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Abstract. We consider a quasilinear parabolic equation and its associate stationary problem which correspond to
a simplified formulation of a Bingham flow and we mainly study two qualitative properties. The first one concerns
with the absence and, respectively, disappearance in finite time, of the movement. We show that there is a suitable
balance between the L1−norm of the forcing datum f∞ and the measure of the spatial domain Ω (essentially saying
that the forcing daum must be small enough) such that the corresponding solution u∞(x) of the stationary problem
is such that u∞ ≡ 0 a.e. in Ω (even if f∞ 6= 0). Moreover, if f∞ is also the forcing term of the parabolic problem,
and if the above mentioned balance is strict, for any u0 ∈ L∞(Ω) there exists a finite time Tu0, f∞ > 0 such that
the unique solution u(t,x) of the parabolic problem globally stops after Tu0, f∞ , in the sense that u(t,x) ≡ 0 a.e. in
Ω, for any t ≥ Tu0, f∞ . The second property concerns with the formation of a positively measure “solid region”.
We show that if the above balance condition fails (i.e., when the forcing datum is large enough) then the solution
u∞(x) of the stationary problem satisfies that u∞ 6= 0 in Ω and its “solid region” (defined as the set S (u∞) =

{x ∈Ω : ∇u∞(x) = 0}) has a positive measure. Similar results are obtained for the symmetric solutions u(t) of the
parabolic problem. In addition, the convergence u(t)→ u∞ in H1

0 (Ω), as t→+∞, does not take place in any finite
time.
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1. INTRODUCTION

The main goal of this paper is to establish some qualitative properties of solutions of the
following nonlinear parabolic equation


∂tu−κ∆u−g∇ ·

(
∇u
|∇u|

)
= f (t,x) in Ω× (0,T ),

u = 0 on ∂Ω× (0,T ),
u(0) = u0, on Ω,

(1.1)

and its associate stationary problem

 −κ∆u∞−g∇ ·
(

∇u∞

|∇u∞|

)
= f∞(x) in Ω,

u∞ = 0 on ∂Ω.
(1.2)

Problems (1.1) and (1.2) are scalar problems which arise, for instance, in the study of some
Bingham fluids after suitable simplifications. It corresponds to materials which behave as rigid
bodies at low shear stress but flow as viscous fluids at high shear stress (see, e.g., the formulation
presented in [19]). We recall that the problem is associated to Eugene C. Bingham (1878-1945)
who, for the first time, in 1916, proposed a mathematical description for this visco-plastic be-
havior [6]. Common examples of Bingham fluids are tooth paste and paint. The Bingham model
has also been used to describe the blood flow in small vessels, such as arterioles and capillaries,
where the size of the vessel diameter is comparable to the size of blood cells; see, e.g., [36].
The isothermal flow of an incompressible Bingham visco-plastic medium, is modeled by a sys-
tem of equations (of the Navier-Stokes system type) and it can be shown that, if for instance,
the spatial domain is a cylinder then the problem can be reduced to some scalar problems as
(1.1) and (1.2). The constants κ,g are the viscosity and the plasticity constants, respectively.
In some sense, the above continuos medium behaves like a viscous fluid (of viscosity κ) in the
“viscous region” V (u(t, .)) = {x ∈Ω : |∇u(t,x)|> 0} and like a rigid medium in the “solid
region” S (u(t, .)) = {x ∈Ω : |∇u(t,x)|= 0} .

We also mention that problems of this nature also arise in other different frameworks, as,
for instance, in image processing where mainly κ = 0. This leads to very delicate regularity
questions (see, e.g., [1], [10], and [26]). In addition, problem (1.2) is a very good example of
the family of (p,q)-double phase problems (see, e.g., the survey [29]).

The existence and uniqueness of L2−weak solutions to problems (1.1) and (1.2) are today
well-known results under different regularity assumptions on the data (see, e.g., [7], [21], [22],
[23], [24], and the references therein). We point out that weaker notion of solutions can be
considered under more general conditions on the data, nevertheless, since this paper is mainly
devoted to the study of some qualitative properties we will not deal with other weaker notion
of solutions. We will assume that Ω is a bounded regular open subset of RN , κ and g are
positive constants and at least f ∈ L2(0,T : L2(Ω)), u0 ∈ L∞(Ω) and f∞ ∈ L2(Ω). Thus the weak
formulation of problems (1.1) and (1.2) can be expressed in terms of the following variational
inequalities:
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u ∈C([0,T ] : L2(Ω))∩L2(0,T : H1

0 (Ω)),∂tu ∈ L2(0,T : H−1(Ω)),
u(0) = u0 on Ω,

〈∂tu(t),v−u(t)〉+
∫

Ω

∇u(t) ·∇(v−u(t))dx+g( j(v)− j(u(t)))≥
∫

Ω

f (t)(v−u(t))dx

∀v ∈ H1
0 (Ω) and a.e. t ∈ (0,T ),

(1.3)
and, respectively,{

u∞ ∈ H1
0 (Ω)

κ

∫
Ω

∇u∞ ·∇(v−u∞)dx+g( j(v)− j(u∞))≥
∫

Ω

f∞(v−u∞)dx, ∀v ∈ H1
0 (Ω),

(1.4)

where 〈,〉 denotes the duality between H1
0 (Ω) and H−1(Ω), j(v) =

∫
Ω

|∇v|dx for v ∈ H1
0 (Ω).

Note that both variational inequalities can be formulated also (see [7]) in terms of the subd-
ifferential of the convex function ϕ(v) given by

ϕ(v) =

{
κ

2

∫
Ω

|∇v|2dx+g
∫

Ω

|∇v|dx if v ∈ H1
0 (Ω),

+∞ otherwise,
as

∂tu+∂ϕ(u) 3 f (t),

and
∂ϕ(u∞) 3 f∞,

respectively. It was shown in [7] (see Theorem 15) that the domain of (∂ϕ) is D(∂ϕ) =
H2(Ω)∩H1

0 (Ω). Nevertheless, we know that, in general, u∞ /∈C2(Ω), u∞ /∈ H3(Ω) (see [24]).
In addition, an equivalent formulation can be given in terms of suitable Lagrange multipliers
(see [21] and [23])). Namely, concerning the parabolic problem (1.1), there exists λ (t,x) such
that {

λ ∈ [L∞((0,T )×Ω)]N ,
|λ | ≤ 1, λ ·∇u = |∇u| a.e. in (0,T )×Ω,

(1.5)

and
∂tu−κ∆u+gdivλ = f(t,x).

