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Abstract. In origami theory, the problem of rigid maps consists in finding a paper folding from the two-dimensional
space onto the three-dimensional space. This problem is an example of a first-order fully nonlinear equation. In
this article, we present a general variational framework to solve the problem of rigid maps with Dirichlet boundary
conditions. The numerical framework relies on the introduction of a regularized objective function and the penal-
ization of the constraints. A splitting algorithm is advocated for the corresponding flow problem. The iterations
sequence consists of local nonlinear problems and a global linear variational problem at each step. Numerical
experiments validate the efficiency of the method for piecewise smooth exact solutions.
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1. INTRODUCTION

Origami is the art of folding paper. It has received a lot of attention from the analysis and
geometry communities [7, 9, 11, 12], and more recently algorithms have been proposed to
mimic origami constructions in simple cases.

An origami is nothing but the immersion and folding of a two-dimensional sheet of paper
into the three-dimensional space. The main feature to consider is the rigidity of the paper to
fold. The tangential rigidity can be expressed by requiring that the folding map u is a rigid
map of Ω ⊂ R2 into R3. This means that the gradient of the map, ∇u(x), is an orthogonal
3× 2 matrix for all x ∈ Ω. Moreover, since origami is about folding paper, this map cannot
be smooth everywhere; it is only piecewise smooth, with discontinuities of the gradient created
by the folding lines. In this work, we are going to assume that the discontinuities are a set
∗Corresponding author.
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of straight segments, even though these creasing lines could be curved [11]. Note that a map
with an orthogonal gradient is not necessarily piecewise linear, as we will see in the numerical
experiments. Functions with orthogonal gradients also appear in other applications in physics
and engineering, such as bending [2, 3], computational geometry [1, 13], or smart materials
[14].

In this article, we rely on a calculus of variations approach to solve the rigid maps problem.
In particular, we extend the numerical method used for the so-called orthogonal maps problem
[5] to the rigid maps problem. The objective of introducing a general numerical framework is
to avoid making a priori assumptions on the shape or structure of the solution, as, e.g., in [8, 10]
where the piecewise linear solution is assumed to either have a given expression, or follow a
given pyramidal structure.

The main ingredients of the methodology include a penalization method to relax the orthog-
onality condition, the derivation of the Euler-Lagrange equation of a penalized and regularized
problem, and the introduction of a related initial value dynamical flow problem. The discretiza-
tion of the flow problem is addressed with an operator-splitting scheme (à la Marchuk-Yanenko)
for the time-discretization, and a low order C0-conforming finite element approximation. The
operator-splitting approach allows the decoupling of the differential operators from the nonlin-
earities of the problem.

This work is organized as follows. In Section 2, we quickly develop a general mathematical
methodology to solve first-order fully nonlinear equations. Then we use the rigid maps problem
to illustrate practically our methodology. Section 3 covers the variational methodology, while
Section 4 addresses the finite element discretization. Numerical experiments are presented in
Section 5.

2. MATHEMATICAL FORMULATION

2.1. General framework. Let Ω be an open bounded regular domain of R2. The general
formulation of a vectorial first-order fully nonlinear equation can be expressed (in three space
dimensions) as: find u : Ω→ R3 such that

F(x,u,∇u) = 0, (2.1)

where x∈Ω,u∈R3,∇u∈R3×2, and where there is a strong, or implicit, nonlinearity involving
∇u. Equation (2.1) is augmented with boundary conditions u = g on ∂Ω when suitable, where
g : ∂Ω→ R3 is a sufficiently smooth given function.

2.2. Rigid maps. Let us consider the unit square Ω = (−1,1)2. The problem of so-called rigid
maps [9] consists in finding a map u : Ω⊂ R2→ R3 such that

{
∇u ∈ O(3,2) in Ω,

u = g on ∂Ω,
(2.2)

where in (2.2)
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u(x,y) =

 u1(x,y)
u2(x,y)
u3(x,y)

 , ∇u(x,y) =


∂u1
∂x1

(x,y) ∂u1
∂x2

(x,y)
∂u2
∂x1

(x,y) ∂u2
∂x2

(x,y)
∂u3
∂x1

(x,y) ∂u3
∂x2

(x,y)

