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Abstract. In this paper, we discuss conditions sufficient for the continuity of invariant operators, i.e., generally
nonlinear operators commuting with the operator of multiplication by characteristic functions, acting in a large
class of spaces of measurable functions over a finite, atomless measure space. Our setting includes, among many
others, modular function spaces, Lebesgue spaces, Orlicz and Musielak-Orlicz spaces, variable Lebesgue spaces,
and hence extends the scope beyond the normed spaces. Typical examples of invariant operators include super-
position operators (also known as Nemytskii operators), multiplication operators and operators constructed from
them.
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1. PREFACE

After receiving an invitation to contribute to the volume dedicated to the memory of Petr
Zabrejko, I researched my mathematical library and found a late article on the superposition
operator, published jointly by Zabrejko and Jürgen Appell [3]. In the introduction to this paper,
the Authors mentioned how after many years they returned to that topic on the occasion of
Gérard Bourdaud’s birthday, and in this connection they quoted a famous French saying ”On
revient toujours à son premier amour”. Intrigued by this declaration, I dived into their earlier
work. In their very interesting 1989 paper [2], I found, rather surprisingly, a reference to my
own, very early work [13], in which, among other things, I discussed continuity of invariant
operators acting in Banach function spaces. Immediately then I decided, in accordance with the
French proverb, to return to the ”first love” and to continue this topic in the context of modular
function spaces. And this is how this contribution came to being.
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2. INTRODUCTION

Let (X ,Σ,µ) be a finite, atomless, complete measure space. Let M denote the space of
measurable real-valued functions on X .

Definition 2.1. [13] Let E be any linear subspace of M . An operator T : E →M is called an
invariant operator if
(a) T (0) = 0;
(b) T (1A f ) = 1AT ( f ), for any f ∈ E and any A ∈ Σ, where 1A denotes a characteristic function

of the set A.

Remark 2.2. It is obvious that the composition, the sum and the product of any number of
invariant operators is still an invariant operator.

Remark 2.3. Let E be any linear subspace of M and let T : E →M be any, in general,
nonlinear operator. For a w ∈ E we define the translated operator Tw : E→M by

Tw(u)(x) = T (w)(x)−T (w+u)(x).

Note that Tw(0) = 0 and that, in any linear topology (or more generally, with respect to any
convergence preserving translation, e.g., convergence a.e., more on such convergence in [12,
17, 18, 24]) T is continuous at w is equivalent to Tw being continuous at zero.

Observe that in view of Remark 2.3, to prove a continuity at w of an operator T satisfying

T (w)−T (w+1Au) = 1A(T (w)−T (u+w)) (2.1)

for any u,w∈E any A∈ Σ, it suffices to prove a continuity of an associated invariant operator Tw
at zero. Hence, our results below can be easily extended to the more general class of operators
satisfying (2.1). See [13] for a more formal approach.

Example 2.4. Let F be a real-valued function of X ×R into R, where X ⊂ Rn is a Lebesgue
measurable set of finite measure. An operator defined by SF(u)(x) = F(x,u(x)), where u ∈
M ,x ∈ X is called a superposition operator (or Nemytskii operator). It is easy to check that SF
is invariant in the sense of Definition (2.1) provided F(x,0) = 0 for all x ∈ X and F satisfies the
following Carathéodory conditions

(1) F(x, ·) is continuous for almost every x ∈ X ;
(2) F(·,u) is measurable for all u ∈ R.

A classical result [4] states that SF satisfying the above conditions is continuous at zero with
respect to the convergence in measure. For more discussion on this operator, the reader is
referred to the papers by Appell and Zabrejko [2, 3], and the literature referenced there. It is
worthwhile noticing that the linear multiplication operator T (u)(x) = f (x)u(x) is an important
example of the superposition operator, see e.g. [1], and hence of the invariant operator. By
Remark 2.2 many operators constructed from superposition operators remain invariant.

Example 2.5. Let us consider a Hammerstein-type nonlinear integral operator

H(u)(x) =
∫
[0,1]

k(x,s)F(s,u(s))dm(s),

and observe that H = K ◦ SF , where K is a linear integral operator. Suppose that we want to
prove continuity of H at zero. We will show in Theorem 4.4 that under suitable assumptions
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SF is continuous. Hence, we will be able to reduce our problem to the investigation of the
continuity of a linear operator K. Typically, it is much simpler to prove continuity of linear than
non-linear operators.