Analogously, concerning the associate stationary problem (1.2), there exists λ∞(x) such that{
λ∞ ∈ L∞(Ω)N ,
|λ∞| ≤ 1, λ∞·∇u∞ = |∇u∞| a.e. in Ω,

(1.6)

and
−κ∆u∞ +gdivλ∞ = f∞(x).

We also recall that under some additional conditions on f and u0 it can be proved (see, e.g.
[7], [19], and [20]) that if f (t)→ f∞ in L2(Ω) as t→+∞, then u(t)→ u∞ in H1

0 (Ω), as t→+∞,
where u∞(x) is the (unique) solution of the associated stationary problem.

In order to simplify the exposition, we will assume that

f (t,x)≡ f∞(x), a.e. in Ω,
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and
f∞ 6= 0 a.e. in Ω. (1.7)

Notice that f∞ is a simplified representation of the addition of the gradient pressure and the
external forcing in the vectorial Navier-Stokes type formulation. Thus the condition (1.7) is
very natural since the case f∞ ≡ 0 a.e. in Ω has a restrictive meaning in fluid mechanics.

In order to simplify the exposition we will also assume that

f∞ 	 0 a.e. in Ω. (1.8)

In this paper we are interested, among other things, in proving the two following different
qualitative properties.

Property 1: Absence and, respectively, disappearance in finite time, of the movement. We
will show that if

‖ f∞‖L1(Ω) ≤ g
(
|Ω|
ωN

)(N−1)/N

, (1.9)

where |Ω| and ωN denote the measure of the Ω and the unit ball of RN , respectively, then the
unique solution u∞(x) of problem (1.2) satisfies u∞ ≡ 0 a.e. in Ω (even if f∞ 6= 0). Moreover, if
the balance is strict

‖ f∞‖L1(Ω) < g
(
|Ω|
ωN

)(N−1)/N

, (1.10)

for any u0 ∈ L∞(Ω) there exists a finite time Tu0, f∞ > 0 such that the unique solution u(t,x) of
problem (1.1) globally stops after Tu0, f∞ , in the sense that u(t,x)≡ 0 a.e. in Ω, for any t ≥ Tu0, f∞ .

Property 2: Formation of a positively measure “solid region”. We will show that if the above
balance condition fails, i.e.

‖ f∞‖L1(Ω) > g
(
|Ω|
ωN

)(N−1)/N

, (1.11)

then the unique solution u∞(x) of problem (1.2) satisfies u∞ 6= 0 a.e. in Ω but its associated “solid
region” (defined as the set S (u∞) = {x ∈Ω : ∇u∞(x) = 0}) has a positive measure. Moreover,
there is a large class of initial data, u0 ∈ L∞(Ω), for which the convergence u(t)→ u∞ in H1

0 (Ω),
as t→+∞, does not take place in any finite time.

Concerning the stationary problem, the previous two properties can be stated as follows:

Theorem 1.1. Assume f∞ ∈ L2(Ω) such that (1.8) holds. Let u∞(x) be the unique solution of
problem (1.2). Then:

i) If the balance condition (1.9) holds then u∞ ≡ 0 a.e. in Ω.
ii) If the opposite balance condition (1.11) holds then u∞ 6= 0, u∞ ∈ L∞(Ω), and its associ-

ated “solid region” S (u∞) has a positive measure. In fact

S (u∞)⊂
{

x ∈Ω: u∞(x) = ‖u∞‖L∞(Ω)

}
.

Our strategy to prove this and others qualitative properties relies on the use of classical sym-
metrization techniques. Namely, we consider the symmetrized problem −κ∆U∞−g∇ ·

(
∇U∞

|∇U∞|

)
= f ∗∞(x) in Ω∗,

U∞ = 0 on ∂Ω∗,
(1.12)
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and the associate parabolic problem
∂tU−κ∆U−g∇ ·

(
∇U
|∇U |

)
= f ∗∞(x) in Ω∗× (0,T ),

U = 0 on ∂Ω∗× (0,T ),
U(0) =U0 = u∗0, on Ω∗,

(1.13)

where Ω∗ is the ball centered at the origin with the same measure as Ω, u∗0 and f ∗∞ are the
spherically symmetric rearrangement of the data u0 and f∞, respectively (see definition and
properties in Section 2). Then we will start by proving the qualitative properties firstly to the
symmetric problems and then we will deduce them for the non necessarily symmetric problem.

Concerning the parabolic problem, the qualitative properties we will get are the following:

Theorem 1.2. Assume f∞ ∈ L2(Ω) such that (1.8) holds and let u0 ∈ L∞(Ω). Let u(t,x) be the
unique solution of problem (1.1).Then:

i) if the balance condition (1.10) holds then there exists a finite time Tu0, f∞ > 0 such that
u(t,x)≡ 0 a.e. in Ω, for any t ≥ Tu0, f∞.

ii) If the opposite balance condition (1.11) holds and u∗0 ∈ H2(B(0,R))∩H1
0 (B(0,R)) is

such that
κ

rN−1
d
dr

(rN−1 du∗0
dr

(r))+
g

rN−1
d
dr

(rN−1
λ0(r))+ f∞(r)≥ 0 in H−1(0,R), (1.14)

for some λ0(r) ∈ sign
(

du0
dr (r)

)
a.e. in (0,R), with S(u∗0)⊂ B(0,R0) then we have

S(U(t))⊂ B(0,R0) for any t ≥ 0,

with
U(t,r) = ‖U(t)‖L∞(B(0,R)) for any r in S(U(t)).

Moreover,
U(t)→U∞ in H1

0 (B(0,R)) as t→+∞, (1.15)

where U∞ is the unique solution of problem (1.12), and there exits a R∗ ∈ (0,R) such
that

‖U(t)−U∞‖C0([R∗,R]) > 0 for any t > 0. (1.16)

In addition, for any t ≥ 0 we have that∣∣{x ∈Ω : u(t,x) = ‖u(t)‖L∞(Ω∗)}
∣∣≤ ∣∣{x ∈Ω

∗ : U(t,x) = ‖U(t)‖L∞(Ω∗)}
∣∣. (1.17)

The useful tool we will use to reduce the study to the symmetric case is the following set of
comparison results:

Theorem 1.3. We have:

1) Let u∞(x) be the unique solution of (1.2). Then

u∗∞(x)≤U∞(x) a.e x ∈Ω
∗, (1.18)

and
|∇u∗∞(x)| ≤ |∇U∞(x)| a.e x ∈Ω

∗. (1.19)
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2) Let u(t,x) be the unique solution of (1.1). Then, for any t ∈ [0,T ] we have the mass
comparison of u and U∫

B(0,r)
u∗(t,x)dx≤

∫
B(0,r)

U(t,x)dx,∀t > 0,∀r ∈ [0,R], (1.20)

assumed that Ω∗ = B(0,R).