 ,

and O(3,2) =
{

A : Ω→ R3×2 : AT A = I2 in Ω
}

. The solution to this equivalent problem con-
sists in finding the mapping u that embeds the paper Ω into its image u(Ω)⊂ R3. A graphical
representation of problem (2.2) is illustrated in Figure 1 (top). This application actually maps a
two-dimensional paper into the three-dimensional space, unlike the so-called orthogonal maps
that considers the mapping ũ of a two-dimensional paper into a two-dimensional space repre-
senting the fully-folded paper, see Figure 1 (bottom).
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FIGURE 1. Visualization (top) of the rigid map u : R2→ R3, where u(x,y) =
(x/
√

2,y, |x|/
√

2) is the solution to (2.2) when folding a paper sheet in R3. Visu-
alization (bottom) of the orthogonal map ũ : R2→R2, where ũ(x,y) = (−|x| ,y)
is the solution to (2.5) when folding a paper sheet along a middle axis oriented
with the Ox axis.

Problem (2.2) can be equivalently written as: Find u : Ω⊂ R2→ R3 such that

{
∇uT

∇u = I2 in Ω,

u = g on ∂Ω,
(2.3)

or, equivalently, with u = [u1,u2,u3]
T :
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

(
∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

+

(
∂u3

∂x1

)2

= 1 in Ω(
∂u1

∂x2

)2

+

(
∂u2

∂x2

)2

+

(
∂u3

∂x2

)2

= 1 in Ω

∂u1

∂x1

∂u1

∂x2
+

∂u2

∂x1

∂u2

∂x2
+

∂u3

∂x1

∂u3

∂x2
= 0 in Ω

u = g on ∂Ω.

(2.4)

As illustrated in Figure 1 (bottom), the rigid maps problem can also be re-formulated as an
orthogonal maps problem, when considering the resulting folded paper in the two-dimensional
space. The problem of orthogonal maps has been treated in [5, 6]. It reads: find ũ = [u1,u2]

T :
Ω→ R2 satisfying {

∇ũ ∈ O(2) in Ω,

ũ = g̃ on ∂Ω.
(2.5)

Actually ũ = [ũ1, ũ2]
T is a mapping that maps Ω (the original sheet) into another domain of R2.

The image ũ(Ω) of Ω through this mapping corresponds to the resulting paper sheet, described
in the two-dimensional space, after the folding. It is also called flat origami. Problem (2.5) can
be equivalently written, component-wise, as:

|∇ũ1|= 1 a.e in Ω,

|∇ũ2|= 1 a.e in Ω,

∇ũ1 ·∇ũ2 = 0 a.e in Ω,

ũ = g̃ on ∂Ω.

(2.6)

3. A VARIATIONAL FRAMEWORK

3.1. General principles. The proposed solution method relies on a mix of classical varia-
tional techniques. Let us first sketch the general approach to solve (2.1). A general variational
approach consists in considering the following variational problem under constraints : Find
u : Ω⊂ R2→ R3 such that:

min
u∈V

J(u)

s.t. F(x,u,∇u) = 0,
(3.1)

where V is a given functional space taking into account boundary conditions. Penalizing the
equality constraint, together with introducing a smoothing term, leads to the following uncon-
strained variational problem: Find u : Ω⊂ R2→ R3 such that:

min
u∈V

{
J(u)+ ε1J̃(u)+

1
2ε2

F(x,u,∇u)2
}
, (3.2)
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where ε1,ε2 are two (small) parameters, and J̃(·) is a smooth positive convex term. Next, we
compute the first-order optimality conditions relative to (3.2). This leads to: find u ∈ V such
that:

〈
J′(u),v

〉
+
〈
ε1J̃′(u),v

〉
+

1
ε2
〈F(x,u,∇u)∇F(x,u,∇u),v〉= 0, (3.3)

for all test functions v. Next, we introduce a pseudo-time t ∈ (0,T ), with T > 0 given, and we
consider a so-called flow problem. Starting with u(0) = u0 given, we solve:〈

∂u
∂ t

,v
〉
+
〈
J′(u),v

〉
+
〈
ε1J̃′(u),v

〉
+

1
ε2
〈F(x,u,∇u)∇F(x,u,∇u),v〉= 0. (3.4)

Problem (3.4) can be addressed with time-stepping algorithm, as advocated in the sequel, to
decouple the final term (the penalization term) from the other two terms, which are variational
terms. Let us focus on the case of rigid maps for a more practical development and implemen-
tation.