3. PRELIMINARIES

Throughout this paper, we always assume that (X ,Σ,µ) is a finite, atomless, complete mea-
sure space. By S ⊂M we will denote the space of all Σ-measurable real-valued simple func-
tions (or shortly, simple functions) on X , that is functions of the form ∑

n
i=1 αi1Ai , where Ai ∈ Σ,

αi ∈ R. As usual, we will identify functions equal µ almost everywhere and sets with a sym-
metric difference being a µ-null set. In the sequel, equality and other operations on functions
and sets will be always understood that way.

Definition 3.1. We say that ρ : M → [0,+∞] is a function modular on (X ,Σ,µ) if the following
conditions are satisfied:

(i) ρ( f ) = 0 if and only if f = 0 almost everywhere;
(ii) ρ is an even function, that is, ρ(− f ) = ρ( f ) for every f ∈M ;

(iii) ρ is monotone, that is, | f (x)| ≤ |g(x)| for almost everywhere implies ρ( f )≤ ρ(g), where
f ,g ∈M ;

(iv) ρ is orthogonally subadditive, that is, ρ(1A∪B f )≤ ρ(1A f )+ρ(1B f ) for any A,B ∈ Σ such
that A∩B = /0, where f ∈M ;

(v) ρ is order continuous in S , that is, gn ∈S and |gn(x)| ↓ 0 almost everywhere implies that
ρ(gn) ↓ 0;

(vi) ρ( f ) = sup{ρ(g) : g ∈S , |g(x)| ≤ | f (x)|, x ∈ X};
The class of all function modulars on (X ,Σ,µ) will be denoted by R(X ,Σ,µ). Remark 3.2
below will provide further justification for this terminology.

Remark 3.2. For f ∈M and A ∈ Σ, let us denote ρ( f ,A) = ρ(1A f ). Also, by convention, we
will sometimes write ρ(α,A) instead of ρ(α1A). We will use these notations when convenient.
Noting also that ρ(α,A) = 0 for any α > 0 if and only if A is a µ-null set, it is straightforward
to prove that ρ : M ×Σ→ [0,+∞] is a function modular in the sense of Definition 2.1.1 in the
book [16], where ρ-null sets are actually equal to µ-null sets. Therefore, we can use results of
the standard theory of modular function spaces as per the framework defined by Kozlowski in
[14, 15, 16]. Note that, as proved there, a function modular ρ , as defined in Definition 3.1, is a
modular in the sense of a standard definition, see, e.g., [22, 23], that is,

(1) ρ( f ) = 0 if and only if f = 0;
(2) ρ(− f ) = ρ( f );
(3) ρ(α f +βg)≤ ρ( f )+ρ(g), for α,β ≥ 0, α +β = 1.

Observe also that the approach taken in Definition 3.1 goes along the lines of Definition 3.1 in
the book [10]. However, the latter definition assumes convexity and the Fatou property of ρ ,
while we do not assume either of these properties. As it is demostrated in examples below, from
the point of view of applications of the results of this paper, it is important that ρ does not have
to be convex.

Example 3.3. Typical examples of modular function spaces as defined in Definition 3.1 are:
(1) Lebesgue spaces: Lp-spaces for 0 < p <+∞;
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(2) variable Lebesgue spaces: Lp(t)-spaces, where 0 < p(t)<+∞;
(3) Orlicz and Musielak-Orlicz spaces;

and many spaces built upon them, see e.g., [10, 16, 19, 21, 22]. Note that these spaces do
not have to be normed spaces. They are however F-spaces with the F-norm generated by the
modular (see Definition 3.9). Variable Lebesgue spaces, typical examples of Musielak-Orlicz
spaces, have found recently a lot of attention because of their wide range of applications, see
e.g. [5, 6, 7, 8, 11, 25]. Modular function spaces are closely related to Banach function spaces
(studied by Luxemburg and Zaanen, see e.g. [20]), generalised Orlicz spaces (studied by Orlicz
and Musielak, see e.g. [22]), and ideal spaces (studied by Zabrejko, see e.g. [26, 27] and by
Väth, see [26] ).

We need to note an important for this paper property of function modulars, [16, Proposition
2.1.2], which can be also easily proved directly from the above properties of ρ .

