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SMALL PARAMETER METHOD FOR OPTIMIZATION OF SINGULARLY
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Abstract. An overview of the results obtained for optimization problems of singularly perturbed systems in Minsk
by the optimal control research group is given. All the methods reviewed in the paper share the same research
methodology that is based on the idea of a finite dimensional parametrization of the solution of the optimal control
problem. The range of problems considered include problems with scalar and multidimensional control inputs,
time-optimal and terminal control problems, problems with linear terminal state constraints, and quadratic perfor-
mance indices.
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1. INTRODUCTION

The systems of differential equations with small parameters at some derivatives are usually
referred to as singularly perturbed systems. In the mathematical theory of optimal processes,
considerable attention is given to optimization problems for such systems, which is driven by
the effectiveness of asymptotic methods for solving them. It is well known that the numeri-
cal solution of optimal control problems involves repetitive integration of direct and conjugate
systems. If the problem contains singular perturbations, these dynamical systems are rigid,
resulting in serious difficulties during calculations such as unacceptably long computing time
and inevitable computation errors accumulation. On the contrary, asymptotic methods not only
avoid integration of singularly perturbed systems, but also reduce the original optimal control
problem to problems of smaller dimension that are easier to solve.

The most common approach used to investigate singularly perturbed optimal control prob-
lems is based on asymptotic decomposition of solutions of singularly perturbed differential
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equations that is applied to the boundary value problem of the maximum principle (see, e.g.
[1] – [6]). Such approach can be applied to build the solution asymptotics for problems with
an open control domain and smooth control inputs, i.e. variational type problems. In case of
geometric input constraints in the inequality form this approach encounters serious difficulties,
since the differential equations of the boundary value problem of the maximum principle do
not satisfy the smoothness assumption necessary for asymptotic methods application. Probably
for that reason the research in this case was mainly focused on the issue of a limiting problem,
i.e. the problem which solution is a limit in a certain topology of the solution of a singularly
perturbed problem when a small parameter tends to zero [7] – [11].

This paper presents an overview of the results obtained in Minsk by the Optimal Control re-
search group headed by R. Gabasov and F.M. Kirillova on optimization problems for singularly
perturbed systems. We concentrate on problems with terminal state constraints, i.e. with the
constraints on the right endpoint of the trajectory.

2. RESEARCH METHODOLOGY

We start with a definition of asymptotic approximations to solutions of optimization problems
for singularly perturbed systems with a small parameter µ > 0 at some derivatives.

Definition 2.1. A feasible control input satisfying the geometric input constraints is called an
asymptotically suboptimal control of order N (N = 0,1, ...) if it deviates from the optimal con-
trol in terms of the performance criterion by a value of order O(µN+1) and the corresponding
trajectory of the dynamical system satisfies the terminal constraints with the same infinitesimal
order.

Our research methodology is based on the idea of a finite dimensional parametrization of the
optimal solution. In many optimal control problems it is possible to specify finite dimensional
elements that allow to reconstruct the solution of the problem in a simple way. Importantly, in
perturbed problems these elements, as a rule, can be chosen in such a way that they smoothly
depend on a small parameter. We refer to these finite dimensional elements as the defining
elements of the solution.

Depending on a particular optimal control problem the defining elements can be the switching
time instants of bang-bang control inputs, the initial and final time instants of singular and quasi-
sigular arcs, the Lagrange multipliers, the duration of the control process (in the case when it is
not fixed) etc. If we denote by a1,a2, ...,ak the collection of all defining elements of the problem
under consideration and apply the maximum principle together with the feasibility conditions
to the reconstructed solution we obtain a system of algebraic equations of the form

Fi(a1,a2, . . . ,ak,µ) = 0, i = 1,k, (2.1)

where µ is a small parameter. Similarly to the defining elements, equations (2.1) are called the
defining equations. They result from the integration of direct and conjugate dynamical systems
that are also the perturbed systems. Using the method of boundary functions (see [12]), we
expand the functions Fi(a1,a2, ...,ak,µ), i = 1,k, in terms of the powers of the small parameter
µ

Fi(a1,a2, . . . ,ak,µ)∼ Fi0(a1,a2, . . . ,ak)+µFi1(a1,a2, . . . ,ak)+ . . . , i = 1,k.
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Then under the conditions of the implicit function theorem and applying the method of indefinite
coefficients we can find the asymptotics of the solution of system (2.1). To construct asymp-
totically suboptimal controls of a given order, it is sufficient to replace the unknown defining
elements ai(µ), i = 1,k, by their asymptotic approximations of the corresponding order.