As already mentioned, after proving this result, the proof of the above qualitative properties
is reduced to the establishment of the properties for solutions of problems (1.12) and (1.13) in
the framework of symmetric solutions. This will be done in Section 3 where we will present
also some other remarks. In this way, we improve many previous results in the literature, most
of them dealing with the case f∞ = c, where c is a positive constant (see, e.g., [19], [23], and
[24]). We also recall that most of the previous results on the existence of a finite stopping time
Tu0, f∞ (see part i) of Theorem 1.2) hold assuming f∞ = 0 and under the important restriction
on the dimension of the space N = 2 ( other conditions on the dimension of the space N when
dealing with other non-Newtonian flows can be found in [2] and [11]).

2. SYMMETRIZATION: REARRANGEMENT COMPARISON RESULTS

We begin by recalling some basic definitions from the theory of rearrangements of func-
tions. Given a real valued measurable function u defined in a measurable subset Ω of RN , the
distribution function of u is the function defined by

µ(τ) = |{x ∈Ω : |u(x)|> τ}| . (2.1)

The decreasing rearrangement of u is the smallest decreasing function ũ from [0,∞] into [0,∞]
such that ũ(µ(τ))≥ τ for every τ. Equivalently

ũ(s) = inf{τ ≥ 0 : µ(τ)< s} . (2.2)

The spherically symmetric rearrangement of u is the function u∗ : Ω∗→ R defined by

u∗(x) = ũ(ωN |x|N) = u∗(r), r = |x| , (2.3)

where ωN is the measure of the N-dimensional unit ball and Ω∗ is the ball centered at the origin

having the same measure as Ω, that is, Ω∗ = B(0,R) with R =
(
|Ω|
ωN

)1/N
.

In order to prove Theorem 1.3, a suitable approximation of problem (1.2) is considered: given
f∞ ∈ L2(Ω) and 1 < p < 2, let us consider the following non-linear problem{

−κ∆up−g∆pup = f∞ in Ω,
up = 0 on ∂Ω,

(2.4)

where ∆p is the p-Laplacian operator defined as

∆pv = div(|∇v|p−2
∇v).

The existence and uniqueness of a solution up of (2.4) in the space H1
0 (Ω) can be deduced from

classical results in the literature (see, e.g., [21]). In addition, we know that up is the solution of
the variational problem
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min
v∈H1

0 (Ω)

(
κ

2

∫
Ω

|∇v|2 + g
p

∫
Ω

|∇v|p−
∫

Ω

f∞v
)
.

Moreover, since f∞ 	 0 a.e. in Ω we know that up ≥ 0 a.e. on Ω (see, e.g., [14]).
It will be useful to apply the following result:

Lemma 2.1. We have
lim
p→1

∥∥up−u∞

∥∥
H1

0 (Ω)
= 0. (2.5)

Proof. The solution up ∈ H1
0 (Ω) of (2.4) satisfies

κ

∫
Ω

∇up(∇v−∇up)+
g
p

∫
Ω

|∇v|p− g
p

∫
Ω

∣∣∇up
∣∣p ≥ ∫

Ω

f∞(v−up) ∀v ∈ H1
0 (Ω). (2.6)

Thus, by taking v = u∞ in (2.6) we obtain the following estimate:

κ

∫
Ω

∇up(∇u∞−∇up)+
g
p

∫
Ω

|∇u∞|p−
g
p

∫
Ω

∣∣∇up
∣∣p ≥ ∫

Ω

f∞(u∞−up). (2.7)

In the same way, choosing v = up as test function in (1.4), it follows:

κ

∫
Ω

∇u∞(∇up−∇u∞)+g
∫

Ω

∣∣∇up
∣∣−g

∫
Ω

|∇u∞| ≥
∫

Ω

f∞(up−u∞). (2.8)

From (2.7) and (2.8) we deduce:

κ

∫
Ω

∣∣∇u∞−∇up
∣∣2 +g

∫
Ω

(
1
p

∣∣∇up
∣∣p− ∣∣∇up

∣∣)≤ g
∫

Ω

(
1
p
|∇u∞|p−|∇u∞|

)
. (2.9)

Since the following estimate holds∫
Ω

(
1
p

∣∣∇up
∣∣p− ∣∣∇up

∣∣)≥ (1
p
−1
)
|Ω| , (2.10)

inequality (2.9) gives

κ
∥∥u∞−up

∥∥2
H1

0
≤ g

(
1− 1

p

)
|Ω|+g

∫
Ω

(
1
p
|∇u∞|p−|∇u∞|

)
.

Taking the limit as p→ 1 in the above inequality we obtain (2.5).�

Now we will state some other technical lemmas which will be used later. Let Q be the
function defined in (0,+∞) by

Q(r) = κ +g |r|p−2 , (2.11)
and let

B(r) = κr+g |r|p−2 r.

Lemma 2.2. Let up ∈H1
0 (Ω) be the non-negative solution of problem (2.4). Then the decreasing

function

τ →
∫
{up>τ}

Q(
∣∣∇up

∣∣) ∣∣∇up
∣∣2 dx
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is Lipschitz continuous and the following inequality holds a.e. τ > 0,

0≤− d
dτ

∫
{up>τ}

Q(
∣∣∇up

∣∣) ∣∣∇up
∣∣2 dx≤

∫
µp(τ)

0
f̃∞(s)ds, (2.12)

where µp(τ) denotes the distribution function of up and f̃∞ is the decreasing rearrangement of
f∞.

Lemma 2.3. The following estimate holds a.e. τ > 0

1≤−µ
′
p(τ)[Nω

1
N
N µp(τ)

1− 1
N ]−1B−1

(
−1

Nω
1
N µp(τ)

1− 1
N

)
d

dτ

∫
{up>τ}

Q
(∣∣∇up

∣∣) ∣∣∇up
∣∣2 dx.