3.2. Rigid Maps. In order to solve (2.3) and to enforce the uniqueness of the solution in some
sense, we consider the following variational problem. Find u ∈ Eg satisfying

J(u)≤ J(v), ∀v ∈ Eg, (3.5)
where

J(v) =
C
2

∫
Ω

|v− f|2 dx+
1
2

∫
Ω

∇vT
∇vdx, (3.6)

and

Eg = {v ∈ (H1(Ω))3, v = g, on ∂Ω, ∇vT
∇v = I2 a.e. in Ω}. (3.7)

Here C > 0 is a given positive constant, f is a given vector-valued function (a potential fidelity
term). The choice of objective function is not unique.

Note that the equation (2.3) itself has been transferred into a constraint in (3.7). To handle
such constraints, we use a penalization approach that has been successful with the scalar Eikonal
equation in [4]. Let ε1 > 0 be a regularization parameter, and ε2 > 0 be a given (penalization)
parameter. We denote ε := (ε1,ε2). The modified objective function is defined as follows:

Jε(v) := J(v)+
ε1

2

∫
Ω

|∇2v|2dx

+
1

4ε2

∫
Ω

((∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

+

(
∂u3

∂x1

)2

−1

)2

+

((
∂u1

∂x2

)2

+

(
∂u2

∂x2

)2

+

(
∂u3

∂x2

)
−1

)2

+

(
∂u1

∂x1

∂u1

∂x2
+

∂u2

∂x1

∂u2

∂x2
+

∂u3

∂x1

∂u3

∂x2

)2
]

dx. (3.8)
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The second term is a biharmonic regularization introduced to improve the convergence of the
numerical algorithm. It artificially smoothes the folding lines of the solution, but it improves
the general convergence behavior of the algorithm in stringent cases. The variational problem
(3.5) becomes: Find uε ∈ Vg satisfying

Jε(uε)≤ Jε(v), ∀v ∈ Vg, (3.9)
where

Vg = {v ∈ (H2(Ω))3, v = g on ∂Ω}. (3.10)
The numerical approach to solve (3.9) relies on an appropriate reformulation of the prob-

lem when considering the first order optimality conditions, together with the introduction of a
flow problem. Following the approach in [5], we define the tensor-valued function pε := ∇uε .
Problem (3.9) is equivalent to: Find pε ∈Q4 satisfying

jε(pε)≤ jε(q), ∀q ∈Q4, (3.11)
where

jε(q) =
1
2

∫
Ω

|q|2 + C
2

∫
Ω

|Bq+ug− f|2 dx+ I∇(q)

+
1

4ε2

∫
Ω

[
(|q1|2−1)2 +(|q2|2−1)2 + |q1 ·q2|2

]
dx,

(3.12)

where Q4 = (L4(Ω))3×2 and q1,q2 are the two 3×1 column vectors of q. Here we define:
(i) the function ug ∈ (H1(Ω))3 as the unique solution (harmonic extension) of{

∇
2ug = 0 in Ω,

ug = g on ∂Ω.

(ii) the function Bq as the unique solution in (H1
0 (Ω))3 of

∇
2Bq = ∇ ·q in Ω.

(iii) the functional I∇(q) as

I∇(q) =


ε1

2

∫
Ω

|∇ ·q|2dx if q ∈ ∇Vg,

+∞ otherwise.

Based on this change of variables, the first order optimality conditions (Euler-Lagrange equa-
tions) relative to (3.12) read as follows: Find pε ∈Q4 such that:∫

Ω

pε : qdx+C
∫

Ω

(Bpε +ug− f) ·Bqdx+ 〈∂ I∇(pε),q〉

+
1
ε2

∫
Ω

[
(|pε

1|2−1)pε
1 ·q1 +(|pε

2|2−1)pε
2 ·q2

+
1
2

pε
1 · pε

2(pε
2 ·q1 + pε

1 ·q2)

]
dx = 0, ∀q ∈Q4.

(3.13)



NUMERICAL APPROXIMATION OF RIGID MAPS 7

Here, ∂ I∇(·) denotes the subdifferential of the non-smooth proper lower semi-continuous (l.s.c.)
convex functional I∇. In the sequel, the superscript ε will be dropped for simplicity.

