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Abstract. Several methods are used to develop iterative schemes for solving equations. Higher-order derivatives,
on the other hand, are often considered to be used in the calculation of convergence order. But the derivatives
are not on the schemes. More significantly, there are no bounds on the error and uniqueness information for the
solution to be generated either. So the advantages of these algorithms are restricted in their use of equations with
operators that are at least seven times differentiable. We investigate the ball of convergence analysis using only
the first derivative for two sixth-order algorithms that are run under an equal set of circumstances. In addition, we
provide a calculable ball comparison between the two schemes under consideration. Our technique is based on the
first derivative that only appears on the schemes. This way, we can make these schemes more useful for addressing
equations involving Banach space-valued operators. Hence, the applicability is extended for these schemes. The
technique can be used on other schemes.
Keywords. Banach spaces; Convergence order; Convergence ball; Fréchet derivative; Local convergence.
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1. INTRODUCTION

Consider a Fréchet derivable operator Φ : Ω ⊆ X → Y , where X and Y are Banach spaces,
and Ω(6= /0) is convex and open. In science and other practical fields, the equations of the type

Φ(v) = 0 (1.1)

are regularly used to address a wide range of complicated problems. It is necessary to point
that it is a tough process to obtain the solutions to these equations. The solutions were only
obtained analytically in a small number of cases. As a result, iterative procedures are often
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employed to solve these equations. It is, however, a challenging job to create an effective
iterative strategy for addressing (1.1). The traditional Newton iterative approach is the one that
was most often considered to solve this problem. In addition, a large number of research on
higher-order modifications of conventional processes, such as Newton’s, Chebyshev’s, Jarratt’s,
etc. have been utilized.

Various higher-order iterative strategies for calculating a solution of (1.1) have been de-
scribed in the literature. These are based on Newton-like or Newton’s iterative step. A number
of authors, for example, Homeier [18], Frontini and Sormani [15], Cordero and Torregrosa
[11, 12, 13], Noor and Waseem [20] and Grau et al. [16, 17] have created third convergence
order techniques, each of which requires one Φ and two Φ′ evaluations. In [13], two cubically
convergent iterative procedures were designed by Cordero and Torregrosa. Another third-order
convergent scheme based on the evaluations of two Φ, one Φ′, and one inversion of a matrix was
presented by Darvishi and Barati [14]. In addition, Cordero et al. [11, 12] extended Jarratt’s
scheme [19] for addressing nonlinear systems. Grau et al. [16, 17] and Darvishi and Barati
[14] also suggested schemes with convergence order four. Sharma et al. [21, 22] composed
two weighted-Newton steps to generate an efficient fourth-order weighted-Newton scheme for
nonlinear systems. Also, fourth and sixth-order convergent iterative algorithms were devel-
oped by Sharma and Arora [21] to solve nonlinear systems. Related research results on other
iterative processes with their ball of convergence and dynamical behaviors were discussed in
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The main work of this paper is to increase the usefulness of the sixth convergence order
schemes that we chosen from [21] and [23], respectively. In addition, we compare their conver-
gence balls.
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If γ = 2
3 , then schemes (1.2) and (1.3) are reduced to the schemes designed in [21] and [23],

respectively. The convergence of these schemes was shown under the application of the expen-
sive Taylor formula, which reduces their scope of utility. We consider the following function to
help us explain our viewpoint.

Φ(v) =
{

v3 ln(v2)+ v5− v4, if v 6= 0
0, if v = 0

,
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where X = Y = R and F is defined on Ω = [−1
2 ,

3
2 ]. Then, the unboundedness of Φ′′′ makes

the earlier convergence theorems ineffective for schemes (1.2) and (1.3). Also, current results
provide little information regarding the bounds of the error, the domain of convergence, or the
location of the solution. It is critical to investigate the ball analysis of an iterative scheme in
detail to determine convergence radii, approximate error bounds, and calculate the region where
x∗ is the only solution. Another benefit of this analysis is that it simplifies the very difficult task
of selecting v0. Consequently, we are inspired to investigate and compare the convergence balls
of (1.2) and (1.3) when subjected to an identical set of constraints. In addition to providing an
error estimate ||vn−x∗|| and the convergence radii, the convergence theorems that we presented
also offer a precise location for the solution.

