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Abstract. This paper deals with an optimal control problem for a linear discrete-time system subject to input and
state constraints and unknown bounded disturbances, where the control goal is to minimize a cost function used
in linear explicit model predictive control. We define a solution to the problem under consideration in terms of
optimal control strategies under the assumption that the state measurements of the system will become available
at several future time instants (closing instants), the control loop at these instants will be closed and a new control
input will be calculated. Such control strategies provide a compromise between a conservative optimal open-loop
worst-case control and computationally demanding dynamic programming. A method for constructing optimal
control strategies with one and multiple closing instants is proposed. The method reduces a multilevel optimization
problem that arises from the definition of the control strategy to a number of linear programs resulting in low
computational demands for the optimal strategy construction and its suitability for applications such as model
predictive control, where the optimal control problem is solved online.
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INTRODUCTION

Optimal control has received a significant attention of the research community over the recent
years. This is driven by growing complexity of control systems and their applications and
substantial advances with respect to the computational power which allows solving challenging
problems. One of the widely used applications of the optimal control theory and methods is
model predictive control (MPC), see e.g. [29, 39] that by now has thousands of successful
industrial applications [43].

The main application area of MPC is stabilization of linear and nonlinear plants. MPC, also
referred to as receding horizon control, is a control technique that is based on real time solution
of the so called predictive optimal control problem that is formulated on a finite control horizon
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for the state space model of the plant with the initial condition equal to the actual plant’s state
measurement. Input and state constraints are naturally taken into account in such formulation
and the performance index of the predictive optimal control problem is chosen in such a way
that its optimal value can serve as a Lyapunov function for the closed-loop system. The optimal
input of the predictive problem is fed to the plant until the next state or output measurement is
obtained and the new optimal control problem is formed and solved. For control problems on a
finite horizon the MPC scheme is referred to as shrinking horizon MPC [13, 40].

In Minsk the research group headed by R. Gabasov proposed similar ideas for the classical
problem of optimal feedback synthesis and called it optimal real-time feedback control [16, 17].
The method was developed for various classes of dynamical systems: linear [1, 16, 20], piece-
wise linear [2], nonlinear ODE’s [3], linear time-delay systems [4], systems with distributed
parameters [27]. The cornerstone of the optimal real-time feedback control as well as MPC is
the availability of efficient numerical methods that can solve optimal control problems at the
same rate as the measurements are obtained. Since predictive optimal control problems solved
during each control process are of the same type and only the initial state and the control hori-
zon change in the process, the numerical method should also adequately take into account some
characteristics of the solution obtained at the previous time instant to find an initial guess for
the current instant and speed up the solution in real time. Despite significant advances made by
the group in previous years with respect to developing numerical methods for optimal control
[15, 17], in the early 2000’s new methods were proposed [1, 21]. They are based on two main
ideas, namely, utilizing sampled-data inputs for control of continuous systems and the so called
dynamic realization of the dual adaptive method for solving linear programs [14, 17]. The sys-
tem studied in this paper is discrete-time, therefore the use of the adaptive method proved to be
natural and very efficient in our numerical experiments.

Previously mentioned papers were devoted to the classical synthesis problem that is formu-
lated for deterministic systems. The systems under uncertainties were studied in [11, 12, 18, 19,
22, 23, 24, 25, 26]. A set-membership uncertainty, as opposed to the stochastic uncertainty, was
chosen. In such uncertainty model all unknown values are elements of a given compact set, then
the control objective is to guarantee constraints satisfaction for all realizations of the unknown
values and estimate the cost under the worst-case realization, i.e. the problems are formulated
as optimal guaranteed (robust) control problems [36, 42]. Methods for optimal robust real-
time state feedbacks construction for systems under set-membership disturbances were studied
in [12, 18, 19, 22, 24] and optimal measurement feedbacks for systems with incomplete and
inexact state measurements were considered in [10, 11, 23, 25, 26].

While for deterministic systems the solution of predictive optimal control problems is con-
structed in open-loop sense and in a particular control process the control input coincides with
the dynamic programming solution, for systems under uncertainties different formulations of
the optimal control problem can be proposed depending on a priory information about the sys-
tem’s behavior. When no information about the future states is taken into account the open-loop
worst-case solution is obtained. Then the optimal feedback defined on the base of open-loop
worst-case controls is usually referred to as open-loop optimal feedback control. In robust
model predictive control the corresponding approach is called the open-loop MPC. It is well
known that open-loop worst-case controls are very conservative, see e.g. [38] and discussion in
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Section 2. A possible remedy is a formulation of the optimal control problem in a dynamic pro-
gramming sense which yields a feedback that is optimal with respect to all possible feedbacks
[6, 38, 41]. The corresponding MPC is referred to as the closed-loop or min-max feedback
MPC. Its shortcomings are also well known and result from the curse of dimensionality.

Taking into account the drawbacks of the open-loop solution and the dynamic programming
solution, a reasonable idea is to include only “some feedback elements” to achieve a compro-
mise between the performance of the feedback and the numerical simplicity of the open-loop
control. Realization of this idea in practice includes e.g. solutions that are a weighted sum
of a fixed structure feedback and an open-loop control with optimization over the latter and
a feedback gain matrix [30, 35], formulations of the problem as a single linear program as
in explicit MPC [6, 31], or defining optimal control strategies based on the assumption that
the loop is only closed at a finite number of time instants, e.g. not at all sampling instants
[9, 12, 18, 19, 32, 33, 34]. The latter approach was originally proposed by R.Gabasov’s group
and called optimal multiple closable feedback.

This work presents a combination of approaches reported in papers [9, 12, 18, 19, 32, 33,
34, 37] applied to a predictive optimal control problem formulated in linear explicit model
predictive control [5, 6, 7]. The problem in [6] is formulated for a linear discrete-time system
subject to disturbances taking values in a polyhedral set, input and state constraints and with the
objective to minimize the deviation of the trajectory from the steady-state in mixed 1/∞-norms.
While [5, 6, 7] formulate the optimal control problem as a single multiparametric linear program
(mpLP) depending on the initial state as a parameter and use the corresponding mpLP methods
[7] to obtain an optimal feedback solution (mainly for problems on a very short control horizon),
we assume only a small number of time instants when the loop is closed (closing instants) and
also obtain a number of non-parametric linear programs only one of which has to be solved
online.

The first work where closing instants were introduced was devoted to linear terminal opti-
mal control problems (problems with linear terminal constraints and linear Mayer performance
index) [18, 19]. It presents a general, rather conceptual, formulation of the approach, which
practical realization was done only for a well-chosen example. An attempt to improve applica-
bility of the approach for optimal real-time feedback control was made in paper [22], where the
so called closure sets were introduced and their polyhedral approximations were proposed. The
method in [22] is iterative and each iteration imply refining the closure sets and then construct-
ing the open-loop control input that steers the system into the refined set corresponding to the
closest future closing instant. This approach numerically is quite consuming since a large num-
ber of optimization problems is solved on each iteration and online. Therefore, its application
in real time is still questionable. Starting from paper [12] and then [32] we established that the
closure sets can be parametrized offline in a special way. The obtained parametrization allows
to abandon the refinement of closure sets and the iterations, since the problem to be solved on-
line can be formulated as a single linear program easily solved by existing solvers. This paper
presents a development of advances made in [12, 32] for the optimal control problem from [6].
We emphasize, that only a predictive optimal control problem is solved in terms of optimal con-
trol strategies with closing instants, but the optimal closable feedback based on the strategies is
not discussed in this paper. The latter is easily constructed as in [12, 22, 33] once the method,
proposed here, is effectively implemented for real-time computations.



4 N.M. DMITRUK, D.A. KASTSIUKEVICH

The overall paper is structured as follows. In Section 1 we outline the problem formulation
and review some results related to optimal open-loop control in Section 2. Section 3 introduces
the optimal control strategy with one closing instant and presents an effective method for its
construction. A generalization for the case of multiple closing instants is discussed in Section 4.
In Sections 3.4 and 4.2, we illustrate the proposed approach by numerical examples and in
Section 3.5, we discuss how to implement the method efficiently in order to use it in optimal
real-time feedback control or MPC.

1. PROBLEM FORMULATION

We consider a linear discrete-time time-invariant control system subject to unknown bounded
disturbances and finite control horizon

x(t +1) = Ax(t)+Bu(t)+Mw(t), x(0) = x0,

t = 0,1, . . . ,T −1,
(1.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rr is the control, w(t) ∈ Rp is the disturbance at time t,
A ∈ Rn×n, B ∈ Rn×r, M ∈ Rn×p are given matrices and x0 is a given initial state.

System (1.1) is subject to input and state constraints

u(t) ∈U = {u ∈ Rr : ||u||∞ ≤ umax}, t = 0,1, . . . ,T −1,

x(t) ∈ X(t) = {x ∈ Rn : H(t)x≤ g(t)}, t = 1,2, . . . ,T,
(1.2)

where ||z||∞ = maxi |zi|, H(t)∈Rm×n, g(t)∈Rm are such that X(t) are bounded, t = 1,2, . . . ,T .
The disturbance is unknown, bounded

w(t) ∈W = {w ∈ Rp : ||w||∞ ≤ wmax}, t = 0,1, . . . ,T −1,

and we are interested in robust constraint satisfaction, i.e. (1.2) should be satisfied for all possi-
ble disturbances.