The main difficulty in implementing the described scheme is to find the higher coefficients
of the defining elements expansion, i.e. the solutions of the zero-order approximation system

Fi0(a1,a2, . . . ,ak) = 0, i = 1,k. (2.2)

It turns out that if the original optimal control problem is singularly perturbed, then the roots
of system (2.2), as a rule, will be the defining elements of two optimal control problems of
smaller dimensions. One of them is degenerate and the other is chosen while analyzing system
(2.2), which constitutes an informal stage of the study.

The described approach is convenient for numerical implementation since calculations are
reduced to expansions of the finite-dimensional elements.

The asymptotic approximations of the defining elements can by further used to find their
exact values by the refining procedure proposed in [13].

3. PROBLEMS WITH SCALAR CONTROL INPUTS

The methodology described in the previous section was first applied to the time-optimal con-
trol problem for a linear time-invariant system with a scalar control input

ẏ = A1y+A2z+b1u, y(0) = y∗, y(T ) = 0,

µ ż = A3y+A4z+b2u, z(0) = z∗, z(T ) = 0,

|u(t)| ≤ 1, t ∈ [0,T ], J(u) = T →min,
(3.1)

where 0 < µ� 1, y∈Rn, z∈Rm. It is assumed that A4 is a stable matrix, i.e. all its eigenvalues
have negative real parts.

In [14], an algorithm for constructing asymptotically suboptimal controls of any order in
problem (3.1) was proposed. The defining elements in this case are the switching time instants
of the optimal control and the optimal final time T . The switching time instants are divided into
two groups. The first group contains instants that are close to the corresponding switching time
instants in the first basic problem

ẏ = A0y+b0u, y(0) = y∗, y(T ) = 0,

|u(t)| ≤ 1, t ∈ [0,T ], J0(u) = T →min, (3.2)

A0 = A1−A2A−1
4 A3, b0 = b1−A2A−1

4 b2.

The second group consists of the time instants that differ from the optimal final time by a
margin of order of µ . The number of these elements is equal to the number of switching time
instants in the solution of the second basic problem

dz
ds

= A4z+b2u, z(−∞) = A−1
4 b2, |u(s)| ≤ 1, s≤ 0,

z(0) = 0, J1(u) =
∫ 0

−∞

(u(s)+1)ds→min .

The optimal final time in the original singularly perturbed problem is close to the optimal
final time in problem (3.2).
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The computational procedure of the algorithm includes solving basic problems, integration of
systems of linear differential equations and finding the roots of non-degenerate linear algebraic
systems. Note that asymptotically suboptimal zero-order control is found immediately after
solving these problems.

In [15], an algorithm for constructing asymptotically suboptimal controls in a terminal control
problem for a linear time-invariant singularly perturbed system with a fixed final time and a
variable right endpoint of the trajectory was developed. The problem studied in [15] has the
form

ẏ = A1y+A2z+b1u, y(0) = y∗,
µ ż = A3y+A4z+b2u, z(0) = z∗, (3.3)

|u(t)| ≤ 1, t ∈ T = [0, t∗], H1y(t∗) = g1, H2z(t∗) = g2,

cT
1 y(t∗)+µcT

2 z(t∗)→max,
where 0 < µ � 1, y ∈ Rn, z ∈ Rm, g1 ∈ Rn1 , g2 ∈ Rm1 . As in the previous problem, the matrix
A4 is stable.

The defining elements in problem (3.3) are the switching time instants of optimal control. As
in problem (3.1), they are divided into two groups. The original problem in this case in split
into two basic problems, the first of them has the form

ẏ = A0y+b0u, y(0) = y∗, |u(t)| ≤ 1, t ∈ T,

H1y(t∗) = g1, cT
1 y(t∗)→max .

