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Abstract. The first author recently derived several approximation results by neural network operators. There, the
activation functions are induced by the arctangent, algebraic, Gudermannian and generalized symmetrical sigmoid
functions. The results we apply here are univariate on a compact interval, regular and fractional. The outcome is
the quantitative approximation of Brownian motion over the two dimensional sphere. We derive several Jackson
type inequalities estimating the degree of convergence of our neural network operators to a general expectation
function of Brownian motion. We give a detailed list of approximation applications regarding the expectation of
well known functions of Brownian motion. Smoothness of our functions is taken into account producing higher
speeds of approximation.
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1. INTRODUCTION

The first author of this paper in [1, 2] first established neural network approximation to contin-
uous functions with rated by very specifically defined neural network operators of Cardaliagnet-
Euvrard and ’Squashing’ types, by employing the modulus of continuity of the engaged func-
tion or its high order derivative, and producing very tight Jackson type inequalities. He treats
there both the univariate and multivariate cases. The defining these operators ’bell-shaped’
and ’squashing’ functions are assumed to be compact support. Also the first author inspired
by [17], continued his studies on neural networks approximation by introducing and using the
proper quasi-interpolation operators of sigmoidal and hyperbolic tangent type which resulted
into [4, 5, 6, 7, 9], by treating both the univariate and multivariate cases. He did also the corre-
sponding fractional cases [8, 10, 12].
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In [16], the first author continued similar studies for Banach space valued functions for activa-
tion functions deriving from the arctangent, algebraic, Gudermanian and generalized symmet-
rical sigmoid functions. The authors based and inspired by [22] perform here neural network
quantitative approximations to Brownian motion over the two dimensional sphere.

They present a series of Jackson type inequalities estimating the error of approximation to a
general expectation function of the Brownian motion and its derivative. They produce regular
and fractional calculus results. They finish with a lot of important applications.

2. ABOUT NEURAL NETWORK OPERATORS

2.1. About the arctangent activation function neural networks. We consider the function
arctan(x) =

∫ x
0

dz
1+z2 for all x ∈ R and use the function

h(x) :=
2
π

arctan
(

π

2
x
)
=

2
π

∫ πx
2

0

dz
1+ z2 ,x ∈ R.

which is a sigmoid type function and it is strictly increasing. We have that h(0) = 0, h(−x) =
−h(x), h(+∞) = 1, h(−∞) =−1, and h′(x) = 4

4+π2x2 for all x ∈ R. We consider the activation
function ψ1(x) = 1

4 (h(x+1)−h(x−1)) , x ∈ R, and we notice that ψ1(x) = ψ1(−x), i.e., it is
an even function. Since x+1 > x−1, then h(x+1)> h(x−1), and ψ1(x)> 0 for all x ∈R. We
see that ψ1(0) = 1

π
arctan

(
π

2

)∼= 0.319. Letting x > 0, we have that

ψ
′
1(x) =

1
4
(
h′(x+1)−h′(x−1)

)
=

−4π2x
(4+π2 (x+1)2))(4+π2 (x−1)2))

< 0.

Hence, ψ ′1(x) < 0 for x > 0, That is ψ1 is strictly decreasing on [0,+∞) , strictly increas-
ing on (−∞,0], and ψ ′1(0) = 0. Observe that limx→+∞ ψ1(x) = 1

4 (h(+∞)−h(+∞)) = 0 and
limx→−∞ ψ1(x) = 1

4 (h(−∞)−h(−∞)) = 0. That is the x-axis is the horizontal asymptote on ψ1.
Thus ψ1 is a bell symmetric function with maximum ψ1(0)∼= 0.319.

Theorem 2.1. ([11, p. 286]) We have that ∑
+∞

i=−∞
ψ1(x− i) = 1 for every x ∈ R.

Theorem 2.2. ([11, p. 287]) It holds
∫+∞

−∞
ψ1(x)dx = 1.

Hence, ψ1(x) is a density function on R.

Definition 2.3. Letting f ∈C ([a,b]), we call the first modulus of continuity of f at δ > 0 the
following ω1 ( f ,δ ) = supx,y∈[a,b]:|x−y|≤δ | f (x)− f (y)| . We have that ω1 ( f ,δ )−→ 0 if and only
if δ −→ 0.

Denote by b·c the integral part of the number and by d·e the ceiling of the number.