Proposition 3.4. ρ( f , ·) : Σ→ [0,+∞] is a sigma-subadditive measure, that is

ρ

(
f ,

∞⋃
i=1

Ai

)
≤

∞

∑
i=1

ρ( f ,Ai), (3.1)

for any sequence {Ai} of measurable sets and any f ∈M .

The next result follows easily from Definition 3.1, the proof is standard.

Proposition 3.5. Under the assumption of this paper, the following two conditions are equiva-
lent:

(1) ρ(α,An)→ 0 for every α > 0;
(2) µ(An)→ 0,

where An ∈ Σ for every n ∈ N.

Using Proposition 3.5 we immediately obtain the next result.

Proposition 3.6. Under the assumption of this paper, the convergence in measure µ is equiv-
alent to the convergence in submeasure (ρ). Recall that fn → 0(ρ) if for every α,ε > 0
ρ(α,An(ε))→ 0, where An(ε) = {x ∈ X : | fn(x)| ≥ ε}; see [10, 16].

Definition 3.7. Since ρ is a function modular, we can define the modular function space Lρ in a
standard way, that is, as the vector space consisting of all functions f ∈M such that ρ(λ f )→ 0
if λ → 0.

Remark 3.8. Observe that in the context of this paper, X ∈ Σ and hence S ⊂ Lρ because of
part (v) of Definition 3.1. Therefore, 1X ∈ Lρ , and hence every bounded measurable function is
a member of Lρ .

As usual, Lρ will be equipped with an F-norm ‖ · ‖ρ defined by

‖ f‖ρ = inf
{

α > 0 : ρ

( f
α

)
≤ α

}
. (3.2)

Let us recall the definition of F-norms; see, e.g., [9, 22]

Definition 3.9. Let X be a real vector space. A function ‖ · ‖ : X → [0,+∞) is called an
F-norm if



CONTINUITY OF INVARIANT OPERATORS 5

(i) ‖u‖= 0 if and only if u = 0;
(ii) ‖−u‖= ‖u‖;

(iii) ‖u+w‖ ≤ ‖u‖+‖w‖;
(iv) ‖αkuk−αu‖ → 0 if αk→ α and ‖uk− u‖ → 0. It is easy to see that X becomes in this

case a linear metric space with a metric d(u,w) = ‖u−w‖. If this metric space is complete
we call (X ,‖ · ‖) an F-space.

It is well known that every modular function space (Lρ ,‖ · ‖ρ) is an F-space (see e.g. [16,
Theorem 2.3.7]). We also know that the F-norm ‖ · ‖ρ is monotone.

Using Proposition 3.6 and the results from the general theory of modular function spaces we
can easily prove the following result.

Proposition 3.10. In the setting of this paper, described in this Section, the following implica-
tions are true for any sequence of functions fn ∈ Lρ : (a)⇒ (b)⇒ (c)⇒ (d), where

(a) ‖ fn‖ρ → 0;
(b) ρ( fn)→ 0;
(c) fn

µ→ 0;
(d) there exists a subsequence { fnk} of { fn} such that fnk → 0 almost everywhere.

In general, none of these implications can be reversed.

The following property of function modulars will play an important role in this paper.

Definition 3.11. Let ρ ∈R(X ,Σ,µ). We say that ρ has the ∆2 property if ρ(2 fn)→ 0 whenever
ρ( fn)→ 0.

The following characteristics of function modulars with the ∆2-property are well known, see
[10, 14, 15, 16] for more discussions on this topic.

Proposition 3.12. Let ρ ∈R(X ,Σ,µ). Then the following statements are equivalent:

(1) ρ has the ∆2-property;
(2) ρ( fn)→ 0 if and only if ‖ fn‖ρ → 0;
(3) ‖·‖ρ is order continuous in the whole of Lρ , that is, ‖ fn‖ρ ↓ 0 if | fn| ↓ 0 for any sequence
{ fn} of functions from Lρ .

The next remark follows immediately from Proposition 3.12 part (3).

Remark 3.13. Let ρ ∈R(X ,Σ,µ) be a function modular with the property ∆2. Then ‖1(·) f‖ρ

is order continuous for every f ∈ Lρ , that is, ‖1An f‖ρ → 0, whenever An ↓ /0.