The second basic problem is
dz
ds

= A4z−u0(t∗)b2u, z(−∞) =−u0(t∗)A−1
4 b2,

|u(s)| ≤ 1, s≤ 0, H2z(0) = H2A−1
4 A3y0(t∗)+g2,

cT z(0)−|bT
0 ψ

0(t∗)|
∫ 0

−∞

(u(s)+1)ds→max,

where c= c2+(A2A−1
4 )T ψ0(t∗), u0(t) is the optimal control in the first basic problem, and y0(t),

ψ0(t) are the corresponding solutions of the direct and conjugate systems. As in the previous
problem, asymptotically suboptimal zero-order control can be constructed immediately after
solving the basic problems.

The results obtained in [14, 15] were generalized in [16, 17] to the case of nonlinear singularly
perturbed systems of the form

ẏ = a1(y, t)+A1(y, t)z+b1(y, t)u,

µ ż = a2(y, t)+A2(y, t)z+b2(y, t)u.
The papers [18, 19] were devoted to asymptotic optimization of linear singularly perturbed

systems containing at derivatives the parameters of various orders of smallness. The algorithms
proposed in these papers developed the results obtained in [14, 15].

In [20], an algorithm was developed that is aimed at construction the of asymptotically sub-
optimal control of a given order in a minimum force problem for a linear singularly perturbed
system

ẏ = A1y+A2z+b1u, µ ż = A3y+A4z+b2u,
y(0) = y∗ 6= 0, z(0) = z∗, y(t∗) = 0,z(t∗) = 0, (3.4)
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J(u) = sup
t∈[0,t∗]

|u(t)| →min,

with a scalar control and a stable matrix A4.
The defining elements in problem (3.4) are the switching time instants of the optimal control

and the optimal input intensity (the optimal value of the problem). The basic problems in this
case have the form

ẏ = A0y+b0u, y(0) = y0, y(t∗) = 0,

J1(u) = sup
t∈[0,t∗]

|u(t)| →min;

dz
ds

= A4z+b2u, s≤ 0, z(−∞) = A−1
4 b2, z(0) = 0, |u(s)| ≤ 1,

|u(s)| ≤ 1, J2(u) =
∫ 0

−∞

(u(s)+1)ds→min .

Paper [21] was devoted to the construction of asymptotically suboptimal controls in a linear-
quadratic problem

ẏ = A1y+A2z+b1u, y(0) = y∗ 6= 0, y(t∗) = 0,

µ ż = A3y+A4z+b2u,z(0) = z∗,z(t∗) = 0, (3.5)

|u(t)| ≤ 1, t ∈ [0, t∗], J(u) =
1
2

∫ t∗

0
u2(t)dt→min,

where 0 < µ � 1, y ∈ Rn, z ∈ Rm, u is a scalar control and matrix A4 is stable.
The defining elements in this problem are the saturation time instants of optimal control and

the initial values (at the time instant t∗) of the conjugate variables. The saturation time instants
here are the endpoints of the intervals where the absolute value of the optimal control equals to
1.

Problem (3.5) decomposes into two basic problems of the form

ẏ = A0y+b0u, y(0) = y∗ 6= 0, y(t∗) = 0,

|u(t)| ≤ 1, t ∈ [0, t∗], J1(u) =
1
2

∫ t∗

0
u2(t)dt→min;

dz
ds

= A4z+b2u, z(0) = 0, z(−∞) =−u0(t∗)A−1
4 b2,

|u(s)| ≤ 1, s≤ 0, J2(u) =
∫ 0

−∞

((u(s)−bT
0 ψ

0(t∗))2− c2)ds→min .

Here c = u0(t∗)−bT
0 ψ0(t∗), u0(t) is the optimal control of the first basic problem, ψ0(t) is the

corresponding solution of the conjugate system.
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4. PROBLEMS WITH MULTIDIMENSIONAL CONTROL INPUTS

In the problems discussed in the previous section, the control inputs were scalar, however,
the obtained results can be easily generalized to systems with multidimensional controls u(t) =
(u1(t), . . . ,ur(t)) if their values are subject to geometric constraints

ai ≤ ui(t)≤ bi, i = 1,2, . . . ,r.

At the same time, in many applied problems with multidimensional controls constraints on
their values have the form

||u(t)|| ≤ a,

where ||u|| =
√

u2
1 + . . .+u2

r is the Euclidean norm of the vector u. First of all, this applies to
control problems for mechanical systems in which the control inputs, as a rule, are bounded in
magnitude forces.