Definition 2.4. ([11]) Let f ∈C ([a,b]) and n ∈N : dnae ≤ bnbc. Define the real positive linear
network operator

1An ( f ,x) :=
∑
bnbc
k=dnae f ( k

n)ψ1(nx− k)

∑
bnbc
k=dnaeψ1(nx− k)

,x ∈ [a,b].

Clearly here 1An ( f ,x)∈C ([a,b]). In [11], we studied the pointwise and uniform convergence
of 1An ( f ,x) to f (x) with rates

Theorem 2.5. ([11]) Let f ∈C ([a,b]) ,0 < α < 1,n ∈ N : n1−α > 2,x ∈ [a,b]. Then
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(1)

|1An ( f ,x)− f (x)| ≤ 4.9737
[

ω1

(
f ,

1
nα

)
+

4‖ f‖
∞

π2 (n1−α −2)

]
=: ρ1( f ),

and
(2) ‖1An( f )− f‖

∞
≤ ρ1( f ). We notice that lim

n→∞
1An( f ) = f , pointwise and uniformly.

Definition 2.6. Let ν ≥ 0,n= dνe , f ∈ACn ([a,b]) (space of functions f with f (n−1) ∈AC ([a,b]),
absolutely continuous functions). We call left Caputo functional derivative (see [18, 49-52],
[21, 23]) the function Dν

∗α f (x) = 1
Γ(n−ν)

∫ x
α
(x− t)n−ν−1 f (n)(t)dt for every x ∈ [a,b], where Γ is

the gamma function Γ(ν) =
∫

∞

0 e−ttν−1dt,ν > 0. Notice Dν
∗α f ∈ L1 ([a,b]) and Dν

∗α f (x) exists
a.e. on [a,b]. We set D0

∗α f (x) = f (x) for every x ∈ [a,b].

Definition 2.7. (see also [3, 20, 21]) Let f ∈ ACm ([a,b]) ,m = dβe ,β > 0. The right Caputo
functional derivative of order β > 0 is given by Dβ

b− f (x) = (−1)m

Γ(m−β )

∫ b
x (ζ − x)m−β−1 f (m)(ζ )dζ ,

for every x ∈ [a,b] . We set D0
b− f (x) = f (x). Notice that Dβ

b− f ∈ L1 ([a,b]) and Dβ

b− exists a.e.
on [a,b].

We also mention the real valued fractional approximation result by neural networks.

Theorem 2.8. ([11]) Let 0 < α < 1, f ∈C1 ([a,b]) ,0 < β < 1,x ∈ [a,b],n ∈N : n1−β > 2. Then

|1An( f ,x)− f (x)| ≤ 4.9737
Γ(α +1)

ω1

(
Dα

x− f , 1
nβ

)
[a,x]

+ω1

(
Dα
∗x f , 1

nβ

)
[x,b]

nαβ
+

+
2

π2
(
n1−β −2

) (∥∥Dα

x− f
∥∥

∞,[a,x] (x−a)α +‖Dα
∗x f‖

∞,[x,b] (b− x)α

)}
.

As we see here that we obtain the real valued fractionally type pointwise convergence with
rates of 1An −→ I the unit opertor as n−→ ∞.

2.2. About the algebraic activation function neural networks. Here see also [13].
We consider the generator algebraic function ϕ(x) = x

2m√1+x2m
, m ∈ N, x ∈ R, which is a

sigmoidal type of function and is a strictly increasing function. We see that ϕ(−x) = −ϕ(x)
with ϕ(0) = 0. We obtain that

ϕ
′(x) =

1

(1+ x2m)
2m+1

2m
> 0, for every x ∈ R,

proving ϕ as strictly increasing over R, ϕ ′(−x) = ϕ ′(x). We easily find that

lim
x→+∞

ϕ(x) = 1,ϕ(+∞) = 1, and lim
x→−∞

ϕ(x) =−1,ϕ(−∞) =−1.

We consider the activation function ψ2(x) = 1
4 [ϕ(x+1)−ϕ(x−1)] . Clearly, it is ψ2(x) =

ψ2(−x) for every x ∈ R, so ψ2 is an even function and symmetric with respect to the y-axis.
Clearly ψ2(x) > 0, for every x ∈ R. Also it is ψ2(0) = 1

2 2m√2
, m ∈ N. By [13], we have that
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ψ ′2(x) < 0, for x > 0. That is ψ2 is strictly decreasing over [0,+∞). Clearly ψ2 is strictly in-
creasing over (−∞,0] and ψ ′2(0) = 0. Furthermore, we obtain that

lim
x→+∞

ψ1(x) =
1
4
(ϕ(+∞)−ϕ(+∞)) = 0,

and
lim

x→−∞
ψ2(x) =

1
4
(ϕ(−∞)−ϕ(−∞)) = 0,

which is the x-axis is the horizontal asymptote on ψ2 . Conclusion, ψ2 is a bell shape symmetric
function with maximum ψ2(0) = 1

2 2m√2
,m ∈ N.