The solution method to solve (3.13) relies on the associated flow problem. Namely, we intro-
duce a pseudo-time and we consider the initial-value evolutive problem to be integrated from
t = 0 to t = +∞. Ultimately, the solution of (3.13) corresponds to the stationary solution of
the flow problem. This initial value problem is defined as follows: Find p(t) ∈ Q4 for a.e.
t ∈ (0,+∞) satisfying

∫
Ω

∂p(t)
∂ t

: qdx+
∫

Ω

p(t) : qdx+C
∫

Ω

(Bp(t)+ug− f) ·Bqdx+ 〈∂ I∇(p(t)),q〉

+
1
ε2

∫
Ω

[
(|p1(t)|2−1)p1(t) ·q1 +(|p2(t)|2−1)p2(t) ·q2

+
1
2

p1(t) · p2(t)(p2(t) ·q1 + p1(t) ·q2)

]
dx = 0, ∀q ∈Q4,

(3.14)

together with the initial condition p(0) = p0 given. Following [5], the initial condition p0 =
∇u0, where u0 ∈ Vg satisfies −∇2u0 = δ in Ω, where δ = (0.1,0.1,0.1)T is a small right-hand
side (quasi-harmonic extension).

We apply an operator-splitting strategy to solve (3.14) (namely, a first-order Marchuk-Yanenko
scheme). Let ∆t > 0 be a constant given time step, tn = n∆t, n = 1,2, . . ., to define the approxi-
mations pn ' p(tn). Starting from the initial condition p0 = p0, the Marchuk-Yanenko scheme
allows, using pn for all n≥ 0, to compute successively pn+1/2 and pn+1 using the two following
intermediate steps:

(A) Prediction step (local optimization problem): Find pn+1/2 ∈Q4 satisfying

∫
Ω

pn+1/2−pn

∆t
: qdx+

∫
Ω

pn+1/2 : qdx

+
1
ε2

∫
Ω

[
(|pn+1/2

1 |2−1)pn+1/2
1 ·q1 +(|pn+1/2

2 |2−1)pn+1/2
2 ·q2

+
1
2

pn+1/2
1 · pn+1/2

2 (pn+1/2
2 ·q1 + pn+1/2

1 ·q2)

]
dx = 0,

(3.15)

for all q∈Q4.This problem does not involve any derivatives of the variable p, which allows
it to be solved locally (see Section 3.3).

(B) Correction step (variational problem): Find pn+1 ∈Q4 satisfying

∫
Ω

pn+1−pn+1/2

∆t
: qdx+C

∫
Ω

(Bpn+1 +ug− f) ·Bq dx+ 〈∂ I∇(pn+1),q〉= 0, (3.16)

for all q∈Q4. This problem is actually an elliptic linear variational problem whose solution
will be addressed in Section 3.4.

3.3. Local Optimization Problems. The sub-problem (3.15) that arises in the splitting al-
gorithm does not involve any derivatives of the variable pn+1/2. Therefore, it can be solved
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point-wise a.e. in Ω. Suppose that p =

p11 p12
p21 p22
p31 p32

 and ∆t = ε2/2. Using the above notation, a

more explicit formulation of (3.15) reads as:

(2+ ε2) pn+1/2
11 −2 pn

11 +
(

µ
n+1/2−1

)
pn+1/2

11 +
κn+1/2 pn+1/2

12
2

= 0,

(2+ ε2) pn+1/2
21 −2 pn

21 +
(

µ
n+1/2−1

)
pn+1/2

21 +
κn+1/2 pn+1/2

22
2

= 0,

(2+ ε2) pn+1/2
31 −2 pn

31 +
(

µ
n+1/2−1

)
pn+1/2

31 +
κn+1/2 pn+1/2

32
2

= 0,

(2+ ε2) pn+1/2
12 −2 pn

12 +
(

λ
n+1/2−1

)
pn+1/2

12 +
κn+1/2 pn+1/2

11
2

= 0,

(2+ ε2) pn+1/2
22 −2 pn

22 +
(

λ
n+1/2−1

)
pn+1/2

22 +
κn+1/2 pn+1/2

21
2

= 0,

(2+ ε2) pn+1/2
32 −2 pn

32 +
(

λ
n+1/2−1

)
pn+1/2

32 +
κn+1/2 pn+1/2

31
2

= 0,

(3.17)

where

µ
n+1/2 :=

((
pn+1/2

11

)2
+
(

pn+1/2
21

)2
+
(

pn+1/2
31

)2
)
,

λ
n+1/2 :=

((
pn+1/2

12

)2
+
(

pn+1/2
22

)2
+
(

pn+1/2
32

)2
)
,

κ
n+1/2 :=

(
pn+1/2

11 pn+1/2
12 + pn+1/2

21 pn+1/2
22 + pn+1/2

31 pn+1/2
32

)
.