The control objective is to minimize the following cost function
T−1

∑
t=0

(
||Qx(t)||∞ + ||Ru(t)||∞

)
+ ||Px(T )||∞, (1.3)

where Q,P ∈ Rn×n, R ∈ Rr×r are given nonsingular matrices, see [6].
The following notations are used throughout the paper: u(·) = (u(t), t = 0,1, . . . ,T − 1),

w(·) = (w(t), t = 0,1, . . . ,T −1), U t =U× . . .×U︸ ︷︷ ︸
t times

, same for W t .

A trajectory of system (1.1) corresponding to a control input u(·) ∈ UT and a disturbance
w(·) ∈W T is denoted by x(t|x0,u,w), t = 0,1, . . . ,T .

For any ∆ j = {Tj,Tj +1, . . . ,Tj+1−1} with 0≤ Tj < Tj+1 ≤ T , the control input and the dis-
turbance on ∆ j are denoted by u j(·) = (u j(t), t ∈ ∆ j), w j(·) = (w j(t), t ∈ ∆ j), and x(t|x j,u j,w j)
is the state at time t of system (1.1) with the initial state x(Tj) = x j, input u j(·) and disturbance
w j(·).

The simplest approach for controlling system (1.1) and achieving the stated objectives is to
construct the optimal open-loop (worst-case) control u0(·). It is an input that depends on time
t only and is a minimizer for all possible realizations of the disturbance, i.e. for all w(·) ∈W T .
The optimal open-loop control is constructed before the control process starts, based only on a
priori information about the initial state and disturbances. It doesn’t take into account that there
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may be state measurements available in the future and the possibility to make corrections to the
control according to the measurements. As a result it is easy to construct the optimal open-loop
control or show that it does not exist, however, it is very conservative, since one open-loop
input u0(·) is supposed to steer all possible trajectories of x(t|x0,u0,w), w(·) ∈W T , in the state
constraints sets. This might even lead to infeasibility, if the set W is large. The details of the
open-loop solution of the problem under consideration will be discussed in Section 2.

On the other hand the problem can be formulated as the dynamic programming. Bellman
equations for the problem under consideration have the form

V (t,x) = min
u∈U

max
w∈W

{
||Qx||∞ + ||Ru||∞ +V (t +1,Ax+Bu+Mw)

}
,

t = 0,1, . . . ,T −1,

V (T,x) = ||Px||∞, x ∈ Rn.

The resulting solution is a feedback u0(t,x), t = 0,1, . . . ,T − 1, x ∈ Rn, that is optimal with
respect to all possible feedbacks. This is the solution one would like to construct, however,
the computational demands for solving the dynamic programming problem are too high. The
optimal feedback in problem under consideration is constructed numerically in [6] for low di-
mensional examples with short control horizons.

As emphasized in the introduction, in the frame of this work, we consider an intermediate
approach between the dynamic programming solution and the optimal open-loop control that
was first proposed in [18, 19]. The idea of [18, 19], later developed in [12, 22, 32, 33, 34],
is that in the optimal control problem formulation the loop is only closed at a small number
of future closing instants, i.e. not at all control instants t = 0,1, . . . ,T − 1 as in the dynamic
programming. When the loop is closed, a new state measurement becomes available, a new
optimization problem for the rest of the control interval is formulated and solved to construct
a new control input that takes into account the obtained measurement. As we will show in
numerical experiments, this leads to a trade-off between the computational demands of the
dynamical programming and the conservatism of the open-loop solution. We will also show
that the performance of the control process can be tuned by the number and the position of the
closing instants. The case of one closing instant will be addressed in Section 3 and than the
technique will be developed for multiple closing instants in Section 4.

2. OPTIMAL OPEN-LOOP CONTROL

In this section minimization of cost (1.3) subject to system’s dynamics (1.1) and constraints
(1.2) is defined in terms of open-loop (worst-case) control.

The input u(·) is called a feasible open-loop control if the corresponding trajectory robustly
satisfies the state constraints, i.e.

x(t|x0,u,w) ∈ X(t), t = 1,2, . . . ,T, ∀w(·) ∈W T .

A feasible open-loop control guarantees the worst-case cost

max
w

{
T−1

∑
t=0

(
||Qx(t)||∞+ ||Ru(t)||∞

)
+ ||Px(T )||∞

}
.
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Then the optimal open-loop control is the solution to a min-max problem

J(x0) = min
u

max
w

{
T−1

∑
t=0

(
||Qx(t)||∞ + ||Ru(t)||∞

)
+ ||Px(T )||∞

}
(2.1)

subject to
x(t +1) = Ax(t)+Bu(t)+Mw(t), x(0) = x0,

||u(t)||∞ ≤ umax, t = 0,1, . . . ,T −1,

H(t)x(t)≤ g(t), t = 1,2, . . . ,T, ∀w(·) ∈W T .

Problem (2.1) can be rewritten as a linear program after a number of equivalent standard
reformulations, see [6, 8]. We outline them here because same arguments will be used in pre-
sentation of new results for optimal control strategies in Sections 3 and 4.

First we discuss how to guarantee robust satisfaction of the i-th state constraint, i= 1,2, . . . ,m,
at time t. Obviously if the worst-case state satisfies the constraint under consideration then it is
robustly satisfied for all disturbances:

hi(t)>x(t|x0,u,w)≤max
w

hi(t)>x(t|x0,u,w)≤ gi(t),

where hi(t)> is the i-th row of the matrix H(t). Then due to linearity of the system (1.1) we
derive the nominal dynamics

x0(t +1) = Ax0(t)+Bu(t), x0(0) = x0,

t = 0,1, . . . ,T −1,
(2.2)

and represent the i-th constraint in the form

hi(t)>x0(t)+max
w

hi(t)>x(t|0,0,w)≤ gi(t).

Denoting

γi(t) = max
w

hi(t)>x(t|0,0,w) = wmax

t−1

∑
s=0
||hi(t)>AsM||1,

and introducing the vector of estimates of the worst-case disturbances γ(t)= (γi(t), i= 1, . . . ,m),
we construct the so called tightened sets

X̄(t) = {x ∈ Rn : H(t)x≤ g(t)− γ(t)} , t = 1,2, . . . ,T,

for the state constraints.
Now if the nominal system (2.2) satisfies the tightened constraints, i.e.,

x0(t) ∈ X̄(t), t = 1,2, . . . ,T,

then system (1.1) satisfies (1.2) under all possible realizations of disturbances.
Secondly, we exploit the fact that maximum in (2.1) is attained at one of the vertices of the

hypercube W T. Therefore, enumerating the vertices in an index set L and denoting the l-th vertex
by wl(·), l ∈ L, we rewrite the cost of problem (2.1) in an equivalent form

J(x0) = min
u

max
l∈L

{
T−1

∑
t=0

(
||Qx(t|x0,u,wl)||∞ + ||Ru(t)||∞

)
+ ||Px(T |x0,u,wl)||∞

}
.
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Finally, using equivalent epigraph form [8, p. 134, 150] we obtain the open-loop optimal
control problem (2.1) in the deterministic form

min
u,α

α, (2.3)

subject to
x0(t +1) = Ax0(t)+Bu(t), x0(0) = x0,

xl(t +1) = Axl(t)+Bu(t)+Mwl(t), xl(0) = x0, l ∈ L,

||u(t)||∞ ≤ umax, t = 0,1, . . . ,T −1,

H(t)x0(t)≤ g(t)− γ(t), t = 1,2, . . . ,T,
T−1

∑
t=0

(
||Qxl(t)||∞ + ||Ru(t)||∞

)
+ ||Pxl(T )||∞ ≤ α, l ∈ L.

Problem (2.3) is a convex problem. It can be further reformulated as a linear program, see [6].
The following slack variables are used

||Ru(t)||∞ ≤ εu(t), ||Qxl(t)||∞ ≤ ε
l
x(t), t = 0,1, . . . ,T −1, ||Pxl(T )||∞ ≤ ε

l
x(T ), l ∈ L,

and the state variables are replaced according to x(t) = Atx0+
t−1
∑

s=0
At−s−1(Bu(s)+Mw(s)

)
. The

resulting linear program has the form:

min
u,α,εu,εx

α,

−εu(t)1r±Ru(t)≤ 0, ±u(t)≤ umax1r,

t = 0, . . . ,T −1,
t−1

∑
s=0

H(t)At−s−1Bu(s)≤ g(t)− γ(t)−H(t)Atx0,

t = 1,2, . . . ,T,

−ε
l
x(t)1n±

t−1

∑
s=0

QAt−s−1Bu(s)≤∓
(
QAtx0 +

t−1

∑
s=0

QAt−s−1Mwl(s)
)
,

t = 0, . . . ,T −1,

−ε
l
x(T )1n±

T−1

∑
s=0

PAT−1−sBu(s)≤∓
(
PAT x0 +

T−1

∑
s=0

PAT−s−1Mwl(s)
)
,

T

∑
t=0

ε
l
x(t)+

T−1

∑
t=0

εu(t)−α ≤ 0,

l ∈ L,

(2.4)

where 1n, 1r are the n-vector and the r-vector of ones;± and∓ are used to shorten the notations
and mean that the corresponding constraint is taken into account twice, with + sign as well as
with − sign.