The following is a summary of the contents of this paper. Section 2 contains the ball of
convergence of schemes (1.2) and (1.3). Section 3 includes the numerical experiments. The last
section, Section 4, of this paper contains the conclusions.

2. BALL OF CONVERGENCE

Some scalar parameters and functions are developed for the ball convergence analysis first of
scheme (1.2). Set T = [0,∞). Suppose function

(1) ω0(t)− 1 has a smallest root R0 ∈ T0 \ {0} for some function ω0 : T → T continuous
and non-decreasing. Set T0 = [0,R0).

(2) g1(t)− 1 has a smallest root r1 ∈ T0 \ {0} for some functions ω : [0,2R0)→ T , ω1 :
T0→ T continuous and non-decreasing with g1 : T0→ T given by

g1(t) =
∫ 1

0 ω((1−θ)t) dθ + |1− γ|
∫ 1

0 ω1(θ t) dθ
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.
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(4) ω0(g2(t)t)−1 has a smallest root R1 ∈ T0 \{0}. Set R = min{R0,R1} and T1 = [0,R).
(5) g3 : T1→ T is such that g3(t)−1 has a smallest root r3 ∈ T1 \{0}, with
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[∫ 1

0 ω((1−θ)g2(t)t) dθ

1−ω0(g2(t)t)
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The parameter r defined by

r = min{ri}, i = 1,2,3 (2.1)
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shall be proved to be a convergence radius for scheme (1.2). Set M = [0,r). By the definition
of r it follows that, for all t ∈M,

0≤ ω0(t)< 1, (2.2)

0≤ ω0(g2(t)t)< 1, (2.3)

and
0≤ gi(t)< 1. (2.4)

The notation B(x∗,λ ) is used for the closure of the ball B(x∗,λ ) with radius λ > 0 and center
x∗ ∈ Ω. We suppose from now on that x∗ is a simple root of Φ, functions “ω” are as defined
previously, and the following hypotheses (A) hold. Suppose:
(A1) For all x ∈Ω,

||Φ′(x∗)−1(Φ′(x)−Φ
′(x∗))|| ≤ ω0(||x− x∗||).

Set Ω0 = Ω∩B(x∗,R0).
(A2) For all x,y ∈Ω0

||Φ′(x∗)−1(Φ′(x)−Φ
′(y))|| ≤ ω(||x− y||)

and
||Φ′(x∗)−1

Φ
′(x)|| ≤ ω1(||x− x∗||).

(A3) B(x∗, r̃)⊂Ω for some r̃ to be defined later.
(A4) There exists r∗ ≥ r̃ satisfying∫ 1

0
ω0(θr∗) dθ < 1.

Set Ω1 = Ω∩B(x∗,r∗).
Next, we develop the ball convergence result for scheme (1.2) utilizing conditions A.

Theorem 2.1. Suppose that conditions (A1)-(A4) hold for r̃ = r. Then, the sequence {vn} given
by scheme (1.2) is well defined in B(x∗,r), stays in B(x∗,r) and converges to x∗ provided that
the initial guess v0 ∈ B(x∗,r)\{x∗}. Moreover, the following assertions hold

||yn− x∗|| ≤ g1(||vn− x∗||)||vn− x∗|| ≤ ||vn− x∗||< r, (2.5)

||zn− x∗|| ≤ g2(||vn− x∗||)||vn− x∗|| ≤ ||vn− x∗||, (2.6)

and
||vn+1− x∗|| ≤ g3(||vn− x∗||)||vn− x∗|| ≤ ||vn− x∗||, (2.7)

where the functions gi and radius r are as defined previously. Furthermore, the only root of
Φ(v) = 0 in the set Ω1 defined in (A4) is x∗.

