of the implemented algorithm, where the used search
directions are different.

7. CONCLUSION

We proposed a new PC IPA for solving P∗(κ)-linear complementarity problems. In the AET technique,
we used the function ϕ(t) = t2 − t +

√
t which has inflection point. It is interesting that the kernel

corresponding to this AET function is neither self-regular, nor eligible. We showed that the iteration
bound of the PC IPA matches the best known iteration bound for this type of PC IPAs. We also provided
a set of parameters for which the PC IPA is well defined. In order to show the efficiency of the algorithm
we presented numerical results, as well. From the numerical results, we can conclude that in several
cases, the choice of the AET function plays important role in the number of iterations. As a future
research we would like to understand which AET functions should be used in the different LCP problems
in order to obtain better complexity bounds and numerical results, as well.
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