(2.13)

Lemma 2.4. The decreasing rearrangement ũp of up is absolutely continuous in (0, |Ω|) and
satisfies

−
dũp

ds
(s)≤ 1

α(s)
B−1

(
1

α(s)

∫ s

0
f̃∞(θ)dθ

)
, (2.14)

where
α(s) = Nω

1
N
N s

N−1
N . (2.15)

Moreover, if f∞ = f ∗∞, we have

−
dũp

ds
(s) =

1
α(s)

B−1
(

1
α(s)

∫ s

0
f̃∞(θ)dθ

)
. (2.16)

For the proofs of Lemmas 2.2, 2.3 and 2.4 we refer to [34], [35] and [14]. We are now in
conditions to prove part 1) of Theorem 1.3.

Proof of part 1) of Theorem 1.3. Let Up ∈ H1
0 (Ω

∗) be the solution of the symmetrized problem{
−κ∆Up−g∆pUp = f ∗∞ in Ω∗,
Up = 0 on ∂Ω∗.

(2.17)

Since f ∗∞ is non-increasing, we deduce (see, e.g., [14]) that

U∗p =Up on Ω
∗.

On the other hand, from Lemmas 2.2, 2.3 and 2.4 we deduce

−α(s)
dũp(s)

ds
≤−α(s)

dŨp(s)
ds

a.e s ∈ (0, |Ω|].

From this inequality, using the definition of symmetric rearrangement, we obtain the estimate∣∣∇u∗p(x)
∣∣≤ ∣∣∇Up(x)

∣∣ a.e. x ∈Ω
∗. (2.18)

Furthermore, from Theorem 1 of [35] we have

u∗p(x)≤Up(x) a.e. x ∈Ω
∗. (2.19)

Using Lemma 2.1 we get that

u∗p→ u∗∞ and Up→U∞ strongly in H1
0 (Ω

∗). (2.20)



QUALITATIVE PROPERTIES OF SOLUTIONS OF SOME QUASILINEAR EQUATIONS 9

From (2.20), passing to the limit, as p→ 1, in (2.18) and (2.19) we get estimates (1.18) and
(1.19).�

Proof of part 2) of Theorem 1.3. It follows the same global idea of the proof of part 1) but
with important additional arguments, as usual in the application of rearrangement techniques
to nonlinear parabolic problems. Several alternatives are possible. Here we will follow the
approach indicated by the second author in [17] (see also [15], [16], and [18]) since it leads to
some quantitative inequalities which are not evident to be obtained through the implicit time
discretization used in the theory of accretive operators. We start by approximating the diffusion
operator by the degenerate quasilinear operator given in terms of the p-Laplacian operator for
p ∈ (1,2). Thus, we consider the parabolic problem

∂tu−κ∆u−g∆pu = f∞(x) in Ω× (0,T ),
u = 0 on ∂Ω× (0,T ),
u(0) = u0, on Ω,

(2.21)

and its symmetrized problem
∂tU−κ∆U−g∆pU = f ∗∞(x) in Ω∗× (0,T ),
U = 0 on ∂Ω∗× (0,T ),
U(0) =U0 = u∗0, on Ω∗.

(2.22)

It can be easily shown (using the techniques of [7]: see also Chapter 4 of [14]) that the associated
diffusion operator is the subdifferential of a convex function ∂ϕp(u) on the Hilbert space H =

L2(Ω), with ϕp(u) given by

ϕp(v) =

{
κ

2

∫
Ω

|∇v|2dx+g
∫

Ω

|∇v|pdx if v ∈ H1
0 (Ω),

+∞ otherwise.

Then we know (see Theoreme 3.6 of [9]) that, without loss of generality, we can assume that
u0 ∈ D(∂ϕp) and that we are dealing with strong solutions, in the sense that ut(t) ∈ L2(Ω) for
a.e. t > 0 (and, similarly, Ut(t) ∈ L2(Ω∗)). Then we can apply the main result of [30] proving
that the following identity holds∫

u>θ

∂u
∂ t

(t,x)dx =
∫

µ(θ)

0

∂ ũ(t,σ)

∂ t
dσ =

∂k
∂ t

(t,µ(θ))

where
k(t,s) =

∫ s

0
ũ(t,σ)dσ ,

and ũ(t, ·) is the scalar decreasing rearrangement of the solution u. Then applying the same
techniques of the proof of part 1) we get that k(t,s) satisfies

(FN∗)


∂k
∂ t
−κa2(s)

∂ 2k
∂ s2 +gap(s)

∣∣∣∣∂ 2k
∂ s2

∣∣∣∣p−2
∂ 2k
∂ s2 ≤

∫ s

0
f̃∞(σ)dσ , s ∈ (0, |Ω|), t ∈ (0,T )

k(t,0) = 0, k(t, |Ω|) = 0, t ∈ (0,T ),

k(0,s) =
∫ s

0
ũ0(σ)dσ s ∈ (0, |Ω|),

where, for p ∈ (1,2],

ap(s) :=
[
Nω

1/N
N s(N−1)/N

]p
.
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Analogously, by defining

K(t,s) =
∫ s

0
Ũ(t,σ)dσ ,

we get that

(FN)


∂K
∂ t
−κa2(s)

∂ 2K
∂ s2 +gap(s)

∣∣∣∣∂ 2K
∂ s2

∣∣∣∣p−2
∂ 2K
∂ s2 =

∫ s

0
f̃∞(σ)dσ , s ∈ (0, |Ω|), t ∈ (0,T )

K(t,0) = 0, K(t, |Ω|) = 0, t ∈ (0,T ),

K(0,s) =
∫ s

0
ũ0(σ)dσ s ∈ (0, |Ω|).

As in [17], using that the corresponding fully nonlinear operator is T-accretive in the Banach
space L∞(0, |Ω|), we get the comparison

k(t,s)≤ K(t,s) ∀t ∈ [0,T ], ∀s ∈ (0, |Ω|),

which implies the inequality (1.20).
The convergence of solutions when p↘ 1 can be obtained through a very easy modification of
the proof given in part 1) since we have the convergence of the subdifferentials ∂ϕp(u)→ ∂ϕ(u)
in the sense of resolvents (I + δ∂ϕp(u))−1z→ (I + δ∂ϕ(u))−1z, for any z ∈ L2(Ω) and any
δ > 0 (see Proposition 3.14 of [9]).�

Remark 2.5. The above convergence argument holds under much more general conditions (see,
e.g., [26], [33], and their many references).