Theorem 2.9. ([13]) It holds ∑
+∞

i=−∞
ψ2(x− i) = 1 for every x ∈ R.

Theorem 2.10. ([13, p. 287]) It holds
∫+∞

−∞
ψ2(x)dx = 1.

So ψ2 is a density function.

Definition 2.11. ([13]) Let f ∈C ([a,b]) and n ∈ N : dnae ≤ bnbc. We introduce and define the
real positive valued linear network operator

2An ( f ,x) :=
∑
bnbc
k=dnae f ( k

n)ψ2(nx− k)

∑
bnbc
k=dnaeψ2(nx− k)

,x ∈ [a,b].

Clearly here 2An ( f ,x) ∈ C ([a,b]). We mention here about the pointwise and uniform con-
vergence of 2An ( f ,x) to f (x) with rates.

Theorem 2.12. ([13]) Let f ∈C ([a,b]) ,0 < α < 1,n ∈ N : n1−α > 2,x ∈ [a,b],m ∈ N. Then
(1)

|2An( f ,x)− f (x)| ≤ 2
(

2m
√

1+4m
)[

ω1

(
f ,

1
nα

)
+

‖ f‖
∞

2m(n1−α −2)2m

]
=: ρ2( f ),

and
(2) ‖2An( f )− f‖

∞
≤ ρ2( f ).

Hence, lim
n→+∞

2An( f ) = f , pointwise, and uniformly.

Theorem 2.13. ([13]) Let 0 < α < 1, f ∈C1 ([a,b]) ,0 < β < 1,m∈N,x∈ [a,b],n∈N : n1−β >
2. Then

|2An( f ,x)− f (x)| ≤ 2 2m
√

1+4m
Γ(α +1)

ω1

(
Dα

x− f , 1
nβ

)
[a,x]

+ω1

(
Dα
∗x f , 1

nβ

)
[x,b]

nαβ
+

+
1

4m
(
n1−β −2

)2m

(∥∥Dα

x− f
∥∥

∞,[a,x] (x−a)α +‖Dα
∗x f‖

∞,[x,b] (b− x)α

)}
.

As we see here that we obtain the real valued functionally type pointwise convergence with
rates of 2An→ I the unit operator as n→ ∞.
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2.3. About the Gudermannian activation function neural networks. We consider gd(x) the
Guardemannian function [14], which is a sigmoid function, as a generator function:

σ(x) = 2arctan
(

tanh
(x

2

))
=
∫ x

0

dt
cosht

=: gd(x),x ∈ R.

Let the normalized generator sigmoid function

f (x) :=
4
π

σ(x) =
4
π

∫ x

0

dt
cosht

=
8
π

∫ x

0

1
et + e−t dt, x ∈ R.

Here f ′(x) = 4
πcosh(x) > 0 for every x ∈ R. Hence f is strictly increasing on R. Notice that

tanh(−x) = −tanh(x) and arctan(−x) = −arctan(x),x ∈ R. So, here the neural network acti-
vation function is ψ3(x) = 1

4 [ f (x+1)− f (x−1)] for all x ∈ R. By [14], we see that ψ3(−x) =
ψ3(x) for every x ∈ R, i.e., it is even and symmetric with respect to the y−axis. Here, we have
f (+∞) = 1, f (−∞) = 1 and f (0) = 0. Clearly, it is f (−x) = − f (x) for every x ∈ R, an odd
function, symmetric with respect to the origin. Since x+ 1 > x− 1 and f (x+ 1) > f (x− 1),
we obtain ψ3(x) > 0 for all x ∈ R. By [14], we have that ψ1(0) = 2

π
gd(1) ∼= 0.551. By [14],

ψ3 is strictly decreasing on [0,+∞), strictly increasing on (−∞,0], and ψ ′3(0) = 0. Also we
have that lim

x→+∞
ψ3(x) = lim

x→−∞
ψ3(x) = 0, which is the x−axis is the horizontal asymptote on

ψ3. Conclusion, ψ3 is a bell symmetric function with maximum ψ3(0)∼= 0.551 .