Proof. Let z ∈ B(x∗,r)\{x∗}. Using (A1), (2.1), and (2.2), we obtain

||Φ′(x∗)−1(Φ′(z)−Φ
′(x∗))|| ≤ ω0(||z− x∗||)≤ ω0(r)< 1,

which together with a lemma due to Banach on invertible operators [8] implies Φ′(z)−1 ∈
L(Y,X) with

||Φ′(z)−1
Φ
′(x∗)|| ≤

1
1−ω0(||z− x∗||)

. (2.8)
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Notice that y0,z0,v1 are well defined by scheme (1.2). We can write in turn by the first substep
of scheme (1.2), (A2) and (2.8) (for z = v0) that

||y0− x∗||= ||v0− x∗−Φ
′(v0)
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||v1− x∗||

= ||z0− x∗−Φ
′(z0)

−1
Φ(z0)

+(Φ′(z0)
−1−Φ

′(v0)
−1)Φ(z0)−

3
2

Φ
′(v0)

−1(Φ′(v0)−Φ
′(y0))Φ

′(v0)
−1

Φ(z0)||

≤
[∫ 1

0 ω((1−θ)||z0− x∗||) dθ

1−ω0(||z0− x∗||)

+
(ω0(||v0− x∗||)+ω0(||z0− x∗||))

∫ 1
0 ω1(θ ||z0− x∗||) dθ

(1−ω0(||v0− x∗||))(1−ω0(||z0− x∗||))

+
3
2
(ω0(||v0− x∗||)+ω0(||y0− x∗||))

∫ 1
0 ω1(θ ||z0− x∗||) dθ

(1−ω0(||v0− x∗||))2

]
||z0− x∗||

≤ g3(||v0− x∗||)||v0− x∗|| ≤ ||v0− x∗||, (2.11)
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where we also used (2.1), (2.4) (for i = 1,2,3), (2.8) (for z = v0,z0), (A2), and (2.9)-(2.11).
Hence, items (2.5)-(2.7) hold if n = 0. Simply replace v0, y0, z0, and v1 by v j, y j, z j, and v j+1
in the previous calculations to complete the mathematical induction for items (2.5)-(2.7). Then,
from the estimation

||v j+1− x∗|| ≤ b||v j− x∗||< r, (2.12)

where b= g3(||v0−x∗||)∈ [0,1), we deduce v j+1 ∈ B(x∗,r) and lim j→∞ v j = x∗. Next, we show
the uniqueness of x∗. Set Q =

∫ 1
0 Φ′(x∗+θ(q− x∗)) dθ for some q ∈Ω1 with Φ(q) = 0. Then,

using (A1) and (A4), we obtain

||Φ′(x∗)−1(Q−Φ
′(x∗))|| ≤

∫ 1

0
ω0(θ ||q− x∗||) dθ

≤
∫ 1

0
ω0(θr∗) dθ < 1. (2.13)

So, we conclude x∗ = q from 0 = Φ(q)−Φ(x∗) = Q(q− x∗) and the invertability of Q. �

Next, we develop the ball convergence analysis of scheme (1.3) in an analogous way. Define

g1(t) = g1,
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Suppose that functions gi(t)−1 have a smallest root in T0 \{0} denoted by ri. Set r = min{ri}.
Moreover, suppose that hypotheses (A1)-(A4) hold with r̃ = r. Following estimates (2.9)-(2.11),
we show that functions gi are motivated by calculations:

||yn− x∗|| ≤ g1(||vn− x∗||)||vn− x∗||= g1(||vn− x∗||)||vn− x∗||
≤ ||vn− x∗||< r.
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Moreover, the second substep gives

||zn− x∗||

= ||vn− x∗−Φ
′(vn)

−1
Φ(vn)

− 3
8
(7Φ

′(vn)
−1

Φ
′(yn)−12(Φ′(vn)

−1
Φ
′(yn))

2

+5(Φ′(vn)
−1

Φ
′(yn))

3)Φ′(vn)
−1

Φ(vn)||

= ||vn− x∗−Φ
′(vn)