4. MAIN RESULTS

Let us start with the following technical result being a function modular version of Lemma
5.1 in [13] proven there in the Banach function space setting ( see [20] for foundations of the
general theory of Banach function spaces).

Lemma 4.1. Let ρ ∈ R(X ,Σ,µ) be a function modular space with the ∆2-property. Then to
every ε > 0 and every f ∈ Lρ there corresponds a δ > 0 such that ‖1D f‖ρ < ε whenever
µ(D)< δ .
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Proof. Assume to the contrary that there exists an ε > 0 and f ∈ Lρ such that for every δn =
µ(X)

2n

(recall that, as always in this paper, µ(X)<+∞) there exists a set Dn ∈ Σ such that
(i) µ(Dn)< δn;

(ii) ‖1Dn f‖ρ > ε .

Let En =
∞⋃

k=n

Dk. Hence, {En} is a nonincreasing sequence of measurable sets and

µ

( ∞⋂
n=1

En

)
= lim

n→∞
µ(En)≤ lim

n→∞

∞

∑
k=n

µ(Dk)≤ µ(X) lim
n→∞

∞

∑
k=n

1
2k = 0. (4.1)

Using Remark 3.13, via the ∆2-property, from (4.1) we conclude that

0 < ε < ‖1Dn f‖ρ ≤ ‖1En f‖ρ → 0,

as n→ ∞. The contradiction completes the proof. �

Lemma 4.2. Let ρ ∈R(X ,Σ,µ) be a function modular space with the ∆2-property. Let α > 0
and the sequences of sets Yn ∈ Σ, and of functions vn ∈ Lρ be such that
(a) µ(Yn)→ 0;
(b) ‖1Ynvn‖ρ > 2

3α, for every n ∈ N;

(c) ‖1Znvn‖ρ < 1
6α, for every n ∈ N, where Zn =

∞⋃
i=n+1

Yi.

Let v =
∞

∑
k=1

1Wkvk, where Wk = Yk \Zk. Then v /∈ Lρ .

Proof. Observe that Wn∩Wm = /0 for n 6= m. Hence, 1Wnv = 1Wnvn and consequently

1Wnv = 1Ynvn−1Znvn +1Zn\Ynvn. (4.2)

Using (4.2) together with subadditivity and monotonicity of the F-norm we get

‖1Wnv‖ρ ≥ ‖1Ynvn‖ρ −‖1Znvn‖ρ −‖1Zn\Ynvn‖ρ

≥ ‖1Ynvn‖ρ −‖1Znvn‖ρ −‖1Znvn‖ρ ≥
1
3

α > 0.
(4.3)

Assume to the contrary that v ∈ Lρ . Noting that µ(Wn)≤ µ(Yn)→ 0 and using Lemma 4.1, we
conclude that ‖1Wnv‖ρ must tend to zero, which contradicts (4.3). The proof of the Lemma is
complete. �

Lemma 4.3. Let Lρ be a modular function space. Let a sequence of functions {wn} be such

that wn ∈ Lρ for every n∈N and
∞

∑
i=1

ρ(wi)< r for an r > 0. Let {Wn} be a sequence of mutually

disjoint sets. Let us define w =
∞

∑
i=1

1wiwi. Then w ∈ Lρ .

Proof. Let ε > 0 be fixed arbitrarily. There exists a K ∈ N such that
∞

∑
i=K+1

ρ(wi)<
ε

2
. (4.4)
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Since all functions w1, ...,wK belong to Lρ , there exists 0 < λ0 < 1 such that
K

∑
i=1

ρ(λwi)<
ε

2K
, (4.5)

for every 0 < λ < λ0. For any such a λ , using (4.5) and (4.4), respectively, we have

ρ(λw) = ρ

( ∞

∑
i=1

λ1wiwi

)
≤

∞

∑
i=1

ρ(λ1wiwi)≤
K

∑
i=1

ρ(λwi)+
∞

∑
i=K+1

ρ(wi)< ε,

which means that w ∈ Lρ , as claimed. �

We are now ready to prove the main result of this paper, the Continuity Theorem.