Theorem 2.14. ([14]) It holds that ∑
+∞

i=−∞
ψ3(x− i) = 1 for every x ∈ R

Theorem 2.15. ([14]) It holds that
∫+∞

−∞
ψ3(x)dx = 1.

So ψ3(x) is a density function.

Definition 2.16. ([14]) Let f ∈ C ([a,b]) and n ∈ N : dnae ≤ bnbc. Define the real positive
valued linear network operator

3An ( f ,x) :=

bnbc
∑

k=dnae
f ( k

n)ψ3(nx− k)

bnbc
∑

k=dnae
ψ3(nx− k)

,x ∈ [a,b].

Clearly, here 3An ( f ,x) ∈C ([a,b]). We mention here about the pointwise and uniform con-
vergence of 3An ( f ,x) to f (x) with rates.

Theorem 2.17. ([14]) Let f ∈C ([a,b]) ,0 < α < 1,n ∈ N : n1−α > 2,x ∈ [a,b]. Then
(1)

|3An ( f ,x)− f (x)| ≤ 2.412
[

ω1

(
f ,

1
nα

)
+

8‖ f‖
∞

πe(n1−α−2)

]
=: ρ3( f ),

and
(2) ‖3An( f )− f‖

∞
≤ ρ3( f ).

We obtain that lim
n→+∞

3An( f ) = f , pointwise and uniformly.

We also mention the following real valued functional approximation result by neural net-
works.
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Theorem 2.18. ([14]) Let 0 < α < 1, f ∈ C1 ([a,b]) ,0 < β < 1,x ∈ [a,b],n ∈ N : n1−β > 2.
Then

|3An( f ,x)− f (x)| ≤ 2.412
Γ(α +1)

ω1

(
Dα

x− f , 1
nβ

)
[a,x]

+ω1

(
Dα
∗x f , 1

nβ

)
[x,b]

nαβ
+

+
1

π2
(
n1−β −2

) (∥∥Dα

x− f
∥∥

∞,[a,x] (x−a)α +‖Dα
∗x f‖

∞,[x,b] (b− x)α

)}
.

As we see here that we obtain the real valued functionally type pointwise convergence with
rates of 3An→ I the unit operator as n→ ∞.

2.4. About the generalized symmetrical activation function neural networks. Here we
consider the generalized symmetrical sigmoid function ([15, 19]) f1(x) = x

(1+|x|µ)
1
µ

, µ > 0,x ∈

R. This has applications in immunology and protection from disease together with probability
theory. It is also called a symmetrical protection curve. The parameter µ is a shape parameter
controling how fast the curve approaches the asymptotes for a given slope at the inflection point.
When µ = 1 f1 is the absolute sigmoid function, and when µ = 2 f1 is the square root sigmoid
function. When µ = 1.5 the function approximates the arctangent function, when µ = 2.9 it
approximates the logistic function, and when µ = 3.4 it approximates the error function. Pa-
rameter µ is estimated in the likelihood maximization ([19]) For more details, see [19]. Next,
we study the particular generator sigmoid function

f2(x) =
x(

1+ |x|λ
) 1

λ

,λ is an odd number, x ∈ R

We have that f2(0) = 0, and f2(−x) =− f2(x). So f2 is symmetric with respect to zero. When
x≥ 0, we obtain that ([15])

f ′2(x) =
1(

1+ xλ
) λ+1

λ

> 0,

that is f2 is strictly increasing on [0,+∞), strictly increasing on (−∞,0]. Hence f2 is strictly
increasing on R. We have that f2(+∞) = f2(−∞) = 1. Let us consider the activation function
([15]):

ψ4(x) =
1
4
[ f2(x+1)− f2(x−1)] =

ψ4(x) =
1
4

 x+1(
1+ |x+1|λ

) 1
λ

− x−1(
1+ |x−1|λ

) 1
λ

 .
Clearly, it holds ([15]) ψ4(−x) = ψ4(x) for every x∈R, ψ4(0) = 1

2 λ
√

2
, and ψ4(x)> 0, for every

x ∈ R. Following [15], we have that ψ4 is strictly decreasing on [0,+∞), strictly increasing on
(−∞,0], by ψ4−symmetry with respect to y−axis, and ψ ′4(0) = 0. Clearly, it is lim

x→+∞
ψ4(x) =
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lim
x→−∞

ψ4(x) = 0. Therefore the x−axis is the horizontal asymptote on ψ4(x) . The value ψ4(0) =
1

2 λ
√

2
, where λ is an odd number, is the maximum of ψ4, which is a bell shaped function.