System (3.17) can be reformulated in a more condensed form. Let us denote α := [p11, p21, p31]
T ,

and β := [p12, p22, p32]
T ; then (3.17) becomes

(2+ ε2)α
n+1/2 +

(
µ

n+1/2−1
)

α
n+1/2 +

κn+1/2β n+1/2

2
= 2α

n,

(2+ ε2)β
n+1/2 +

(
λ

n+1/2−1
)

β
n+1/2 +

κn+1/2αn+1/2

2
= 2β

n.

(3.18)

The above nonlinear system consists of six cubic equations. It is solved using a Newton-
Raphson method. The initial guess is chosen as the value at the previous iteration, namely
pn. Algorithm (3.15) (3.16) requires the condition ∆t ≤ ε2 for system (3.18) to have a unique
solution and guarantee the convergence as n→ +∞, so here we took ∆t = ε2/2. Safeguarding
is not needed in our numerical experiments.

In practice (see Section 4), once a finite element discretization of Ω is constructed, (3.18) is
solved point-wise on each element of the discretization. The number of such nonlinear systems
to solve thus depends on the number of elements of the triangulation.
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3.4. Variational Problems. The sub-problem (3.16) that arises in the splitting algorithm is a
well-posed, classical, linear elliptic variational problem. In order to highlight this statement,
let us consider the reverse change of variable and take ∇un+1 := pn+1. Problem (3.16) can be
rewritten as follows : Find un+1 ∈ Vg such that

ε1∆t
∫

Ω

(∇2un+1) · (∇2v)dx+
∫

Ω

∇un+1 : ∇vdx+C∆t
∫

Ω

un+1 ·vdx =

C∆t
∫

Ω

f ·vdx+
∫

Ω

pn+1/2 : ∇vdx, v ∈ (H2(Ω)∩H1
0 (Ω))3.

(3.19)

Problem (3.19) is a fourth-order linear elliptic variational problem of the biharmonic type. It
can be solved directly, or via a coupled problem, introducing an auxiliary variable as in [5].

4. MIXED FINITE ELEMENT DISCRETIZATION

4.1. Generalities. The solution of the time-stepping algorithm (3.15)-(3.16) is approximated
with piecewise linear continuous finite elements. As mentioned earlier, the use of low-order
finite elements is appropriate for problems such as (2.5), since the solution is piecewise smooth
but presents a set of discontinuities along the folding lines anyway. Let us denote by h > 0 a
space discretization step, together with an associated triangulation Th that satisfies the usual
compatibility conditions (see, e.g., [15]). From the triangulation Th, we define the following
finite element spaces:

Vh = {v ∈ (C0(Ω))3, v|K ∈ (P1)
3,∀K ∈Th},

Vg,h = {v ∈ Vh,v(Q) = g(Q), ∀Q vertex of Th belonging to Γ},

Qh = {q ∈ (L∞(Ω))3×2, q|K ∈ R3×2,∀K ∈Th},

where P1 is the space of two-variable polynomials of degree ≤ 1. Note that the gradient of
functions in Vh belongs to Qh. Next, we equip Vh, and its sub-space Vg,h, with a discrete inner
product (based on classical Gauss quadrature formulas):

(v,w)0h = ∑
K∈Th

mk

∑
i=1

Wiv(ζi) ·w(ζi), ∀v,w ∈ Vh,

where Wi, resp. ζi are the weights, resp. evaluation points, of a Gauss quadrature rule of order
≥ 2, and mk is the number of quadrature points in the element K (supposed constant). The
quadrature formulas we used are implemented in the library libmesh [16]. The corresponding
norm is ||v||0h :=

√
(v,v)0h, for all v ∈ Vh. In a similar fashion, we equip the space Qh with

the inner product and norm respectively defined by:

((p,q))0h = ∑
K∈Th

|K| p|K : q|K

and |||q|||0h =
√

((q,q))0h (with |K| = area of K). The discrete version of the numerical al-
gorithm uses the same steps as the continuous version presented in Section 3. However, let us
sketch the main discrete milestones in the sequel.