3. QUALITATIVE PROPERTY OF THE RADIALLY SYMMETRIC PROBLEMS AND PROOFS OF

THE MAIN RESULTS

3.1. The stationary symmetric problem. In this subsection we shall consider only the radially
symmetric case in which Ω = B(0,R), the open ball of radius R centered at the origin, and the
datum of the stationary problem (1.2) f∞ is assumed to be a radially symmetric and nonnegative
function.

The uniqueness of solutions implies that the problem can be formulated in the following
terms: given

f∞ ≥ 0 with
∫ R

0
[ f∞(r)]

2 rN−1dr <+∞, (3.1)

find u∞ ∈ H1
0 (B(0,R)) such that


− κ

rN−1
d
dr

(rN−1 du∞

dr
(r))− g

rN−1
d
dr

(rN−1
λ∞(r)) = f∞(r), for r ∈ (0,R),

u∞(R) = 0 and
du∞

dr
(0) = 0,

(3.2)

for some scalar-valued function λ∞∈L∞(0,R) satisfying

|λ∞(r)| ≤ 1 and λ∞(r)
du∞

dr
(r) =

∣∣∣∣du∞

dr
(r)
∣∣∣∣ a.e. in (0,R). (3.3)
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Note that, by the regularity proved in [7], we know that u∞ ∈ H2(B(0,R)). In fact, this implies
that u∞ ∈ C1([0,R)) and that rN−1λ∞(r) is an element of H1(B(0,R)) and, that, in particular,
λ∞∈C0(0,R). We also mention that condition (3.3) can be equivalently written as

λ∞(r) ∈ sign
(

du∞

dr
(r)
)

a.e. in (0,R),

where sign denotes the maximal monotone graph of R given by sign(s) =+1 if s > 0, sign(s) =
−1 if s < 0 and sign(0) = [−1,+1].

We are interested in studying the solid region generated by the solution,

S(u∞) =
{

r ∈ [0,R) :
du∞

dr
(r) = 0

}
,

and its dependence with respect to the data f∞,R, κ and g.
As a matter of fact, due to applicability of symmetrization techniques, we want to know

sufficient conditions in order to get a nontrivial (radially symmetric) solution u∞(r) > 0 and
non-increasing for r ∈ (0,R). Thus, we shall consider only the case in which the solid region
generated by the solution, S(u∞) contains a neighborhood of the origin. As we shall see, in our
case it is related to the monotonicity of the function λ∞(r). In this framework, the interesting
case arises when function f∞(r) satisfies an additional condition:

f∞(r) is a non-increasing function of r. (3.4)

We have

Proposition 3.1. Assume f∞ satisfying (3.1) and (3.4). Then:

a) if
1

gRN−1

∫ R

0
sN−1 f∞(s)ds≤ 1 (3.5)

the non-increasing solution u∞(r) of (3.2) is the trivial solution u∞(r)≡ 0 and λ∞(r) is
the decreasing function given by

λ∞(r) =−
1

grN−1

∫ r

0
sN−1 f∞(s)ds, for any r ∈ (0,R], (3.6)

b) if we assume that there exists a R0 ∈ (0,R) (R0 depending on g) such that

1
gRN−1

0

∫ R0

0
sN−1 f∞(s)ds = 1, (3.7)

then u∞ ∈ L∞(B(0,R)) and the non-increasing profile of the solution u∞(r) is given by

u∞(r) =


M∞ if r ∈ (0,R0),

1
κ

∫ R

r

(
1

σN−1

∫
σ

0
sN−1 f∞(s)ds

)
dσ if r ∈ (R0,R),

with

M∞ =
1
κ

∫ R

R0

(
1

σN−1

∫
σ

0
sN−1 f∞(s)ds

)
dσ = ‖u∞‖L∞(B(0,R)) ,
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and λ∞(r) is given by the non-increasing function

λ∞(r) = max
{
− 1

grN−1

∫ r

0
sN−1 f∞(s)ds, −1

}
for any r ∈ (0,R]. (3.8)

Proof. We start by assuming a strict balance i.e. we assume the stronger condition

1
gRN−1

∫ R

0
sN−1 f∞(s)ds < 1. (3.9)

Given g > 0 and f∞(s) satisfying (3.1), let us introduce the function

ψ(r) =
1

grN−1

∫ r

0
sN−1 f∞(s)ds.

Then, by differentiation with respect to r we can see that ψ(r) is a strictly increasing function.
Indeed, this is equivalent to have the following condition on f∞(r)

f∞(r)>
(N−1)

rN

∫ r

0
sN−1 f∞(s)ds a.e. r ∈ (0,R). (3.10)

If we define the functions

α(r) =
1

grN−1 and β (r) =
∫ r

0
sN−1 f∞(s)ds,

then (3.10) implies that α ′(r)β (r)+α(r)β ′(r)> 0 a.e. r ∈ (0,R). Note that condition (3.10) is
an easy consequence of the assumption (3.4) since given r ∈ (0,R) we have f∞(r)≥ f∞(s) a.e.
s ∈ (0,r) and integrating we get that

f∞(r)≥
N
rN

∫ r

0
sN−1 f∞(s)ds a.e. r ∈ (0,R),

which, in turn, implies (3.10).
Moreover, by l’Hôpital rule, ψ(0) = 0, and so, ψ(r)> 0 for any r ∈ (0,R]. We also recall that,
since |λ∞(r)| ≤ 1, then

−λ∞(r) = min{ψ(r),1} for any r ∈ (0,R], (3.11)

which will lead to the expression (3.8). On any positively measured subset of the solid region
S(u∞) the equation in (3.2) reduces to the condition

− g
rN−1

d
dr

(rN−1
λ∞(r)) = f∞(r), r ∈ S(u∞).