Problem (2.4) is a linear program in an inequality form. It has (4r+m)T +(2n(T +1)+1)|L|
constraints and (r+1)T +(T +1)|L|+1 variables. Obviously, the dimensions here substantially
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depend on the number |L| of vertices of W T , hence, on the control horizon T . In [6] only short
horizons are chosen to guarantee that problem (2.4) is solved online.

Other shortcomings of the open-loop solution are well described in [33, 38, 41] and were
discussed in Section 1. Here we mention that infeasibility of the open-loop problem (2.1)
results from the possible emptiness of the set X̄(t) for some t.

3. OPTIMAL CONTROL STRATEGY WITH ONE CLOSING INSTANT

To overcome the conservatism and feasibility problems of open-loop controls we follow [12,
18, 22, 33] and assume that at one future time instant T1 ∈ {1,2, . . . ,T −1} a state measurement
is taken into account, i.e. the control loop is closed and a new control is calculated for the rest of
the time interval. This assumption leads us to a definition of a control strategy with one closing
instant T1.

Suppose that on the interval ∆0 = {0,1, . . . ,T1−1} a control input u0(·) = u0(·|x0) is chosen
and denote by

X(T1|x0,u0) =
{

x = x(T1|x0,u0,w0),w0(·) ∈W T1
}

the set of all possible states, that can be reached by time T1 if the process starts from the initial
state x(0) = x0 under the input u0(·). In a particular control process, depending on the actual
disturbance, some state x∗(T1) will be measured, x∗(T1) ∈ X(T1|x0,u0).

We formulate the main assumption as follows:

Assumption 3.1. Before the control process starts it is known that at time T1 we can
1) measure the actual state x∗(T1);
2) choose a new control input u1(·)= u1(·|x∗(T1)) on the interval ∆1 = {T1,T1+1, . . . ,T−1}.

According to Assumption 3.1 we choose a control input u0(·) and use it on the interval ∆0.
At time T1 we measure x∗(T1) and calculate a new control u1(·|x∗(T1)). Since x∗(T1) is not
known in advance (at time t = 0) we have to define the control on ∆1 for each x1 ∈ X(T1|x0,u0).
Therefore, we look for a solution of the optimal control problem in terms of a control strategy
(with one closing instant T1) that has the form

π1 = π1(0,x0) = {u0(·|x0);u1(·|x1),x1 ∈ X(T1|x0,u0)}.
The input u0(·|x0) is further referred to as an initial control for π1.

A trajectory of system (1.1) corresponding to a strategy π1 and a disturbance w(·) = (w0(·),
w1(·)) is defined as a sequential solution of two systems, see [12, 33]:

x(t +1) = Ax(t)+Bu0(t)+Mw0(t), x(0) = x0, t ∈ ∆0,

x(t +1) = Ax(t)+Bu1(t|x(T1))+Mw1(t), x(T1) = x(T1|x0,u0,w0), t ∈ ∆1.

3.1. Feasible and optimal control strategies. To determine a feasible control strategy π1 we
use the dynamic programming arguments and consequently consider time intervals ∆1 (after the
closing instant) and ∆0 (before the closing instant).

On the time interval ∆1 the control input has to be feasible with respect to constraints (1.2).
Therefore, for a fixed x1 the control u1(·|x1) ∈UT−T1 is chosen in such a way that

x(t|x1,u1,w1) ∈ X(t), t = T1 +1,T1 +2, . . . ,T, ∀w1(·) ∈W T−T1. (3.1)

Let X1 denote a set of all states x1 ∈Rn for which a feasible control u1(·|x1), as defined above,
exists. This set is referred to as the closure set at time T1.
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Assumption 3.2. The closure set X1 6=∅.

On the time interval ∆0 the control input u0(·) has to steer the system robustly in the state
constraint sets X(t):

x(t|x0,u0,w0) ∈ X(t), t = 1,2, . . . ,T1, ∀w0(·) ∈W T1, (3.2)

and guarantee that for all x1 ∈ X(T1|x0,u0) there exists a feasible control input u1(·|x1), so that
control process can be continued after T1. The latter condition is satisfied if

X(T1|x0,u0)⊆ X1. (3.3)

Assumption 3.3. There exists u0(·) such that (3.2), (3.3) are satisfied.

Under Assumptions 3.2 and 3.3 there exists a feasible control strategy π1. A priori verification
of Assumptions 3.2 and 3.3 seems to be impossible, therefore we will propose a constructive
approach to do it in Sections 3.2, 3.3.

Remark 3.4. If there exists no closing instant T1 such that both assumptions are satisfied, then
one should try to find control strategies with multiple closing instants as in Section 4.

For each x1 ∈ X1 we define a cost-to-go function at time T1:

V1(x1) = min
u1

max
w1

{ T−1

∑
t=T1

(
||Qx(t|x1,u1,w1)||∞ + ||Ru1(t)||∞)+ ||Px(T |x1,u1,w1)||∞

}
(3.4)

subject to state constraints (3.1). If x1 6∈ X1 then V1(x1) :=+∞ by definition.
On the base of the strategy π1 define another feasible strategy

π̄1 = {u0(·|x0);u0
1(·|x1),x1 ∈ X(T1|x0,u0)},

where u0(·|x0) is the initial control of π1 and u0
1(·|x1) is a minimizer of problem (3.4). The cost

of π̄1 is equal to

max
w0

{T1−1

∑
t=0

(
||Qx(t|x0,u0,w0)||∞ + ||Ru0(t)||∞

)
+V1(x(T1|x0,u0,w0))

}
. (3.5)

Minimizing (3.5) over u0(·) subject to (3.2) we obtain the optimal initial control u0
0(·|x0) and

the optimal control strategy

π
0
1 = π

0
1 (0,x0) = {u0

0(·|x0);u0
1(·|x1),x1 ∈ X(T1|x0,u0

0)}.
In this formulation we omitted the inclusion (3.3) since it is implicitly satisfied for finite values
of V1(x1).

From the above discussion we conclude that the optimal control strategy π0
1 consists of

1) the optimal initial control u0
0(·|x0) that is a solution to the min-max problem

V0(x0) = min
u0

max
w0

{T1−1

∑
t=0

(
||Qx(t)||∞ + ||Ru0(t)||∞

)
+V1(x(T1))

}
(3.6)

subject to
x(t +1) = Ax(t)+Bu0(t)+Mw0(t), x(0) = x0,

||u0(t)||∞ ≤ umax, t = 0,1, . . . ,T1−1,

H(t)x(t)≤ g(t), t = 1,2, . . . ,T1, ∀w0(·) ∈W T1,



10 N.M. DMITRUK, D.A. KASTSIUKEVICH

2) the optimal open-loop controls u0
1(·|x1), x1 ∈ X(T1|x0,u0

0), that are minimizers of problems
(3.4) that have the detailed form:

V1(x1) = min
u1

max
w1

{ T−1

∑
t=T1

(
||Qx(t)||∞ + ||Ru1(t)||∞)+ ||Px(T )||∞

}
(3.7)

subject to

x(t +1) = Ax(t)+Bu1(t)+Mw1(t), x(0) = x0,

||u1(t)||∞ ≤ umax, t = T1,T1 +1, . . . ,T −1,

H(t)x(t)≤ g(t), t = T1 +1,T1 +2, . . . ,T, ∀w1(·) ∈W T−T1.

Remark 3.5. Note that problem (3.6) implies that the value of the optimal strategy π0
1 is equal

to

V0(x0) = min
u0

max
w0

min
u1

max
w1

{
∑

t∈∆k
k=0,1

(
||Qx(t|xk,uk(·|xk),wk)||∞ + ||Ruk(t|xk)||∞

)
+

+||Px(T |x1,u1(·|x1),w1)||∞
}
,

while the value of the optimal open-loop control u0(·) (if it exists) is

J(x0) = min
u0

min
u1

max
w0

max
w1

{
∑

t∈∆k
k=0,1

(
||Qx(t|xk,uk,wk)||∞ + ||Ruk(t)||∞

)
+ ||Px(T |x1,u1,w1)||∞

}
.

Obviously, V0(x0)≤ J(x0). In the example section 3.4, we will show that performance improve-
ment when applying π0

1 depends on the position of the closing instant T1. On the other hand,
there are examples, where V0(x0) = J(x0) for all choices of T1, especially if the horizon T is
short. In Section 4.2, we will provide an example, where the open-loop problem is infeasible,
however the optimal strategy π0

1 exists.

To start the control process, we need to know only the optimal initial control u0
0(·|x0). The

family of optimal open-loop controls u0
1(·|x1), x1 ∈ X(T1|x0,u0), is not needed at the beginning

of the process. Moreover, at time T1 only one representative of the family, namely u0
1(·|x∗(T1)),

will be calculated. Since (3.7) is an open-loop optimal control problem its solution is easy to
calculate as in Section 2. Therefore, in the next section, we discuss how to solve problem (3.6)
efficiently. The solution method uses some approximation of the closure set and as a result
yields the suboptimal initial control ū0

0(·|x0).