10 A. CABOUSSAT, D. GOURZOULIDIS

4.2. Discretization of the flow problem. The discretized variational formulation of the initial
value problem (3.14) reads as follows: Find ph(t) ∈Qh for a.e. t ∈ (0,+∞) satisfying

∫
Ω

∂ph(t)
∂ t

: qhdx+
∫

Ω

ph(t) : qhdx+C
∫

Ω

(Bph(t)+ug,h− f) ·Bqhdx

+〈∂ I∇h(ph(t)),qh〉

+
1
ε2

∫
Ω

[
(|p1,h(t)|2−1)p1,h(t) ·q1,h +(|p2,h(t)|2−1)p2,h(t) ·q2,h

+
1
2

p1,h(t) · p2,h(t)(p2,h(t) ·q1,h + p1,h(t) ·q2,h)

]
dx = 0, ∀qh ∈Qh,

(4.1)

together with the initial condition ph(0) = p0,h given. Here, we define

(i) the function ug,h ∈ Vg,h as the unique element of Vg,h verifying

∫
Ω

∇ug,h : ∇vhdx = 0, ∀vh ∈ V0,h.

(ii) the function Bqh as the unique element of V0,h verifying∫
Ω

∇Bqh : ∇vhdx =
∫

Ω

(∇ ·qh) ·vhdx, ∀vh ∈ V0,h.

(iii) the functional I∇h by

I∇h(qh) =


ε1

2
(θ h(qh),θ h(qh))0h if qh ∈ ∇Vg,h,

+∞ if qh ∈Qh\∇Vg,h.

where θ h(qh) is uniquely defined from qh by θ h(qh) ∈ V0,h,

(θ h(qh),ϕ)0h = ((qh,∇ϕ))0h, ∀ϕ ∈ V0,h.

(iv) The initial condition p0,h ∈ Qh is obtained as follows: first we calculate u0,h ∈ Vg,h veri-
fying ∫

Ω

∇u0,h : ∇vhdx = δ , ∀ ∈ vh ∈ V0,h,

where δ = (0.1,0.1,0.1)T ; then, p0,h is calculated as the gradient ∇u0,h that is piecewise
constant on each element K ∈Th.

We apply the operator-splitting strategy (3.15) (3.16) to solve (4.1), and we denote by pn
h

the related approximations of ph(tn). Starting from the initial condition p0
h = p0,h, we compute

successively pn+1/2
h and pn+1

h via the two following intermediate steps:

(A) Prediction step (local optimization problem): Find pn+1/2
h ∈Qh satisfying
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∫
Ω

pn+1/2
h −pn

h
∆t

: qhdx+
∫

Ω

pn+1/2
h : qhdx

+
1
ε2

∫
Ω

[
(|pn+1/2

1,h |2−1)pn+1/2
1,h ·q1,h +(|pn+1/2

2,h |2−1)pn+1/2
2,h ·q2,h

+
1
2

pn+1/2
1,h · pn+1/2

2,h (pn+1/2
2,h ·q1,h + pn+1/2

1,h ·q2,h)

]
dx = 0,

(4.2)

for all qh ∈Qh.
(B) Correction step (variational problem): Find pn+1

h ∈Qh satisfying

∫
Ω

pn+1
h −pn+1/2

h
∆t

: qhdx+C
∫

Ω

(Bpn+1
h +ug,h− f) ·Bqh dx+ 〈∂ I∇h(p

n+1
h ),qh〉= 0, (4.3)

for all qh ∈Qh.

4.3. Solution of the discrete local optimization problems. The finite dimensional nonlinear
problem (4.2) can be solved triangle-wise; Indeed, if pn+1/2

h := {pn+1/2
K,h }K∈Th , one can rewrite

(4.2) as follows: For each triangle K ∈Th, solve

(2+ ε2)α
n+1/2
K,h +

(
µ

n+1/2
K,h −1

)
α

n+1/2
K,h +

κ
n+1/2
K,h β

n+1/2
K,h

2
= 2α

n
K,h,

(2+ ε2)β
n+1/2
K,h +

(
λ

n+1/2
K,h −1

)
β

n+1/2
K,h +

κ
n+1/2
K,h α

n+1/2
K,h

2
= 2β

n
K,h,

(4.4)

where

µ
n+1/2
K,h :=

((
pn+1/2

K,h,11

)2
+
(

pn+1/2
K,h,21

)2
+
(

pn+1/2
K,h,31

)2
)
,

λ
n+1/2
K,h :=

((
pn+1/2

K,h,12

)2
+
(

pn+1/2
K,h,22

)2
+
(

pn+1/2
K,h,32

)2
)
,

κ
n+1/2
K,h :=

(
pn+1/2

K,h,11 pn+1/2
K,h,12 + pn+1/2

K,h,21 pn+1/2
K,h,22 + pn+1/2

K,h,31 pn+1/2
K,h,32

)
,

α
n+1/2
K,h := [pn+1/2

K,h,11, pn+1/2
K,h,21, pn+1/2

K,h,31]
T ,

β
n+1/2
K,h := [pn+1/2

K,h,12, pn+1/2
K,h,22, pn+1/2

K,h,32]
T .