Moreover, du∞

dr (0) = 0 and if we denote by R0 (with R0 ∈ (0,R]) to the boundary of S(u∞), we
get (since the profile u∞(r) is non-decreasing) that necessarily

λ∞(r) =−ψ(r) =− 1
grN−1

∫ r

0
sN−1 f∞(s)ds for any r ∈ [0,R0]. (3.12)

Now, to prove a) it suffices to use the fact that condition (3.5) implies that λ∞(R) = −ψ(R) ∈
(−1,0). Thus, λ∞(r) ∈ sign(0) a.e. in (0,R) and the choice u∞(r) ≡ 0 satisfies all the require-
ments as to be a solution of problem (3.2). Moreover, by the uniqueness of solutions, u∞(r)≡ 0
is the unique choice satisfying all the conditions of weak solution of (3.2).
If we assume now condition (3.5) then it is clear that we can approximate f∞ by a sequence of
functions f∞,n satisfying (3.1), (3.4) and the strict balance (3.9). Then, the respective solutions
of the problems (3.2) must satisfy that u∞,n ≡ 0 on Ω and as the convergence f∞,n → f∞ in
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L2(B(0,R)) implies the convergence u∞,n → u∞ in L2(B(0,R)) (recall that the operator is the
subdifferential of a convex functional on L2(B(0,R))) we finally deduce that u∞ ≡ 0 on Ω.
To prove b) we assume conditions (3.10) and (3.7). Then, the expression (3.12) and the facts
that ψ(r) is a strictly increasing function and that we must have |λ∞(r)| ≤ 1 for any r ∈ [0,R]
imply that, necessarily, λ∞(r)>−1 for any r ∈ (0,R0) and λ∞(r) =−1 for any r ∈ [R0,R] (see
(3.11)).
Finally, once we have determined the function λ∞(r) on [0,R], the (unique) expression for u∞(r)
is found by integrating twice in the equation

− d
dr

(
rN−1 du∞

dr
(r)
)
=

rN−1

κ
f∞(r),

and using the fact that u∞(R) = 0 and du∞

dr (r) = 0 for any r ∈ [0,R0].�

Remark 3.2. The above result gives a necessary and sufficient condition in order to have a
trivial solution u∞(r) ≡ 0 of problem (3.2), once we assume the additional condition (3.4).
Notice that condition (3.5) holds when ‖ f∞‖L1(B(0,R)) is small enough, for fixed values of g and
R. In the special case of f∞ ≡ c and N = 2 condition (3.5) coincides with the condition

c≤ 2g
R
, (3.13)

assumed in [24]. Notice that now condition (3.5) is stated in the more general terms of the L1

norm of function f∞(r) and that the balance condition is independent of κ . In fact the above
characterization remains true for the limit case κ = 0 but in this case, as in the paper [1], the
solution u∞ must be searched in the class of bounded variation functions.

Remark 3.3. For the case κ = 0 the paper [32] proves that if f∞ ∈ LN(B(0,R)) then the rigid
region S(u∞) have a positive measure. In fact, by using the results of [1] it is easy to see that the
regularity f∞ ∈ LN(B(0,R)) is necessary, since in [1] some explicit examples are given showing
that the conclusion fails for some special symmetric functions f∞ such that f∞ /∈ LN(B(0,R)).

Remark 3.4. If f∞ ≡ c and N = 2 an explicit solution was given in the [24] (and later collected
also in [23] and [22]) when

c >
2g
R
, (3.14)

(which is a special case of (3.7)). In that case

u∞(r) =


(

R−R0

2κ

)(c
2
(R+R0)−2g

)
if r ∈ (0,R0),(

R− r
2κ

)(c
2
(R+ r)−2g

)
if r ∈ (R0,R).

Other properties of the solid region S(u∞) (and its complementary: Ω+ = Ω− S(u∞)), for
instance in the case in which Ω is a ring, can be found in [31].

Remark 3.5. It is remarkable that the measure of the solid region (in other words, the value of
R0) is independent of R (once that R is large enough).This is entirely different to the case of the
free boundary raised in the problem{

−∆pu+u = 1 in Ω = B(0,R),
u = 0 on ∂Ω,
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with p > 2. In that case the “solid region” is defined as Ω1 = {x ∈ Ω : u = 1} and it is well-
known that |Ω1| increases when R increases (see, e.g. [14] and [28]).

Remark 3.6. Some numerical experiences can be found in [12], [19], [24], and [27],

3.2. Proof of Theorem 1.1. Now we consider the elliptic non-radially symmetric problem.
Proof of i). By definition we know that f ∗∞ satisfies (3.4). Moreover, by virtue of the properties
of the decreasing rearrangement we deduce that

‖ f∞‖L1(Ω) = ‖ f ∗∞‖L1(Ω∗) =
∫ R

0
sN−1 f ∗∞(s)ds

and

R =

(
|Ω|
ωN

)1/N

.

Thus assumption (1.9) is equivalent to the condition (3.5). By Proposition 3.1, we get that
the solution U∞ of (1.12) satisfies U∞ ≡ 0 in Ω∗. Then, from inequality (1.18) we deduce that
u∗∞(x)≡ 0 in Ω∗, which implies that u∞(x)≡ 0 in Ω.
Proof of ii). We note that assumption (1.11) implies that

1
gRN−1

∫ R

0
sN−1 f ∗∞(s)ds > 1.

Thus, since ψ(r) is strictly increasing and ψ(0) = 0, necessarily, there is a unique R0 ∈ (0,R)
such that

1
gRN−1

0

∫ R0

0
sN−1 f ∗∞(s)ds = 1, (3.15)

and condition (3.7) holds. Then, by Proposition 3.1 we know that ∇U∞ = 0 on the ball B(0,R0).
But, from (1.19) we get that ∇u∗∞(x) = 0 on the ball B(0,R0). This implies that u∗∞(x) is a
positive constant on the ball B(0,R0), and then the “solid region” (the set S (u∞) = {x ∈ Ω :
∇u∞(x) = 0}) has a positive measure: in fact

|S (u∞)| ≥ ωNRN
0 .

Moreover, from the proof of ii) we know that S (u∗∞) =
{

x ∈Ω: u∗∞(x) = ‖u∗∞‖L∞(Ω∗)

}
and

since ‖u∗∞‖L∞(Ω∗) = ‖u∞‖L∞(Ω) we conclude that S (u∞)⊂
{

x ∈Ω: u∞(x) = ‖u∞‖L∞(Ω)

}
.�

3.3. The parabolic symmetrized problem. We consider now the parabolic problem (1.1) for
Ω=B(0,R) and radially symmetric, with non-increasing profiles data, u0 and f∞. As mentioned
in the Introduction, given u0, f∞ ∈ L2(B(0,R)) the existence and uniqueness of solutions u ∈
C([0,+∞) : L2(B(0,R))) is a direct consequence of the results of [7].