In [22], an algorithm was proposed for constructing asymptotically suboptimal controls of a
given order in the time-optimal control problem

ẏ = A1y+A2z+B1u, y(0) = y∗, y(T ) = 0,

µ ż = A3y+A4z+B2u, z(0) = z∗, z(T ) = 0, (4.1)

||u(t)|| ≤ 1, t ∈ [0,T ], J(u) = T →min,
where 0< µ� 1, u∈Rr, y∈Rn, z∈Rm. It is assumed that the matrix A4 is stable. The defining
elements in problem (4.1) are the optimal final time and the vector of conjugate variables at this
time instant. The initial problem in this case splits into two basic problems. The first of them is
the degenerate problem

ẏ = A0y+B0u, y(0) = y∗, y(T ) = 0,

||u(t)|| ≤ 1, t ∈ [0,T ], J0(u) = T →min,

A0 = A1−A2A−1
4 A3, B0 = B1−A2A−1

4 B2,

and the second basic problem has the form
dz
ds

= A4z+B2u, z(−∞) =−A−1
4 B2∆

0(T0)/||∆0(T0)||, ||u(s)|| ≤ 1, s≤ 0,

z(0) = 0, J1(u) =
∫ 0

−∞

(uT (s)∆0(T0)−||∆0(T0)||)ds→max,

where ∆0(t) = BT
0 ψ0(t), and ψ0(t), T0 are the vector of conjugate variables corresponding to

the optimal control and the final time in the first basic problem. The computational procedure
of the algorithm, in addition to solving the basic problems, includes integrating the systems of
linear differential equations and finding the roots of non-degenerate linear algebraic systems.
However, asymptotically suboptimal zero-order control can be formed immediately after solv-
ing these basic problems.

In [23], an algorithm was developed for constructing asymptotically suboptimal controls in
the problem of terminal control of a linear time-invariant singularly perturbed system on a fixed
control interval and subject to a variable right endpoint of the trajectory

ẏ = A1y+A2z+B1u, y(0) = y∗,

µ ż = A3y+A4z+B2u, z(0) = z∗, (4.2)
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||u(t)|| ≤ 1, t ∈ [0, t∗], H1y(t∗) = g1, H2z(t∗) = g2,

cT
1 y(t∗)+µcT

2 z(t∗)→max,
where 0 < µ� 1, u ∈Rr, y ∈Rn, z ∈Rm, g1 ∈Rn1 , g2 ∈Rm1 . As in the previous problems, the
matrix A4 is stable. The defining elements in problem (4.2) are the Lagrange multipliers. The
basic problems in this case have the form

ẏ = A0y+B0u, y(0) = y∗, ||u(t)|| ≤ 1, t ∈ [0, t∗],

H1y(t∗) = g1, J0(u) = cT
1 y(t∗)→max;

dz
ds

= A4z+B2u, z(−∞) =−A−1
4 B2u0(t∗), ||u(s)|| ≤ 1, s≤ 0,

H2z(0) = H2A−1
4 A3y0(t∗)+g2, J1(u) = cT

0 z(0)+
∫ 0

−∞

(uT (s)∆0(t∗)−||∆0(t∗)||)ds→max,

where c0 = c2 +(A2A−1
4 )T ψ0(t∗), u0(t) is the optimal control in the first basic problem, y0(t),

ψ0(t) are the corresponding solutions of direct and conjugate systems.
The results of papers [22, 23] are generalized in [24, 25] to the control problems for nonlinear

singularly perturbed systems

ẏ = a1(y, t)+A1(y, t)z+B1(y, t)u,

µ ż = a2(y, t)+A2(y, t)z+B2(y, t)u.

In paper [26], the results obtained in [20] were generalized to systems with multidimensional
controls.

In [27], an optimization problem for a linear singularly perturbed system with an integral
quadratic performance index is investigated

ẏ = A1(t)y+A2(t)z+B1(t)u, y(t∗) = y∗,

µ ż = A3(t)y+A4(t)z+B2(t)u, z(t∗) = z∗, (4.3)

y(t∗) = 0, z(t∗) = 0, J(u) =
1
2

∫ t∗

t∗
(yT M(t)y+µzT L(t)z+uT P(t)u)dt→min,

where 0 < µ � 1, u ∈ Rr, y ∈ Rn, z ∈ Rm, M(t), L(t) are positive semi-definite matrices, and
P(t) is a positive definite matrix for all t ∈ [t∗, t∗]. It is assumed that the eigenvalues of the
matrix A4(t) are negative at every time instant t ∈ [t∗, t∗].