System (4.4) is similar to (3.18) and can be solved by Newton’s techniques, taking pn
K,h as an

initial guess. When applied to the solution of problem (4.4), the Newton method always con-
verged and never required more than 10 iterations for the test problems considered in Section 5.

4.4. Solution of the discrete linear variational problems. Taking ∇un+1
h := pn+1

h , (4.3) is
equivalent to: Find (un+1

h ,wn+1
h ) ∈ Vg,h×V0,h such that
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
ε1∆t((∇wn+1

h ,∇vh))0h +((∇un+1
h ,∇vh))0h +C∆t(un+1

h ,vh)0h

=C∆t(f,vh)0h +((pn+1/2
h ,∇vh))0h,

((∇un+1
h ,∇qh))0h− (wn+1

h ,qh)0h = 0,

(4.5)

for all (vh,qh) ∈ V0,h×V0,h. This system is solved with a monolithic finite element solver.

5. NUMERICAL EXPERIMENTS

We present here two numerical experiments for simple cases extracted from [11] to discuss
the robustness and efficiency of our methodology. No adaptive mesh refinement strategy, such
as the one introduced in [6], is adopted here.

The computational domain (i.e. the paper sheet to be folded) is chosen as the unit square
Ω = (−1,1)2. All the experiments have been performed on a desktop computer with Intel Xeon
E5-1650 (3.50 GHz × 12) and 64 GB memory. For all the numerical experiments we consider
f = (0,0)T , ε2 = 10−15, ∆t = ε2/2, C = 0, and ε1 =

h2

5∆t (unless stated otherwise). The stopping
criterion we use to decide on the flow stationarity is either if n = 1500, or if ||pn+1−pn||L2(Ω) ≤
5 · 10−4. The choice of a stringent stopping criterion ensures that the algorithm converges to
a steady-state solution, and stationarity is verified numerically for constant time steps. The
penalization constant ε2 is chosen in order to guarantee that the orthogonality conditions are
satisfied accurately. To do so, its value can actually vary between 10−9 and 10−15. For all the
experiments we use a structured asymmetric mesh when cutting small regular squares in two
triangles along the first diagonal. The choice of ε1 allows to have a regularization term in (3.19)
of the order h2. The value ε1 =

h2

5∆t allows to facilitate the convergence of the algorithm, while
the value ε1 = 0 allows to ensure sharp interfaces. Any value of the parameter ε1 is a trade-off
between these two objectives.

5.1. 90-degree folding. In the first experiment, we consider the exact solution that consists of
folding once a paper at a 90-degree angle, namely

u(x1,x2) =

 x1
x2/
√

2
|x2|/
√

2

 , ∀(x1,x2) ∈Ω. (5.1)

In this case, the solution is piecewise linear with one folding line. Figure 2 (top left, top right,
and bottom left) shows the representation of the three components of the solution u, while
Figure 2 (bottom right) shows the 3D representation of the folded paper which correspond to
u(Ω). It shows that the solution is appropriately recovered, but that there is an approximation
error along the folding line, which is not perfectly straight. Table 1 illustrates the numerical
results for several discretization parameters’ sizes. It shows that all orthogonality constraints
are very well respected, but that the convergence of the error in the L2 norm is not reached.
The algorithm here converges to a slightly different solution that is smoother, despite the fact
that ε1 = 0. Unlike for orthogonal maps [5], the convergence of the algorithm is difficult to
guarantee.
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We also observe that the smoothing term improves the convergence of the algorithm (reduces
the number of iterations) without sacrificing the orthogonality constraints. But it has an effect
on the magnitude of the L2-error.

FIGURE 2. 90-degree folding. Snapshots of the approximation of three com-
ponents of the solution u for h = 0.025, ε1 = 0 and 1500 timesteps. Top left:
component u1, top right: component u2, bottom left: component u3, bottom
right: visualization of the domain u(Ω).

5.2. Non piecewise linear example. In the second experiment, we consider the exact solution
that consists of folding once a paper while curving it, namely

u(x1,x2) =

 x1
sign(x2)(1− cos(x2))

sin(|x2|)

 , ∀(x1,x2) ∈Ω.