Theorem 4.4. [Continuity Theorem] Let ρE ,ρH ∈R(X ,Σ,µ). Assume that ρH has ∆2-property.
Let Br = {u ∈ LρE : ρE(u) < r} and let T : Br → LρH be an invariant operator in the sense of
Definition 2.1. Assume that T is continuous at 0 with respect to the convergence in measure
µ . Then T is (ρE ,ρH)-continuous at 0, that is, ρE(un)→ 0 implies that ρH(T (un))→ 0, where
un ∈ Br. Moreover, T is (‖ · ‖ρE ,‖ · ‖ρH )-continuous at 0.

Proof. In view of Proposition 3.10, it is enough to prove the (ρE ,‖ · ‖ρH )-continuity of T
at zero. Assume to the contrary that there exists a sequence of functions zn ∈ Br such that
limn→∞ ρρE (zn) = 0 while ‖T (zn)‖ρH does not tend to zero. There exists then an α > 0 and a
subsequence {wn} of {zn} such that

‖T (wn)‖ρH > α (4.6)

for every n ∈ N and
∞

∑
n=1

ρE(wn)< r.

By Definition 3.1 part (v) and the ∆2-property of ρH , it follows that there exists a δ > 0 such
that ‖δ1X‖ρH ≤ α

6 . We will inductively construct a sequence of sets Yn ∈ Σ and a sequence of
functions un ∈Br such that, denoting vn = T (un), the sequences {Yn} and {vn} satisfy conditions
(a), (b) and (c) from Lemma 4.2. Set u1 = w1, Y1 = X and b1 = µ(X) < +∞, and assume that
uk, Yk and bk have been chosen. Since ρH satisfies ∆2, by Lemma 4.1, choose bk+1 such that

0 < 2bk+1 < bk,

and
‖1DT (uk)‖ρH <

α

6
(4.7)

for any D ∈ Σ such that µ(D) < 2bk+1. Since ρE(wn)→ 0, it follows from Proposition 3.10
that wn

µ→ 0 and, by assumed µ-continuity of T at zero, that T (wn)
µ→ 0. Hence, there exists

a natural number k0 > k such that µ(X \G′k0
)< bk+1, where G′k0

= {x ∈ X : |T (wk0)(x)|< δ}.
Define Gk+1 = G′k0

, Yk+1 = X \Gk+1 and uk+1 = wk0 . Observe that

‖1Gk+1T (uk+1)‖ρH ≤ ‖δ1G′k0
‖ρH ≤ ‖δ1X‖ρH ≤

α

6
. (4.8)

By combining (4.8) with (4.6) we get

‖1Yk+1T (uk+1)‖ρH ≥ ‖T (uk+1)‖ρH −‖1Gk+1T (uk+1)‖ρH >
2
3

α,
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proving condition (b) of Lemma 4.2. To prove (a) let us note that

µ(Yk+1) = µ(X \Gk+1)< bk+1 <
bk

2
≤ µ(X)

2k → 0,

as k→ ∞. It remains to prove (c) of Lemma 4.2. To this end let us denote Zk =
∞⋃

i=k+1

Yi and

calculate

µ(Zk)≤
∞

∑
i=k+1

µ(Yi)≤
∞

∑
i=k+1

bi ≤ bk+1

∞

∑
i=0

1
2i = 2bk+1.

Thus, by (4.7), ‖1ZkT (uk)‖ρH < α

6 , proving (c) and finishing the inductive construction.

Let us define Wk = Yk \Zk and u =
∞

∑
k=1

1Wkuk. By the σ -additivity of ρ we have

ρE(u) = ρE

( ∞

∑
k=1

1Wkuk

)
≤

∞

∑
k=1

ρE(1Wkuk)≤
∞

∑
k=1

ρE(uk)≤
∞

∑
n=1

ρE(wn)< r,

which by Lemma 4.3 means that u ∈ Br ⊂ LρE . Hence, T (u) ∈ LρH . On the other hand, since T
is invariant and Wk are mutually disjoint, we get

∣∣∣ ∞

∑
k=1

1Wkvk

∣∣∣= ∣∣∣ ∞

∑
k=1

1WkT (uk)
∣∣∣= ∣∣∣ ∞

∑
k=1

T (1Wkuk)
∣∣

=
∣∣∣ ∞

∑
k=1

T (1Wku)
∣∣∣= ∣∣∣ ∞

∑
k=1

1WkT (u)
∣∣∣≤ ∣∣∣T (u)∣∣∣,

almost everywhere, which implies that ∑
∞
k=1 1Wkvk ∈ LρH because T (u) ∈ LρH . On the other

hand, based on our inductive construction, we can infer from Lemma 4.2 that ∑
∞
k=1 1Wkvk /∈ LρH .