Let us start by considering Property 1. Notice that the parabolic problem can be formulated
as a nice special case of the abstract Cauchy problem{ du

dt
(t)+Bu(t) 3 f (t) in X ,

u(0) = u0,

where X is a Banach space and B : D(B) ⊂ X →P(X) is an accretive operator. The general
question of the possible finite extinction time of the solution, when operator B is multivalued
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for u = 0, was analyzed firstly in Brézis ([8]) for the case of X = H a Hilbert space and then in
[13] for the case of a general Banach space. It was shown there that the necessary condition

f (t) ∈ B(0) for t large enough,

is almost sufficient. In our case we have a complete description of operator B

B : D(B)⊂ L2(Ω)→P(L2(Ω)),

Bu =−κ∆u−gdiv
(

∇u
|∇u|

)
, D(B) = H2(Ω)∩H1

0 (Ω),

nevertheless, the set B(0) is defined in a very implicit way and thus the abstract results of [8],
[17] for multivalued operators can not be directly applied. As in [1], it can be shown that

B(0)⊃ {c ∈ R: |c| ≤ g
N
R
},

A more direct formulation of the problem is the following:


∂u
∂ t

(t,r)− κ

rN−1
∂

∂ r
(rN−1 ∂u

∂ r
(t,r))− g

rN−1
∂

∂ r
(rN−1

λ (t,r)) = f∞(r), for t > 0,r ∈ (0,R),

u(t,R) = 0 and
∂u
∂ r

(t,0) = 0, for t > 0,

u(t,R) = u0(r) r ∈ (0,R),
(3.16)

for some scalar-valued function λ∈L2
loc(0,+∞ : L∞(0,R)) satisfying

|λ (t,r)| ≤ 1 and λ (t,r)
∂u
∂ r

(t,r) =
∣∣∣∣∂u
∂ r

(t,r)
∣∣∣∣ a.e. r ∈ (0,R), t > 0. (3.17)

Proposition 3.7. Let u0 ∈ L∞(B(0,R)), f∞ ∈ L∞ (B(0,R)) ,u0, f∞ ≥ 0, satisfying (3.1) and (3.4)
Let u(t,r) be the unique solution of (3.2). Then:

a) If

ψ(R) :=
1

gRN−1

∫ R

0
sN−1 f∞(s)ds < 1 (3.18)

then, for any u0 ∈ L∞(B(0,R)) there exists a finite time Tu0, f∞ > 0 such that u(t,r)
globally stops after Tu0, f∞, in the sense that u(t,r)≡ 0 a.e. in B(0,R), for any t ≥ Tu0, f∞ .
Moreover

Tu0, f∞ ≤
R‖u0‖L∞(B(0,R)

gN(1−ψ(R))
.

b) Assume (3.4) and that there exists a R0 ∈ (0,R) (R0 depending on g) such that

1
gRN−1

0

∫ R0

0
sN−1 f∞(s)ds = 1. (3.19)

Let u0 ∈H2(B(0,R))∩H1
0 (B(0,R)), u0 symmetric, non-negative and with non-increasing

profile, such that

κ

rN−1
d
dr

(rN−1 du0

dr
(r))+

g
rN−1

d
dr

(rN−1
λ0(r))+ f∞(r)≥ 0 in H−1(0,R), (3.20)
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for some λ0(r) ∈ sign
(

du0
dr (r)

)
a.e. in (0,R) and with S(u0)⊂ B(0,R0). Then ∂u

∂ t (t,r)≥
0 a.e. r ∈ (0,R) and a.e. t > 0, the profile of the solution u(t,r) is non-increasing in r,
for any t ≥ 0, and we have

S(u(t))⊂ B(0,R0) for any t ≥ 0,

with
u(t,r) = ‖u(t)‖L∞(B(0,R)) on S(u(t)), for any t ≥ 0.

c) Under the same conditions than in b), u(t)→ u∞ in H1
0 (B(0,R)) as t →+∞, where u∞

is the unique solution of problem (3.2), and there exits a R∗ ∈ (0,R) such that

‖u(t)−u∞‖C0([R∗,R]) > 0 for any t > 0.

Proof. To prove part a) we will use the comparison principle. Let us show that we can construct
a supersolution u(t,r) = α(t) such that α(t) = 0 for t ≥ Tu0, f∞ for some Tu0, f∞ > 0. Then from
the comparison inequalities 0 ≤ u(t,r) ≤ α(t) for any t > 0 and a.e. r ∈ (0,R) we deduce our
conclusion.
The non-trivial part of the proof is to characterize the condition on α(t) in order to know that
u(t,r) is a supersolution of problem (3.16). Since by construction S(u(t)) = B(0,R), then, as in
the proof of i) of Proposition 3.1, we must have

− g
rN−1

∂

∂ r
(rN−1

λ (t,r))≥ f∞(r)−α
′(t), r ∈ (0,R),

for some λ (t,r) such that
∣∣∣λ (t,r)∣∣∣≤ 1 a.e. (t,r) ∈ (0,+∞)× (0,R). Then

λ (t,r)≤− 1
grN−1

∫ r

0
sN−1 f∞(s)ds+

α ′(t)r
gN

.

Then, in order to know that
∣∣∣λ (t,r)∣∣∣≤ 1 it is enough to have that

−ψ(R)+
α ′(t)R

gN
≥−1

(with ψ(R) given in (3.18)) to conclude that u(t,r) is a supersolution (see, e.g., the proof of
Theorem 4 of [1]). Thus we must have

α
′(t)≥−gN

R
(1−ψ(R)).

But from the balance condition (3.18) we know that ψ(R)−1 < 0. Thus we can take

α(t) =
[

K− gN
R

(1−ψ(R))t
]
+

for any t ≥ 0,

for some K > 0. To check that

u0(r)≤ u(0,r) a.e. on B(0,R),

it is enough to take
K = ‖u0‖L∞(B(0,R),
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and the conclusion follows with

Tu0, f∞ ≤
R‖u0‖L∞(B(0,R))

gN(1−ψ(R))
.