In this case, the solution is not piecewise linear anymore, but piecewise smooth with one folding
line. The gradient of the solution is still orthonormal. Figure 3 (bottom right) shows the 3D
representation of the folded paper which correspond to the image u(Ω). Figure 3 (top left, top
right, and bottom left) shows the representation of the three components of the solution u. In
particular, it shows that the component u2 introduces the bending of the paper. Table 2 compares
well with Table 1, and shows that the behavior of the algorithm is similar when the solution is
not piecewise linear. It shows that all constraints are well respected, but that the L2 norm is
stagnating again. The smoothing term has the same effect on the convergence of the algorithm
(and on the number of iterations).
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TABLE 1. 90-degree folding solution. (i) Variations with respect to h of the
approximate orthogonality conditions (columns 2,3 and 4). (ii) Variations with
respect to h of the L2(Ω) norm of the computed approximation error u−uh (col-
umn 5). (iii) Variations with respect to h of the number of time steps necessary
to achieve convergence (column 6). (Ω = (−1,1)2, structured asymmetric
meshes).

Regularization term: ε1 = 0.2h2/∆t

h
∫

Ω

µ
n+1/2
h dx

∫
Ω

λ
n+1/2
h dx

∫
Ω

κ
n+1/2
h dx ||(u−uh) ||L2 it

0.1 1.0093 0.9590 -9.48e-04 6.74e-02 163
0.05 1.0097 0.9880 -3.61e-04 7.18e-02 397
0.025 1.0084 0.9969 -1.28e-04 6.79e-02 880

0.0125 1.0060 0.9993 -4.37e-05 5.83e-02 1398
Regularization term: ε1 = 0.0

h
∫

Ω

µ
n+1/2
h dx

∫
Ω

λ
n+1/2
h dx

∫
Ω

κ
n+1/2
h dx ||(u−uh) ||L2 it

0.1 1.0025 1.0004 -2.64e-04 4.11e-02 1500
0.05 1.0028 1.0003 -1.07e-04 4.28e-02 1500
0.025 1.0028 1.0003 -3.74e-05 4.32e-02 1500

0.0125 1.0029 1.0002 -1.32e-05 4.33e-02 1500

TABLE 2. Non piecewise linear example. (i) Variations with respect to h of the
approximate orthogonality conditions (columns 2,3 and 4). (ii) Variations with
respect to h of the L2(Ω) norm of the computed approximation error u−uh (col-
umn 5). (iii) Variations with respect to h of the number of time steps necessary
to achieve convergence (column 6). (Ω = (−1,1)2, structured asymmetric
meshes).

Regularization term: ε1 = 0.2h2/∆t

h
∫

Ω

µ
n+1/2dx

∫
Ω

λ
n+1/2dx

∫
Ω

κ
n+1/2dx ||(u−uh) ||L2 it

0.1 1.0590 0.9114 -2.69e-03 1.34e-01 149
0.05 1.0511 0.9506 -8.09e-04 1.35e-01 388
0.025 1.0242 0.9769 -2.36e-04 8.10e-02 1367

0.0125 1.0129 0.9931 -7.37e-05 3.86e-02 1472
Regularization term: ε1 = 0.0

h
∫

Ω

µ
n+1/2dx

∫
Ω

λ
n+1/2dx

∫
Ω

κ
n+1/2dx ||(u−uh) ||L2 it

0.1 1.0040 1.0 -2.89e-04 2.11e-02 1500
0.05 1.0042 1.0 -1.17e-04 2.18e-02 1500
0.025 1.0042 1.0 -6.77e-05 2.20e-02 1500

0.0125 1.0042 1.0 -3.81e-05 2.21e-02 1500
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FIGURE 3. Non piecewise linear example. Snapshots of the approximation of
three components of the solution u for h = 0.025, ε1 = 0 and 1500 timesteps.
Top left: component u1, top right: component u2, bottom left: component u3,
bottom right: visualization of the domain u(Ω).

6. CONCLUSIONS

We discussed an operator-splitting/ finite element methodology for the numerical solution
of the Dirichlet problem for so-called rigids maps. The approach is based on an extension of
similar ideas for orthogonal maps [5], but now allows to consider functions with a range in R3,
which are not piecewise linear but only piecewise smooth. This methodology is based on a vari-
ational principle, the introduction of the associated flow problem, and a time-stepping splitting
algorithm. Numerical experiments in Section 5 demonstrate the robustness and the flexibility of
this methodology. In particular the orthogonality constraints converge appropriately. However,
the convergence of the error is not optimal, as the algorithm finds local optima. Adaptive mesh
refinement will be needed in the future to accurately track the folding lines.
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