The contradiction completes the proof of Theorem 4.4.
�

The following counterexample shows that we cannot dispense in Theorem 4.4 with the as-
sumption of the ∆2-property of the target space.

Example 4.5. Let X = [0,1] and µ be the Lebesgue measure on X . Let LρE and LρH be two
Orlicz spaces over X generated by two ϕ-functions ϕE and ϕH , respectively. Assume that ρE
satisfies ∆2 but ρH does not. Since ρH does not satisfy ∆2, it follows from Propositions 3.10
and 3.12 that there exists a sequence {vn} of elements from LρH such that ρH(vn)→ 0 but
‖vn‖ρ > α > 0 for all n ∈ N. Define un(x) = (ϕ−1

E ◦ϕH)(vn(x)) and observe that

ρE(un) =
∫

X
ϕE(un(x))dµ(x) =

∫
X

ϕH(vn(x))dµ(x) = ρH(vn)→ 0.

Let us now define a Carathéodory function f (y) = (ϕ−1
H ◦ϕE)(y) for y ∈ X and the correspond-

ing superposition operator S f . Direct calculation shows that S f (un)(x) = vn(x) and hence that

‖S f (un)‖ρH = ‖vn‖ρH > α > 0.

Therefore S f cannot be continuous at zero. As an example of a ϕ-function ϕH such that ρϕH

does not have the ∆2-property one can take ϕH(v) = e|v|−1; see, e.g., [19, 22].

Assuming the ∆2-property this time for the domain side of T we obtain the following result.
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Theorem 4.6. Let ρE ,ρH ∈R(X ,Σ,µ). Assume that ρE has ∆2-property. Let T : LρE →M be
an invariant operator. If T (Br)⊂ LρH , where Br = {u ∈ LρE : ρE(u)< r}, then T (LρE )⊂ LρH .

Proof. Let us take an arbitrary f ∈ LρE . By Lemma 4.1 there exists δ > 0 such that ‖1D f‖ρE < r
provided µ(D) < δ . Since µ is finite and atomless there exists a sequence {Xi}p

i=1 of measur-

able, mutually disjoint sets with µ(Xi) < δ for i = 1, ..., p, and such that X =
p⋃

i=1

Xi. Thus

‖1Xi f‖ρE < r, which implies that T (1Xi f ) ∈ LρH for every i = 1, ..., p. Since T is invariant it
follows that

T ( f ) =
p

∑
i=1

1XiT ( f ) =
p

∑
i=1

T (1Xi f ) ∈ LρH .

�

Combining Theorems 4.4 and 4.6 we easily get our next, very useful result.

Theorem 4.7. Let ρE ,ρH ∈R(X ,Σ,µ). Assume that both ρE and ρH have the ∆2-property. Let
T : LρE →M be an invariant operator which is continuous at 0 with respect to convergence
in measure µ . Let B ⊂ LρE be an open neighbourhood of zero in LρE . If T (B) ⊂ LρH then
T : LρE → LρH and it is (‖ · ‖ρE ,‖ · ‖ρH )-continuous at 0.

Proof. Observe that there exists 0 < r < 1 such that {u ∈ LρE : ‖u‖ρE < r} ⊂ B. It follows
from the general modular space theory that ρE(u) ≤ ‖u‖ρE < 1, see e.g., [22, Theorem 1.5],
and hence that Br = {u ∈ LρE : ρE(u) < r} ⊂ B. The rest of the proof follows from Theorem
4.6. �

Remark 4.8. In view of comments in Example 2.4 all results of our paper are valid for an
important case of the superposition operator. Recall that the superposition operator SF is always
an invariant operator which is continuous with respect to the convergence in measure provided
F satisfies the Carathéodory conditions.

Remark 4.9. [Historical notes] Theorem 4.4 is an extension to modular function spaces of the
continuity theorem for invariant operators acting in Banach function spaces, proved by Ko-
zlowski in his 1980 paper [13, Theorem 5.2]. This continuity result was later referenced by
Appell and Zabrejko in their 1989 paper [2], where they discussed various properties of the
superposition operator.
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