The defining elements in problem (4.3) are the initial values (at time instant t∗) of the conju-
gate variables. The basic problems in this case are formulated as

ẏ = A0(t)y+B0(t)u, y(t∗) = y∗, y(t∗) = 0,

J1(u) =
1
2

∫ t∗

t∗
(yT M(t)y+uT P(t)u)dt→min,

A0(t) = A1(t)−A2(t)A−1
4 (t)A3(t), B0(t) = B1(t)−A2(t)A−1

4 (t)B2(t);
dz
ds

= A4(t∗)z+B2(t∗)u, z(0) = A−1
4 (t∗)B2(t∗)u0(t∗),

z(−∞) = 0, J2(u) =
1
2

∫ 0

−∞

(uT (s)P(t∗)u(s))ds→min,

where u0(t), t ∈ [t∗, t∗], is the optimal control in the first basic problem.
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In addition to asymptotic approximations to the optimal open-loop control, asymptotic ap-
proximations of zero and first order for the optimal feedback are constructed in [27].

Definition 4.1. A vector function u(N)(y,z, t,µ) is called an asymptotically suboptimal feedback
of order N if for any initial state (t∗,y∗,z∗)), t∗ < t∗, the equality holds

u(N)(y∗,z∗, t∗,µ) = u(N)(t∗,µ),

where u(N)(t,µ), t ∈ [t∗, t∗], is the asymptotically suboptimal open-loop control of order N.

In [28], the results obtained in [27] were generalized to problems with a variable endpoint of
the trajectory

ẏ = A1(t)y+A2(t)z+B1(t)u, y(t∗) = y∗,

µ ż = A3(t)y+A4(t)z+B2(t)u, z(t∗) = z∗, (4.4)

H1y(t∗) = g1, H2z(t∗) = g2, J(u) =
1
2

∫ t∗

t∗
(yT M(t)y+µzT L(t)z+uT P(t)u)dt→min,

where 0 < µ � 1, u ∈ Rr, y ∈ Rn, z ∈ Rm, g1 ∈ Rn1 , g2 ∈ Rm1 , M(t), L(t) are positive semi-
definite and P(t) is a positive definite symmetric matrices for all t ∈ [t∗, t∗]. As in the previous
problem, it is assumed that all eigenvalues of the matrix A4(t) are negative at every time instant
t ∈ [t∗, t∗]. The defining elements in problem (4.4) are the Lagrange multipliers. The basic
problems in this case have the form

ẏ = A0(t)y+B0(t)u, y(t∗) = y∗, H1y(t∗) = g1,

J1(u) =
1
2

∫ t∗

t∗
(yT M(t)y+uT P(t)u)dt→min,

A0(t) = A1(t)−A2(t)A−1
4 (t)A3(t), B0(t) = B1(t)−A2(t)A−1

4 (t)B2(t);

dz
ds

= A4(t∗)z+B2(t∗)u, z(0) = H2A−1
4 (t∗)(A3(t∗)y0(t∗)+B2(t∗)u0(t∗))+g2,

z(−∞) = 0, J2(u) =
1
2

∫ 0

−∞

(uT (s)P(t∗)u(s))ds→min,

where u0(t), y0(t), t ∈ [t∗, t∗], are the optimal control and trajectory in the first basic problem.
As in [27], asymptotically suboptimal feedbacks of zero and first order were also constructed
for this problem.

5. CONCLUSION

The paper presents an overview of asymptotic methods for solving a wide range of optimiza-
tion problems for singularly perturbed systems that were developed in Minsk by the Optimal
Control research group. These methods utilize a unified methodology based on the idea of
the finite-dimensional parametrization of the optimal control. The principal advantage of the
proposed algorithms is a decomposition of the original singularly perturbed problems into two
optimal control problems of smaller dimensions. This decomposition allows to solve problems
with a large number of state variables efficiently.
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