3.2. Calculating the suboptimal initial control. Problem (3.6) depends on the solution of
problem (3.7) and thus has form of a bilevel optimization problem. We represent it in an equiv-
alent deterministic and epigraph form, see Section 2 and [8]:

min
u0,α0

α0 (3.8)
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subject to
x0(t +1) = Ax0(t)+Bu0(t), x0(0) = x0,

xl(t +1) = Axl(t)+Bu0(t)+Mwl
0(t), xl(0) = x0, l ∈ L0,

||u0(t)||∞ ≤ umax, t = 0,1, . . . ,T1−1,

H(t)x0(t)≤ g(t)− γ(t), t = 1,2, . . . ,T1,

T1−1

∑
t=0

(
||Qxl(t)||∞ + ||Ru0(t)||∞

)
+V1(xl(T1))≤ α0, l ∈ L0,

where wl
0(·) is the l-th vertex of the hypercube W T1 , l ∈ L0.

Problem (3.8) is similar to problem (2.3), however, the presence of V1(xl(T1)) in the last
group of constraints prevents straigthforward reduction of problem (3.8) to a linear program as
was the case for (2.3). More specifically, the last group of constraints will be represented as

||Qxl(t)||∞ ≤ ε
l
x(t), ||Ru0(t)||∞ ≤ εu(t), t = 0,1, . . . ,T1−1,

V1(xl(T1))≤ α
l
1,

T1−1

∑
t=0

(
ε

l
x(t)+ εu(t)

)
+α

l
1 ≤ α0, l ∈ L0,

(3.9)

and our focus is on function V1(x1), x1 ∈ X1, in (3.9). We outline the idea how to tackle these
constraints here and prove the main result in Section 3.3.

For a fixed x1 the value V1(x1) is the optimal value of problem (3.7) that similarly to prob-
lem (2.1) in Section 2 can be rewritten as a linear program. If the state x1 is considered as a
parameter, then (3.7) is a multiparametric linear program. It is well known [28, p. 180], that the
optimal value of a multiparametric linear program is piecewise linear and convex with respect
to the parameter, i.e. x1. Then the α-sublevel set

X1(α) = {x1 ∈ X1 : V1(x1)≤ α} ⊆ X1

is a convex polytope for any fixed α such that X1(α) 6=∅. Since state constraints sets X(t) are
bounded, all X1(α) are also bounded. Obviously, X1(α

′)⊆ X1(α)⊆ X1 for α ′ < α .
In the sequel, we replace Assumption 3.2 with a more practical one:

Assumption 3.6. An interval [αmin,αmax], αmin < αmax, such that X1(α) 6=∅, α ∈ [αmin,αmax],
is known.

Values αmin, αmax should be the lower and the upper bounds for possible values of α l
1, l ∈ L0,

in (3.9). We will discuss the choice of such bound for αmax in Remark 3.8 and show how to
compute αmin in Section 3.3.

In simple examples the polytopes X1(α), α ∈ [αmin,αmax], can be found explicitly, but in
general some approximation of X1(α) is inevitable. We follow the approach in [12, 22] and
approximate the set X1(α) by a convex polytope X̄1(α) of a simpler structure. The main con-
tribution of this paper is a ”linear” form of the approximation with respect to the parameter
α:

X̄1(α) = {x1 ∈ Rn : P1x1 ≤ g1 +λ1α} , (3.10)

where the rules for P1 ∈ Rm1×n, g1,λ1 ∈ Rm1 will be discussed in Section 3.3.
Representation (3.10) is the key to reducing problem (3.8) to a linear program, thus making

it computationally attractive.
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In terms of the control problem (3.7) the set X1(α) bounds the worst-case cost-to-go V1, and
then the constraint V1(xl(T1))≤ α l

1 is rewritten first as xl(T1) ∈ X1(α
l
1), l ∈ L0, and then, due to

(3.10), as
P1xl(T1)≤ g1 +λ1α

l
1, l ∈ L0.

Obviously, the latter allows us to approximate (3.8) by a linear program

min
u0,εx,εu,α1,α0

α0,

−εu(t)1r±Ru0(t)≤ 0, ±u0(t)≤ umax1r,

t = 0,1, . . . ,T1−1,
t−1

∑
s=0

H(t)At−s−1Bu0(s)≤ g(t)− γ(t)−H(t)Atx0,

t = 1,2, . . . ,T1,

−ε
l
x(t)1n±

t−1

∑
s=0

QAt−s−1Bu0(s)≤∓
(
QAtx0 +

t−1

∑
s=0

QAt−s−1Mwl
0(s)
)
,

t = 0,1, . . . ,T1−1,

−λ1α
l
1 +

T1−1

∑
s=0

P1AT1−s−1Bu0(s)≤ g1−
(
P1AT1x0 +

T1−1

∑
s=0

P1AT1−s−1Mwl
0(s)
)
,

T1−1

∑
t=0

(
ε

l
x(t)+ εu(t)

)
+α

l
1−α0 ≤ 0, αmin ≤ α

l
1 ≤ αmax,

l ∈ L0.

(3.11)

Problem (3.11) has (4r + m)T1 + (2nT1 + 2m1 + 3)|L0| constraints and (r + 1)T1 + (T1 +
1)|L0|+ 1 variables. It is worth mentioning that, while m1 (the number of rows in P1, see
(3.10)) depends on approximation and can be quite large, the critical dimension of problem
(3.11) still depends on the number of vertices of a hypercube. This time, however, it is the
hypercube W T1 and |L0|< |L|, leading to comparable or even smaller dimensions than the ones
of the open-loop control problem (2.4).

If problem (3.11) is infeasible, problem (3.8) is infeasible as well, optimal control problem
under consideration has no solution in the class of control strategies with closing instant T1.
This happens when Assumption 3.3 is violated.

3.3. Approximating the sets X1(α). In this section we justify representation (3.10) for the
approximation of the sets X1(α).

Choose the system of normal vectors pi ∈ Rn, i = 1, 2, . . . , m̄1, ||pi||= 1, independent of α .
Here m̄1 ≤ m1 in (3.10) and the difference will become clear later.

Let
fi(α) = max

x1∈X1(α)
p>i x1. (3.12)

Then the approximation of the set X1(α) has the form

X̄1(α) =
{

x1 ∈ Rn : p>i x1 ≤ fi(α), i = 1,2, . . . , m̄1

}
. (3.13)
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Maximization problem (3.12) for a fixed α can be rewritten as

fi(α) = max
x1,u1

p>i x1 (3.14)

subject to
x0(t +1) = Ax0(t)+Bu1(t), x0(T1) = x1,

xl(t +1) = Axl(t)+Bu1(t)+Mwl
1(t), xl(T1) = x1, l ∈ L1,

||u1(t)||∞ ≤ umax, t = T1,T1 +1, . . . ,T −1,

H(t)x0(t)≤ g(t)− γ1(t), t = T1 +1,T1 +2, . . . ,T,
T−1

∑
t=T1

(
||Qxl(t)||∞ + ||Ru1(t)||∞

)
+ ||Pxl(T )||∞ ≤ α, l ∈ L1,

where wl
1(·) is the l-th vertex of the hypercube W T−T1 , l ∈ L1; γ1(t) = (γ1i(t), i = 1,2, . . . ,m):

γ1i(t) = wmax
t−1
∑

s=T1

||hi(t)>AsM||1.

Problem (3.14) can be reformulated as a linear program:

fi(α) = max
x1,u1,εx,εu

p>i x1,

−εu(t)1r±Ru1(t)≤ 0, ±u1(t)≤ umax1r,

t = T1,T1 +1, . . . ,T −1,

H(t)At−T1x1 +
t−1

∑
s=T1

H(t)At−s−1Bu1(s)≤ g(t)− γ1(t),

t = T1 +1,T1 +2, . . . ,T,

−ε
l
x(t)1n±QAt−T1x1±

t−1

∑
s=T1

QAt−s−1Bu1(s)≤∓
t−1

∑
s=T1

QAt−s−1Mwl
1(s),

t = T1,T1 +1, . . . ,T −1,

−ε
l
x(T )1n±PAT−T1x1±

T−1

∑
s=T1

PAT−s−1Bu1(s)≤∓
T−1

∑
s=T1

PAT−s−1Mwl
1(s),

T

∑
t=T1

ε
l
x(t)+

T−1

∑
t=T1

εu(t)≤ α,

l ∈ L1.

(3.15)

Under Assumption 3.6 problem (3.15) is feasible for any α ∈ [αmin,αmax]. Moreover, since
X1(α) are bounded the optimal value fi(α) is finite for all i = 1,2, . . . , m̄1.