Let us prove part b). As usual in the rearrangement theory, it is easy to see that the profile
of u(t,r) is non-decreasing in r ∈ (0,R). Moreover, the assumptions on u0(r) implies that
∂u
∂ t (t,r)≥ 0 a.e. t > 0 and a.e. r ∈ (0,R) (this is a classical result for m-accretive operators in a
Banach lattice (see, e.g., Proposition 1 of [4]). Then, on any positively measured subset of the
solid region S(u(t)) the equation in (3.16) reduces to the condition

− g
rN−1

∂

∂ r
(rN−1

λ (t,r)) = f∞(r)−
∂u
∂ t

(t,r), r ∈ S(u(t)).

Moreover, ∂u∞

∂ r (t,0) = 0 and if we denote by R0(t) (with R0(t) ∈ (0,R]) to the boundary of
S(u(t)), we get (since the profile of u(t,r) is non-decreasing) that necessarily

λ (t,r) =−ψ(t,r) =− 1
grN−1

∫ r

0
sN−1( f∞(s)−

∂u
∂ t

(t,r))ds a.e. r ∈ (0,R0). (3.21)

Moreover, if ψ∞(r) is the function defined by (3.12) in the proof of Proposition 3.1, then ψ∞(r)
is strictly increasing (since we are assuming (3.4)), and so

ψ(t,r)≤ ψ∞(r)< 1 a.e. r ∈ (0,R0) a.e. t > 0,

since ∂u
∂ t (t,r)≥ 0. In particular

λ (t,r)≥ λ∞(r)>−1 a.e. r ∈ (0,R0) a.e. t > 0.
This implies that S(u(t))⊂ B(0,R0) for any t ≥ 0.
The statement of part c) is an special case of Theorem 4 of [19].�

Remark 3.8. Notice that in the parabolic case it is assumed a strict inequality in the bal-
ance. Among other difficulties, notices that the estimate Tu0, f∞ ≤

R‖u0‖L∞(B(0,R))
gN(1−ψ(R)) is not useful

when ψ(R) = 1.

Remark 3.9. Part a) of Proposition 3.7 holds if we replace f∞(r) by a time dependent function
f (t,r)≥ 0, f ∈ L1

loc(0,+∞ : L∞ (B(0,R)) such that

f (t,r) = f∞(r) for a.e. t ≥ Tf > 0

with a function f∞(r) satisfying the conditions of Proposition 3.7. In that case we must take

K = ‖u0‖L∞(B(0,R)+
∫ Tf

0
‖ f (t,r)‖L∞(B(0,R))dt.

It suffices to use the fact that the realization of operator B on L∞ (B(0,R)) is T-accretive (see,
[5]).

Remark 3.10. Notice that, from the proof of part b) we also know that λ∞(r) = −1 for any
r ∈ [R0,R] (thanks to the assumption (3.4)) but now, in contrast with the stationary case, we do
not know if λ (t,r) = −1 on [R0,R] since the monotonicity of the function λ (t,r) is not evident
(due to the presence of the time derivative of the unknown).
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3.4. Proof of Theorem 1.2. Proof of Theorem 1.2 To prove part i) we apply part 2 of Theorem
1.3. Then it suffices to show that if U(t,x) is the unique solution of problem (1.13) then there
exists a finite time TU > 0 such that U(t) ≡ 0 for any t ≥ TU . This is a consequence of part a)
of Proposition 3.7. Indeed, if R > 0 is such that Ω∗ = B(0,R), from elementary properties of
the rearrangements, we know that u∗0, f ∗∞ ∈ L∞ (B(0,R)) ,u∗0, f ∗∞ ≥ 0 and satisfy (3.1) and (3.4)
and the same for u∗0. We recall that, as in the proof of Theorem 1.1, the assumption (3.18) is
equivalent to the condition (1.10). Then we deduce that

TU ≤ Tu0, f∞ ≤
R‖u0‖L∞(B(0,R))

gN(1−ψ∗(R))
,

where ψ∗ is the function ψ corresponding to the datum f ∗∞.
To prove (1.17) we recall that by a well-known result due to Hardy, Littlewood and Polya
[25], the inequality (1.20) implies that for any continuous, nondecreasing convex function Φ :
[0,+∞)→ [0,+∞) we have∫

B(0,r)
Φ(u∗(t,x))dx≤

∫
B(0,r)

Φ(U(t,x))dx, ∀t > 0, ∀r ∈ [0,R].

In particular, for any p ∈ [1,+∞]

‖u(t)‖Lp(Ω) ≤ ‖U(t)‖Lp(Ω∗) ∀t ≥ 0. (3.22)

In addition, given M > 0 . For any ε ∈ (0,M), consider any continuous, nondecreasing convex
function Φε : [0,+∞)→ [0,+∞) such that

Φε(s) = 0 if s ∈ [0,M− ε] and Φε(M) = 1.

Then, by taking M = MU(t) = ‖U(t)‖L∞(Ω∗) we have that, for any ε ∈ (0,MU(t))∫
B(0,r)

Φε(u∗(t,x))dx≤
∫

B(0,r)
Φε(U(t,x))dx,∀t > 0, ∀r ∈ [0,R].

Then, taking r = R∫
{x: u∗(t,x)≥MU (t)−ε}

Φε(u∗(t,x))dx≤
∫
{x: Φε (U(t,x))≥MU (t)−ε}

dx.

Letting ε ↓ 0 we obtain in the limit that, given t ≥ 0∣∣{x ∈Ω
∗ : u∗(t,x) = MU(t)}| ≤

∣∣{x ∈Ω
∗ : U(t,x) = MU(t)}

∣∣.
Then, from (3.22) we get that∣∣{x ∈Ω

∗ : u∗(t,x) = ‖u∗(t)‖L∞(Ω∗)}
∣∣≤ ∣∣{x ∈Ω

∗ : U(t,x) = MU(t)}.

Finally, since ‖u∗(t)‖L∞(Ω∗) = ‖u(t)‖L∞(Ω) we arrive to the desired conclusion.
The proof of part ii)) of Theorem 1.2 was given in the previous section (see Proposition 3.7).�

Remark 3.11. We do not know if in case i) the profile of the solution u(t, .) may have a solid
region before the finite time stopping time Tu0, f∞ . In the special case of the Total Variation
problem (κ = 0) it was shown in [1] (see also [3]) that the answer is affirmative but this is
possible since the solution u(t, .) is merely in BV (Ω): the case κ > 0 leads to more regular
solutions and the study made in [1] is not applicable.
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