−1
Φ(vn)

− 3
8
(5(Φ′(vn)

−1(Φ′(yn)−Φ
′(vn)))

2

−2(Φ′(vn)
−1(Φ′(yn)−Φ

′(vn))))Φ
′(vn)

−1
Φ
′(yn)Φ

′(vn)
−1

Φ(vn)||

≤
[∫ 1

0 ω((1−θ)||vn− x∗|| dθ

1−ω0(||vn− x∗||)

+
3
8

(
5
(

ω0(||vn− x∗||)+ω0(||yn− x∗||)
1−ω0(||vn− x∗||)

)2

+2
(

ω0(||vn− x∗||)+ω0(||yn− x∗||)
1−ω0(||vn− x∗||)

)∫ 1
0 ω1(θ ||vn− x∗||) dθ

1−ω0(||vn− x∗||)

]
||vn− x∗||

≤ g2(||vn− x∗||)||vn− x∗|| ≤ ||vn− x∗||.

Furthermore, the third substep leads to
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Hence, we obtain the ball convergence result for scheme (1.3).

Theorem 2.2. Suppose that hypotheses (A1)-(A4) hold with r̃ = r. Then, the conclusion of
theorem 2.1 hold for scheme (1.3) with r, gi replaced by r, gi, respectively.

3. NUMERICAL EXAMPLES

We use the suggested approaches to estimate the convergence radii for schemes ((1.2) and
(1.3)) provided that γ = 2

3 .

Example 3.1. Consider X = Y =C[0,1] and Ω = B(0,1). Define Φ on Ω by

Φ(v)(a) = v(a)−5
∫ 1

0
au v(u)3 du,

where v(a) ∈ C[0,1]. We have x∗ = 0. Conditions (A1)-(A4) are satisfied for ω0(t) = 7.5t,
ω(t) = 15t, and ω1(t) = 2. Then, the values of r and r are produced by using formulas (2.1)
and (2.4), respectively. These results are summarized in Table 1.

TABLE 1. Comparison of convergence radii for Example 3.1

Scheme (1.2) Scheme (1.3)
r1 = 0.022222 r1 = 0.022222
r2 = 0.018948 r2 = 0.017369
r3 = 0.013823 r3 = 0.014756
r = 0.013823 r = 0.014756

Example 3.2. Let X = Y = R3 and Ω = B(0,1). Consider Φ on Ω for v = (v1,v2,v3)
t as

Φ(v) = (ev1−1,
e−1

2
v2

2 + v2,v3)
t

Then x∗ = (0,0,0)t . Conditions (A1)-(A4) are satisfied for ω0(t) = (e− 1)t, ω(t) = e
1

e−1 t and
ω1(t) = 2. The results are displayed in Table 2.

TABLE 2. Comparison of convergence radii for Example 3.2

Scheme (1.2) Scheme (1.3)
r1 = 0.127564 r1 = 0.127564
r2 = 0.088919 r2 = 0.080947
r3 = 0.064030 r3 = 0.068190
r = 0.064030 r = 0.068190

Finally, the motivating issue stated in Section 1 is solved if for x∗ = 1.

Example 3.3. Choose ω0(t) = ω(t) = 96.662907t and ω1(t) = 2. The radius can be found in
Table 3.

It is found that scheme (1.3) has a larger radius of convergence in all three examples. But we
cannot conclude that scheme (1.3) is always better to use than the scheme (1.2).
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TABLE 3. Comparison of convergence radii for Example 3.3

Scheme (1.2) Scheme (1.3)
r1 = 0.002299 r1 = 0.002299
r2 = 0.001586 r2 = 0.001443
r3 = 0.001141 r3 = 0.001215
r = 0.001141 r = 0.001215

4. CONCLUSIONS

The usability of schemes (1.2) and (1.3) was extended by investigating their ball convergence
properties, which are based only on the first derivative and generalized Lipschitz criteria. In
addition, the convergence ball comparison between them was discussed in detail.
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