Suppose problem (3.15) is solved for a fixed α = ᾱ . All existing linear programming solvers
along with the primal solution find the corresponding dual solution. Let yl

i(ᾱ), l ∈ L1, denote

the optimal duals corresponding to the last group of constraints, i.e
T
∑

t=T1

ε l
x(t)+

T−1
∑

t=T1

εu(t) ≤ α ,

l ∈ L1. Obviously,
d fi

dα

∣∣∣∣
α=ᾱ

= ∑
l∈L1

yl
i(ᾱ).
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On the base of sensitivity analysis (see Section 3.5) an interval [a∗,a∗] can be found such that
the dual solution is constant on this interval: yl

i(α) ≡ yl
i(ᾱ), α ∈ [a∗,a∗]. Thus, solving the

linear program (3.15) only once for a given α = ᾱ allows us to characterize its optimal value as
a function of the parameter α on the whole interval [a∗,a∗]:

fi(α) = fi(ᾱ)+(α− ᾱ) ∑
l∈L1

yl
i(ᾱ), α ∈ [a∗,a∗]. (3.16)

In general problem (3.15) can be treated as a parametric linear program. From [28] it follows
that function fi(α), α ∈ [αmin,αmax], is piecewise linear and concave (due to maximization of
the cost).

Let Ak
i ⊆ [αmin,αmax], k = 1,2, . . . ,Ki, denote the partition of the interval [αmin,αmax] into

subintervals of linearity of the function fi, ∪kAk
i = [αmin,αmax], int Ak

i ∩ int Ak′
i =∅, k 6= k′:

fi(α) = gk
i +λ

k
i α, α ∈ Ak

i , k = 1,2, . . . ,Ki. (3.17)

Comparing (3.16) and (3.17) we obtain

λ
k
i = ∑

l∈L1

yl
i(ᾱ), gk

i = fi(ᾱ)− ᾱλ
k
i for some ᾱ ∈ Ak

i .

The following Algorithm executed for i = 1,2, . . . , m̄1 finds the partition Ak
i , the values λ k

i ,
gk

i , k = 1,2, . . . ,Ki, for (3.17), and αmin such that X1(α) =∅ for α < αmin:
1. Set k := 1, a1

i := αmax, choose a small tuning parameter ε > 0.
2. Solve problem (3.15) for α = ak

i − ε .
3. Analyze the solution:

3.1. If problem (3.15) is feasible, save the values

λ
k
i = ∑

l∈L1

yl
i(a

k
i − ε), gk

i = fi(ak
i − ε)− (ak

i − ε)λ k
i (3.18)

and go to step 4.
3.2. If (3.15) is infeasible, update the lower bound for the parameter: αmin := ak

i , set
Ki := k−1 and go to step 5.

4. Find [a∗,a∗] be the rules described in subsection 3.5 below, set ak+1
i = max{a∗,αmin}:

4.1. If ak+1
i = αmin, Ki := k, go to step 5.

4.2. Otherwise k := k+1, return to step 2.
5. Stop for a given i.

Remark 3.7. On step 3.2 of the Algorithm a new value of αmin can be found. Note that, since
αmin is a global parameter for X1(α) (independent of i), step 3.2 realizes only once, for i = 1.
After that the algorithm will no longer implement step 3.2 for the remaining i’s.

If after step 3.2 it turns out that αmin = αmax, then Assumption 3.6 is not satisfied. Choose
new, larger αmax and if for the new value the equality αmin =αmax is satisfied again, the problem
has no solution in the class of strategies with the closing instant T1.

Remark 3.8. The value αmax can also be refined by the Algorithm. It is easy to see, that αmax
satisfies the equality X1(αmax)=X1. This means that fi(α)≡ fi(αmax) for α >αmax. Therefore,
if during the implementation of the Algorithm we find that λ 1

i = 0 for all i = 1,2, . . . , m̄1, then
a2

1 = . . .= a2
m̄1

and αmax = a2
1. We propose to choose αmax large enough to start the Algorithm

and then find a new value αmax.
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Remark 3.9. It is easy to show that on step 4 a∗ ≤ ak
i . It is necessary to check that a∗ = ak

i ,
otherwise the algorithm tuning parameter ε > 0 is too large. Choose ε := (ak

i −a∗)/2 and repeat
steps 2–4 of the algorithm.

Remark 3.10. If on step 4 one finds that a∗ = a∗ = ak
i −ε , then situation of Remark 3.9 realizes

and one should choose a smaller parameter ε .

The Algorithm results in the following data: a number Ki, a sequence of points

a1
i = αmax > a2

i > .. . > aKi
i > α

Ki+1
i = αmin,

that form the linearity intervals Ak
i = [ak+1

i ,ak
i ], k = 1,2, . . . ,Ki, and values (3.18) to construct

the function fi according to (3.17).
A piecewise linear concave function fi can also be represented in the form

fi(α) = min
k=1,2,...,Ki

{
gk

i +λ
k
i α

}
, α ∈ [αmin,αmax],

which together with (3.13) yields

X̄1(α) =
{

x1 ∈ Rn : p>i x1 ≤ gk
i +λ

k
i α, k = 1,2, . . . ,Ki, i = 1,2, . . . , m̄1

}
.

The latter representation is equivalent to (3.10) up to notations

P1 =

(
P1i

i = 1,2, . . . , m̄1

)
, g1 =

(
g1i

i = 1,2, . . . , m̄1

)
, λ1 =

(
λ1i

i = 1,2, . . . , m̄1

)
, (3.19)

where the blocks are

P1i =

(
p>i

k = 1,2, . . .Ki

)
, g1i =

(
gk

i
k = 1,2, . . .Ki

)
, λ1i =

(
λ k

i
k = 1,2, . . .Ki

)
. (3.20)

Here the matrix P1 has repetitive rows p>i (the i-th normal is repeated Ki times), P1 ∈ Rm1×n,
g1,λ1 ∈ Rm1 , where m1 = ∑

m̄1
i=1 Ki.

Summarizing, the following proposition holds:

Proposition 3.11. Representation (3.10) holds true for the approximations of the sets X1(α),
α ∈ [αmin,αmax], where P1, g1, λ1 are calculated according to the formulas (3.19), (3.20).

Remark 3.12. The accuracy of approximation (3.10) is difficult to estimate theoretically. But
it can be evaluated numerically comparing the optimal value of problem (3.11) and the value
(3.5) with the control ū0

0(·), where V1(x(T1|x0, ū0
0,w0)) is found directly from (3.7).

3.4. Example. Let us illustrate the results by an example with the following matrices:

A =

(
0.54030 0.84147
−0.84147 0.54030

)
, B =

(
0.45970
0.84147

)
, M = B;

P = Q = 0.1I, R = 1.

Other parameters are T = 10, umax = 1, wmax = 0.3. The state constraints are imposed only at
the terminal instant and have the form ||x(T )||∞ ≤ 2.

We consider the problem with x0 = (5,0). For this initial state there exists the optimal open-
loop control u0(·), and the optimal value of problem (2.3) is equal to J(x0) = 9.510541. The
optimal open-loop control u0(·), a possible disturbance and the corresponding trajectory are
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FIGURE 1. Optimal controls, worst-case disturbance and corresponding trajec-
tories in Example 1

shown in Fig.1 (dashed lines). The actual cost is 9.4948 and the chosen disturbance is the
worst-case with respect to the optimal strategy π0

1 , see below.
The dimensions of the open-loop problem (2.4) are 46124×11285. Time spend by linprog

MATLAB procedure to solve the problem was equal to 7.75 sec.
As mentioned in Remark 3.5 the optimal value V0(x0) depends on the closing instant T1. The

results are summarized in Table 1. Table 1 also shows the number of vectors to approximate
X1(α) in (3.10) and (3.13) and dimensions of problems (3.11). Since X1(α)⊂R2 we were able
to find its normals pi, i = 1,2, . . . , m̄1, in (3.13) with the accuracy 10−12 for each T1.

TABLE 1. Dependence of V0(x0) and dimensions of optimization problems on
the closing instant T1

T1 V0 m̄1 in (3.13) m1 in (3.10) dimensions of (3.11) αmax
2 9.469046 404 4214 16908× 17 11.425706
3 9.359552 210 1818 14676× 39 9.913753
4 9.235468 248 1746 28256× 89 8.386888
5 9.235468 208 1616 52468× 203 7.042253
6 9.175384 136 1044 68568× 461 5.637938
7 8.983898 96 249 67740× 1039 4.215194
8 9.069963 38 498 33568× 2321 2.899477
9 9.303038 14 26 33316× 5139 1.535258

The minimum of V0 is attained at the closing instant T1 = 7. For this closing instant the
optimal initial control u0

0(·) and the corresponding trajectory are shown in Fig.1 (solid lines until
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FIGURE 2. Sets X1(α) and a sample function f1(α)

the closing instant T1 = 7). The solid lines after the closing instant correspond to u0
1(·|x∗(7)),

x∗(7) = (2.382499,−1.496570), and its trajectory. The disturbance that is assumed to obtain
both trajectories on Fig.1 is the worst with respect to the optimal strategy π0

1 , i.e. (w0,w1)
consists of w0 such that maximum in (3.6) is attained at w0 and maximum in (3.7) is attained at
w1. The actual cost of such control process is, obviously, equal to V0(x0).

Fig. 2 (left) shows the closure set X1 (solid line) and sets X1(α) for α ∈ {0.3;1;1.7;2.4;3.1;
3.8;αmax} (dashed lines), as well as a piecewise linear function f1(α), α ∈ [0.3,αmax], for a
sample vector p1 = (−0.999969, 0.007853).

It is worth mentioning that in the example under consideration, for the control horizon T = 8
there is no performance improvement when the optimal control strategy is used, i.e. J(x0) =
V0(x0) for any T1.

3.5. On implementation of the algorithm, linear programming solvers for problems (3.11),
(3.15) and sensitivity analysis. In this section we discuss problems that we encountered during
the numerical experiments in Section 3.4. We consider three major items in the implementation
of the Algorithm proposed in Section 3.3 that have to be addressed to obtain the efficient method
for the closure sets approximation construction:

(i) Problem (3.15) is solved many times for different vectors pi and different values of α .
Solving it every time ”from scratch”, without using any information about the previous solution
might lead to very long computation times. Such realization in MATLAB with the standard
procedure linprog for, e.g. T1 = 4, took 2.5 hours for only 16 first vectors pi.

(ii) To perform the sensitivity analysis and find the partition Ak
i , k = 1,2, . . . ,Ki, one could use

the approach based on active constraints of problem (3.15) as proposed in [7, p.16]. However,
problem (3.15) is often primal degenerate. In this case the procedure in [7] involves Gauss
reduction and is slow for high dimensions of problems (3.15).

(iii) Problem (3.15) is also dual degenerate and standard sensitivity analysis finds only a
subinterval [ā∗, ā∗] of [a∗,a∗], where not only the optimal dual solution is constant but also the
set of active constraints is not changed. In this case the Algorithm is performed as described
in Section 3.3 and a post-processing is needed to find a union of subintervals into the maximal
interval [a∗,a∗]. While the post-processing is easy to organize (the subintervals have equal
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values of λ k
i ), that procedure involves solving problem (3.15) some extra times resulting in

slow performance as mentioned in (i).
Having analyzed (ii) and (iii) we concluded that a simplex-type linear programming solver

was needed to obtain the optimal basis along with the primal and dual solutions of (3.15). Then
the optimal basis of the problem at the previous iteration (previous α) can be used for hot-start
of the solver at the present iteration. Thus, the computation times mentioned in (i) and (ii) will
be improved.

In our numerical experiments we used a special method developed by Rafail Gabasov and his
co-authors who called it the adaptive method for solving linear programs [14, 17]. The method
was proposed for linear programs with interval constrains

max c>z, b∗ ≤ Gz≤ b∗, d∗ ≤ z≤ d∗, (3.21)

where z ∈ Rn1 , G ∈ Rm1×n1 , and is also suitable for linear programs in inequality form, which
is problem (3.15).

To use the adaptive method and perform the sensitivity analysis afterwards we present prob-
lem (3.15) in the general parametric form

max c>z, Gz≤ b+dα, (3.22)

where z = (x1,u1(·),ε1
x (·), . . .ε l

x(·),εu(·)) ∈ Rn1 , c = (p1,0) ∈ Rn1 , G ∈ Rm1×n1 , b, d ∈ Rm1 are
the block matrix and vectors with the following structure (in the order of constraints in (3.15)):

G =



∗ 0 −Eu
G1 0 0
∗ −Ex . . . 0 0
...

... . . . ... 0
∗ 0 . . . −Ex 0
0 Eα 1


, b =



0
b1
∗
...
∗
0


, d =



0
0
0
...
0

1|L1|


, (3.23)

∗ corresponds to nonzero matrices and vectors, Ex = diag(12n, . . . ,12n︸ ︷︷ ︸
T−T1+1 times

), Eu = diag(12r, . . . ,12r︸ ︷︷ ︸
T−T1 times

),

Eα = diag(1>(T−T1+1), . . . ,1
>
(T−T1+1)︸ ︷︷ ︸

|L1| times

) are block diagonal matrices, 1 ∈ R|L1|×(T−T1) is a matrix

of ones, and G1, b1 are the constraint matrix and vector of the linear program

max
x1,u1

p>i x1,

H(t)At−T1x1 +
t−1

∑
s=T1

H(t)At−s−1Bu1(s)≤ g(t)− γ1(t), t = T1 +1, . . . ,T,

±u1(t)≤ umax1r, t = T1, . . . ,T −1.

(3.24)

The main instrument of the adaptive method is a support (corresponds to a basis in the sim-
plex method). For the problem with interval constraints (3.21) the support is a pair {Ib,Jb},
Ib ⊆ I = {1,2, . . . ,m1}, Jb ⊆ J = {1,2, . . . ,n1}, |Ib|= |Jb|, such that the support matrix G(Ib,Jb)
is nonsingular. An empty support can be used for problem (3.21).
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For the problem in inequality form (3.22) the support (depending on the parameter α) is
Ib(α) ⊂ I such that |Ib(α)| = n1, G(Ib(α),J) is nonsingular. To every support there cor-
responds the vector of Lagrange multipliers y ∈ Rm1: ys = 0, s ∈ I \ I0

b (α), yb = y(I0
b (α)):

y>b = c>G(Ib(α),J)−1. The optimality criterion for z0(α) is as follows: a feasible solution
z0(α) is optimal in problem (3.22) iff there exists a support I0

b (α) such that the corresponding
vector of Lagrange multipliers satisfies

ys ≥ 0 if g>s z0(α) = bs +dsα, s ∈ I0
b (α),

where g>s is the s-th row of the matrix G. The support I0
b (α) is called optimal.

The adaptive method is an iterative method of changing supports until the optimal support is
found. For problem (3.22) it needs a valid initial support to start iterations. Taking into account
the structure of the matrices (3.23) it is easy to suggest such an initial support, independently
of α . It has the form Ib = I0

1 ∪ I2, where I0
1 is the optimal support in problem (3.24), |I0

1 |= |J1|,
J1 = {1,2, . . . ,n+ r(T −T1)} are the columns of the matrix G1. The set I2 consists of (T −T1+
1)|L1|+(T −T1) rows from the blocks 1 and 3 of the matrix G such that G(I2,J) = (∗|− I).
Then the initial support matrix in problem (3.22) has the form

G(Ib,J) =
(

G1(I0
1 ,J1) 0
∗ −I

)
and is nonsingular. Moreover, the vector of Lagrange multipliers, corresponding to this initial
support is y = (y1,0)≥ 0, where y1 ≥ 0 is the optimal dual solution in problem (3.24).

Problem (3.24) is significantly smaller, than (3.15) since its dimension is independent of |L1|
and α . It can be solved very fast by a version of the adaptive method for linear programs with
interval constraints (3.21) with an empty initial support. The adaptive method will find the
optimal support {I0

b = I0
1 ,J

0
b = J1}. Note that the optimal support here depends on the index i,

since the cost of problem (3.24) depends on pi.
When problem (3.15) (same as (3.22) with matrices (3.23)) is solved for a given i for the first

time by the Algorithm proposed in Section 3.3, k = 1, Ib is taken as the initial support. All other
iterations of the Algorithm, k > 1, the optimal support of (3.15) from the iteration (k− 1) is
used as the initial one to hot-start the iterations of the adaptive method. From our experience,
in most cases only one iteration is performed to find the optimal solution of problem (3.15) for
k > 1.

Knowing the optimal support I0
b (α) of problem (3.22) we can now address items (ii) and (iii)

mentioned at the beginning of this section and concerning the sensitivity analysis. From the
primal feasibility and the optimality conditions it follows that

Gbz = bb +dbα, g>s z≤ bs +dsα, s ∈ I \ I0
b (α),

where Gb = G(I0
b (α),J), bb = b(I0

b (α)), db = d(I0
b (α)).

Finding z from the system of linear equations, z = z(α) = G−1
b (bb +dbα) and substituting it

into inequalities, we obtain

(g>s G−1
b db−ds)α ≤ bs−g>s G−1

b bb, s ∈ I \ I0
b (α),
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and conclude that the optimal support I0
b (α) is unchanged for all α ∈ [a∗,a∗], where

a∗ = max
s

(
bs−g>s G−1

b bb

)
/
(

g>s G−1
b db−ds

)
, s ∈ {s : g>s G−1

b db−ds < 0},

a∗ = min
s

(
bs−g>s G−1

b bb

)
/
(

g>s G−1
b db−ds

)
, s ∈ {s : g>s G−1

b db−ds > 0}.

Using the adaptive method as a linear programming solver in the numerical experiments in
Section 3.4, we achieved a significant improvement in solution times and in the Algorithm
performance. The results are presented in Table 2 (first row).

TABLE 2. Times (in seconds) spent on the construction of the parameters (3.18)
of the closure sets X1(α) by the Algorithm in Section 3.3, on the construction of
the suboptimal initial control u0

0(·) and a new control u1(·|x∗(T1)) at time instant
T1 depending on the closing instant T1

T1 2 3 4 5 6 7 8 9
X1(α) 2345.65 240.72 67.24 17.08 4.58 1.29 0.2 0.07
u0

0(·) 0.01 0.01 0.05 0.16 0.45 1.72 2.98 7.94
u0

1(·|x∗(T1)) 0.09 0.10 0.02 0.005 0.005 0.003 0.003 0.001

Now consider problem (3.11) for suboptimal initial control construction. This problem is
solved before the control process starts, i.e. offline, however, problems of the same type are
solved in real time when the optimal control strategy with multiple closing instants is con-
structed (see Section 4). Moreover, problem (3.7) that has to be solved online is also of the
same type as (3.11). Therefore, we need an efficient method to solve all these problems.

Problem (3.11) is a linear program in the inequality form

min c>z, Gz≤ b,

where z = (u0(·),ε1
x (·), . . .ε l

x(·),εu(·),α1,α0) ∈ Rn0 , c = (0, . . . ,0,1) ∈ Rn0 , G ∈ Rm0×n0 , b ∈
Rm0 are the block matrix and vector with the following structure

G =



∗ 0 −Eu 0 0
G0 0 0 0 0
∗ −Ex . . . 0 0 0
...

... . . . ...
... 0

...
∗ 0 . . . −Ex 0

D0 0 . . . 0 0 −λ1 . . . 0 0
...

... . . . ...
...

... . . . ...
...

D0 0 . . . 0 0 0 . . . −λ1 0
0 Eα 1 I −1|L0|


, b =



0
b0
∗
...
∗
q1

0
...

ql
0

0


, (3.25)

Ex = diag(12n, . . . ,12n︸ ︷︷ ︸
T1 times

), Eu = diag(12r, . . . ,12r︸ ︷︷ ︸
T1 times

), Eα = diag(1>T1
, . . . ,1>T1︸ ︷︷ ︸
|L0| times

) are block diagonal

matrices, 1 ∈ R|L0|×T1 is a matrix of ones, G0 ∈ R(m+2r)T1×rT
1 , b0 ∈ R(m+2r)T1 correspond to the
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constraints
t−1

∑
s=0

H(t)At−s−1Bu0(s)≤ g(t)− γ(t)−H(t)Atx0, t = 1,2, . . . ,T1,

±u0(t)≤ umax1r, t = 0,1, . . . ,T1−1

and ql
0 = g1−P1AT1x0−∑

T1−1
s=0 P1AT1−s−1Mwl

0(s)∈Rm1 , l ∈L0, D0 =(P1AT1−1B, . . . ,P1AB,P1B)∈
Rm1×rT1 .

Taking into account the block structure of (3.25) it is easy to construct the initial support for
problem (3.11). To this end we first solve the following optimal control problem

min
α,u0

α,

x(t +1) = Ax(t)+Bu0(t)+Mw0(t), x0(0) = x0,

u0(t) ∈U, t = 0,1, . . . ,T1−1,

x(t) ∈ X(t), t = 1,2, . . . ,T1, x(T1) ∈ X1(α) ∀w0(·) ∈W T1 .

(3.26)

Problem (3.26) calculates a feasible control u0(·) that steers the system robustly in the state
constraints sets and, in addition, to a closure set X1(α) with a minimal α . The corresponding
linear program in inequality form (according to the notations introduced above) is as follows

min
α,u0

α, G0u0 ≤ b0, −λ1α +D0u0 ≤ qmin. (3.27)

where qmin = (qs,s = 1,2, . . . ,m1) : qs = minl∈L0 ql
0s.

On the base of the feasible control u0(·), i.e. the solution of problem (3.27), it is easy to
construct a feasible solution of problem (3.11). To this end choose ε l

x(t) = ||Qx(t|x0,u0,wl
0)||∞,

εu(t) = ||Ru0(t)||∞, t = 0,1, . . . ,T1−1, and set all α l
1 equal to the optimal value of the problem

(3.27).
As a result of the above construction, optimal support of problem (3.27) provides rT1 + 1

rows for the initial support of problem (3.11). We add to them T1 +T1|L0| rows form the first
and the third blocks of matrix (3.25) corresponding to active inequalities, and all |L0| rows in the
last block. By construction, the obtained support has exactly n0 = (r+1)T1 +(T1 +1)|L0|+1
elements with a nonsingular support matrix.

Table 2 shows times needed by the adaptive method to calculate the optimal initial control
u0

0(·|x0) (the second row of the table) and the control u0
1(·|x∗(T1)) at time T1, depending on

x∗(T1), in the example of Section 3.4. Obviously, the method is suitable for fast online calcula-
tions that is needed at time T1.

4. OPTIMAL CONTROL STRATEGY WITH MULTIPLE CLOSING INSTANTS

In this section we develop the ideas of Section 3 for the case of N closing instants Tj,
j = 1,2, . . . ,N: Tj ∈ {1,2, . . . ,T −1}, 0 = T0 < T1 < T2 < .. . < TN < TN+1 = T .

A strategy πN(0,x0) is defined recursively on the base of strategies πN− j(Tj,x j) with N− j
closing instants Tj+1, . . ., TN ; j = N−1, N−2, . . . ,1:

π1(TN−1,xN−1) = {uN−1(·|xN−1); uN(·|xN), xN ∈ X(TN |xN−1,uN−1)},
πN− j(Tj,x j) = {u j(·|x j); πN− j−1(Tj+1,x j+1), x j+1 ∈ X(Tj+1|x j,u j)},

πN(0,x0) = {u0(·|x0); πN−1(T1,x1), x1 ∈ X(T1|x0,u0)}.
(4.1)
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Feasibility of (4.1) is also determined recursively by robustly satisfying inclusions

x(t|x j,u j,w j) ∈ X(t), t = Tj +1,Tj +2, . . . ,Tj+1, ∀w j(·) ∈W Tj+1−Tj ,

X(Tj+1|x j,u j)⊆ X j+1,

where X j, j = 1,2, . . . ,N, are the closure sets at times Tj, each of them consists of all states
x j ∈Rn for which a control strategy πN− j(Tj,x j) with N− j closing instants exists, XN+1 =Rn.

Optimal control strategy π0
N is defined by the optimal controls u0

j(·|x j), j = 0,1, . . . ,N, that
are solutions of Bellman equations

Vj(x j) = min
u j

max
w j

{Tj+1−1

∑
t=Tj

(
||Qx(t|x j,u j,w j)||∞ + ||Ru j(t)||∞

)
+Vj+1(x(Tj+1|x j,u j,w j))

}
,

x j ∈ X j, j = 0, . . . ,N,

VN+1(x) = ||Px||∞, x ∈ Rn,

where minimization is subject to state and input constraints.

4.1. Calculating the optimal strategy with multiple closing instants. To calculate the op-
timal controls u0

j(·|x j), j = 0,1, . . . ,N, for optimal strategy π0
N we follow the arguments of

Sections 3.2 and 3.3. First, we define sets

X j(α) =
{

x j ∈ Rn : Vj(x j)≤ α
}
, j = 1,2, . . . ,N, α ∈ [α

j
min,α

j
max].

Then each X j(α) is approximated by an outer polytope

X̄ j(α) =
{

x j ∈ Rn : p>jix j ≤ f ji(α), i = 1,2, . . . , m̄ j

}
,

where
f ji(α) = max

x j∈X j(α)
p>jix j, (4.2)

and normal vectors p>ji , i = 1,2, . . . , m̄ j, are independent of α , j = 1,2, . . . ,N.
Maximization problems (4.2) have the form:

f ji(α) = max
x j,u j

p>jix j, (4.3)

subject to

x0(t +1) = Ax0(t)+Bu j(t), x0(Tj) = x j,

xl(t +1) = Axl(t)+Bu j(t)+Mwl
j(t), xl(Tj) = x j, l ∈ L j,

||u j(t)||∞ ≤ umax, t = Tj,Tj +1, . . . ,Tj+1−1,

H(t)x0(t)≤ g(t)− γ j(t), t = Tj +1,Tj +2, . . . ,Tj+1,

Tj+1−1

∑
t=Tj

(
||Qxl(t)||∞ + ||Ru j(t)||∞

)
+Vj+1(xl(Tj+1))≤ α, l ∈ L j.

Here γ j(t) = (γ ji(t), i = 1,2, . . . ,m): γ ji(t) = wmax
t−1
∑

s=Tj

||hi(t)>AsM||1, wl
j(·) is the l-th vertex of

the hypercube W Tj+1−Tj , l ∈ L j.
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Results of Section 3.3 allow us to assume that, as in (3.10),

X̄ j(α) =
{

x j ∈ Rn : Pjx j ≤ g j +λ jα
}
, j = 1,2, . . . ,N. (4.4)

Representation (4.4) is proved by induction if we rewrite (4.3) as a linear program, approx-
imating each constraint Vj+1(xl(Tj+1)) ≤ α l

j+1, l ∈ L j, by xl(Tj+1) ∈ X̄ j+1(α
l
j+1), l ∈ L j, and

using (4.4) for X̄ j+1:

f ji(α) = max
x j,u j,εx,εu

p>jix j,

−εu(t)1r±Ru j(t)≤ 0, ±u j(t)≤ umax1r,

t = Tj,Tj +1, . . . ,Tj+1−1,

H(t)At−Tjx j +
t−1

∑
s=T1

H(t)At−s−1Bu j(s)≤ g(t)− γ j(t),

t = Tj +1,Tj +2, . . . ,Tj+1,

−ε
l
x(t)1n±QAt−Tjx j±

t−1

∑
s=Tj

QAt−s−1Bu j(s)≤∓
t−1

∑
s=Tj

QAt−s−1Mwl
j(s),

t = Tj,Tj +1 . . . ,Tj+1−1,

−λ j+1α
l
j+1 +Pj+1ATj+1−Tjx j +

Tj+1−1

∑
s=Tj

Pj+1ATj+1−s−1Bu j(s)≤ g j+1−
Tj+1−1

∑
s=Tj

Pj+1ATj+1−s−1Mwl
j(s),

Tj+1−1

∑
t=Tj

(
ε

l
x(t)+ εu(t)

)
+α

l
j+1 ≤ α, α

j+1
min ≤ α

l
j+1 ≤ α

j+1
max ,

l ∈ L j.

Here j = 1,2, . . . ,N, and for general representation we set

PN+1 =

(
P
−P

)
, gN+1 =

(
0n
0n

)
, λN+1 =

(
1n,
1n

)
.

Applying Algorithm of Section 3.3 to all j = N,N − 1, . . . ,1, we obtain partitions Ak
ji =

[ak+1
ji ,ak

ji], k = 1,2, . . . ,K ji, of the intervals [α j
min,α

j
max], and the values

λ
k
ji = ∑

l∈L j

yl
ji(a

k
ji− ε), gk

ji = f ji(ak
ji− ε)− (ak

ji− ε)λ k
ji.

Then construct

Pj =

(
Pji

i = 1,2, . . . , m̄ j

)
, g j =

(
g ji

i = 1,2, . . . , m̄ j

)
, λ j =

(
λ ji

i = 1,2, . . . , m̄ j

)
, (4.5)

with blocks

Pji =

(
p>ji

k = 1,2, . . .K ji

)
, g ji =

(
gk

ji
k = 1,2, . . .K ji

)
, λ ji =

(
λ k

ji
k = 1,2, . . .K ji

)
,

for approximation (4.4).
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Finally, the suboptimal controls ū(·|x j), j = 0,1, . . . ,N, are found as the solution of the fol-
lowing linear program:

min
u j,εx,εu,α j+1,α j

α j,

−εu(t)1r±Ru j(t)≤ 0, ±u j(t)≤ umax1r,

t = Tj,Tj +1, . . . ,Tj+1−1,
t−1

∑
s=Tj

H(t)At−s−1Bu j(s)≤ g(t)− γ j(t)−H(t)Atx j,

t = Tj +1,Tj +2, . . . ,Tj+1,

− ε
l
x(t)1n±

t−1

∑
s=Tj

QAt−s−1Bu j(s)≤∓
(
QAtx j +

t−1

∑
s=Tj

QAt−s−1Mwl
j(s)
)
, (4.6)

t = Tj,Tj +1, . . . ,Tj+1−1,

−λ j+1α
l
j+1 +

Tj+1−1

∑
s=Tj

Pj+1ATj+1−s−1Bu j(s)≤ g j+1−
(
Pj+1ATj+1x j +

Tj+1−1

∑
s=Tj

Pj+1ATj+1−s−1Mwl
j(s)
)
,

Tj+1−1

∑
t=Tj

(
ε

l
x(t)+ εu(t)

)
+α

l
j+1−α j ≤ 0, α

j+1
min ≤ α

l
j+1 ≤ α

j+1
max ,

l ∈ L j.

Note that problems (4.6) for j = 1,2, . . . ,N, are solved at times Tj for the current measurement
x j = x∗(Tj). All matrices (4.5) are constructed beforehand and are not updated during the
control process.

4.2. Example. We consider an example from section 3.4, however with T = 12, since for
T = 10 adding a second closing instant does not yield improvement in strategy performance.

For T = 12 there is no feasible open-loop control, since ||γ(T )||∞ ≥ 2 and the terminal con-
straint cannot be satisfied robustly. The optimal strategy with one closing instant, however,
exists and V0(x0) = 9.997150 for T1 = 7 and V0(x0) = 10.114121 for T1 = 10.

Let T1 = 7, T2 = 10. The cost of the optimal control strategy π0
2 with two closing instants is

equal to V0(x0) = 9.788062.
The closure sets X1(α) and X2(α) were approximated with the accuracy 10−12 and their

description required 324 vectors p1i and 40 vectors p2i. After constructing (4.5) we obtained
m2 = 130, m1 = 3186.

Problem (4.6) for j = 0 had 411804 constraints and 1039 variables. Its solution took 3.7 sec
by the adaptive method.

The optimal initial control u0
0(·) is presented in Fig. 3. We applied it to the system under the

worst-case disturbance and then calculated u0
1(·|x∗(7)) and u0

2(·|x∗(10)). Time spent on online
calculations of these optimal controls was equal to 0.0014 and 0.0011 sec, correspondingly.
The optimal trajectory is also shown in Fig. 3.
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FIGURE 3. Optimal controls, worst-case disturbance and corresponding trajec-
tories in Example 2

5. CONCLUSION

This paper presents an efficient method for constructing optimal control strategies with mul-
tiple closing instants in a predictive optimal control problem originating from linear explicit
model predictive control. Formulating the problem via dynamic programming arguments how-
ever not for all time instants but only for the closing instants Tj we obtain a multilevel optimiza-
tion problem that was reduced to a number of linear programs that are solved offline to construct
the approximations of the closure sets, and a single linear program that is solved online, at the
closing instants Tj after the state measurement x∗(Tj) becomes available. The method can be
utilized within model predictive control schemes or optimal real-time feedback control since
online computations are very fast.
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[10] N.M. Dmitruk, R. Findeisen, F. Allgöwer, Optimal measurement feedback control of finite-time continuous

linear systems, IFAC Proceedings Volumes 41 (2008) 15339-15344.
[11] N.M. Dmitruk, Optimal robust control of linear systems by inaccurate measurements of output signals, J.

Automation Info. Sci. 43 (2011) 11.
[12] N.M. Dmitruk, Optimal strategy with one closing instant for a linear optimal guaranteed control problem,

Comp. Math. Math. Phys. 58 (2018) 642-658.
[13] A. Dontchev, I. Kolmanovsky, M. Krastanov, V. Veliov, P. Vuong, Approximating optimal finite horizon

feedback by model predictive control. Sys.& Control Lett. 139 (2020) 104666.
[14] R. Gabasov, F.M. Kirillova, A.I. Tyatyushkin, Constructive Methods of Optimization. Part 1. Linear Prob-

lems, University Press, Minsk, 1984.
[15] R. Gabasov, F.M. Kirillova, Constructive Methods of Optimization. Part 2. Control Problems, University

Press, Minsk, 1984.
[16] R. Gabasov, F.M. Kirillova, O.I. Kostyukova, Construction of optimal controls of feedback type in a linear

problem, Dokl. Math. 44 (1992) 608-613
[17] R. Gabasov, F.M. Kirillova, S.V. Prischepova, Optimal Feedback Control, Springer, 1995.
[18] R. Gabasov, F.M. Kirillova, E.A. Kostina, Subtended Feedback with Respect to State for Optimization of

Uncertain Control Systems. I. Single Loop, Autom. Remote Control 57 (1996) 1008-1015
[19] R. Gabasov, F.M. Kirillova, E.A. Kostina, Closed-Loop State Feedback for Optimization of Uncertain Control

Systems. II. Multiply Closed Feedback, Autom. Remote Control 57 (1996) 1137-1145
[20] R. Gabasov, F.M. Kirillova, N.V. Balashevich Open-loop and closed-loop optimization of linear control sys-

tems, Asian J. Control 2 (2000) 155-168.
[21] R. Gabasov, N.M. Dmitruk, F.M. Kirillova, Optimization of the Multidimensional Control Systems with

Parallelepiped Constraints, Auto. Remote Control 63 (2002) 345-366
[22] R. Gabasov, F. Kirillova, N. Balashevich, Guaranteed on-line control for linear systems under disturbances,

Funct. Diff. Equ. 11 (2004) 341-361.
[23] R. Gabasov, N.M. Dmitruk, F.M. Kirillova, Optimal control of multidimensional systems by inaccurate mea-

surements of their output signals, Proc. Steklov Inst. Math. (Suppl.) suppl.2 (2004) S52-S75.
[24] R. Gabasov, N.M. Dmitruk, F.M. Kirillova, Optimal guaranteed control of delay systems, Proc. Steklov Inst.

Math. (Suppl.) 255: suppl.2 (2006) S26-S46.
[25] R. Gabasov, F.M. Kirillova, E.I. Poyasok, Optimal control based on a preposteriori estimates of set-

membership uncertainty, Auto. Remote Control 72 (2011) 74-87.
[26] R. Gabasov, F.M. Kirillova, E.I. Poyasok, Optimal control of a dynamic system with multiple uncertainty in

the initial state as based on imperfect measurements of input and output signals, Comput. Math. Math. Phys.
52 (2012) 992-1006.

[27] R. Gabasov, F.M. Kirillova, D.S. Kuzmenkov, Real-time optimal control of a special distributed parameter
system, Comput. Math. Math. Phys. 54 (2014) 1765-1775.

[28] T. Gal, Postoptimal Analyses, Parametric Programming and Related Topics: Degeneracy, Multicriteria Deci-
sion Making Redundancy, De Gruyter, Berlin, 1995.
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