Theorem 2.19. ([15]) It holds that ∑
+∞

i=−∞
ψ4(x− i) = 1 for every x ∈ R.

Theorem 2.20. ([15]) We have that
∫+∞

−∞
ψ4(x)dx = 1.

So ψ4(x) is a density function on R.

Definition 2.21. ([15]) Let f ∈ C ([a,b]) and n ∈ N : dnae ≤ bnbc. Define the real positive
valued linear network operator

4An ( f ,x) :=

bnbc
∑

k=dnae
f ( k

n)ψ4(nx− k)

bnbc
∑

k=dnae
ψ4(nx− k)

,x ∈ [a,b].

Clearly here 4An ( f ,x) ∈ C ([a,b]). We mention here about the pointwise and uniform con-
vergence of 4An ( f ,x) to f (x) with rates.

Theorem 2.22. ([15]) Let f ∈C ([a,b]) ,0 < α < 1,n ∈ N : n1−α > 2,x ∈ [a,b],λ ∈ N is odd.
Then

(1)

|4An ( f ,x)− f (x)| ≤ 2 λ
√

1+2λ

[
ω1

(
f ,

1
nα

)
+

‖ f‖
∞

λ (n1−α −2)λ

]
=: ρ4( f ),

and
(2) ‖4An( f )− f‖

∞
≤ ρ4( f ). Hence, lim

n→∞
4An( f ) = f , pointwise and uniformly.

Next, we mention the corresponding real valued fractional approximation result by neural
networks.

Theorem 2.23. ([15]) Let 0 < α < 1, f ∈ C1 ([a,b]) ,0 < β < 1,λ is odd x ∈ [a,b],n ∈ N :
n1−β > 2. Then

|4An( f ,x)− f (x)| ≤ 2 λ
√

1+2λ

Γ(α +1)
ω1

(
Dα

x− f , 1
nβ

)
[a,x]

+ω1

(
Dα
∗x f , 1

nβ

)
[x,b]

nαβ
+

+
1

2λ
(
n1−β −2

)λ

(∥∥Dα

x− f
∥∥

∞,[a,x] (x−a)α +‖Dα
∗x f‖

∞,[x,b] (b− x)α

)}
.

As we see here that we obtain real valued fractionally type pointwise convergence with rates
of 4An→ I the unit operator, as n→ ∞. We give the following unified definition.
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Definition 2.24. Let f ∈C ([a,b]) and n ∈N : dnae ≤ bnbc. Define the following positive linear
network operators ( j = 1,2,3,4)

jAn ( f ,x) :=

bnbc
∑

k=dnae
f ( k

n)ψ j(nx− k)

bnbc
∑

k=dnae
ψ j(nx− k)

,x ∈ [a,b].

Set

c j :=


4.9737, j = 1
2 2m
√

1+4m, j = 2,m ∈ N
2.412, j = 3

2 λ
√

1+2λ , j = 4,λ ∈ N is odd

.

Furthermore, let n,m ∈ N,0 < α < 1 and λ ∈ N is odd. Define,

γ j :=



4
π2(n1−α−2)

, j = 1
1

2m(n1−α−2)
2m , j = 2

8
πe(n1−α−2)

, j = 3
1

λ(n1−α−2)
λ
, j = 4

.

We present the unified basic result.

Theorem 2.25. Let f ∈C ([a,b]) ,0 < α < 1,n ∈ N : n1−α > 2,x ∈ [a,b], j = 1,2,3,4. Then

(1) ∣∣ jAn ( f ,x)− f (x)
∣∣≤ c j

[
ω1

(
f ,

1
nα

)
+ γ j(n)‖ f‖

∞

]
=: ρ j( f ),

and
(2) ∥∥ jAn( f )− f

∥∥
∞
≤ ρ j( f ).

Hence lim
n→∞

jAn( f ) = f , pointwise and uniformly.

Proof. From Theorems 2.5, 2.12, 2.17, and 2.22, we have the desired conclusion immediately.
�

Remark 2.26. Let m,n ∈ N,0 < β < 1 and λ ∈ N is odd. Set

ε j(n) :=



2
π2(n1−β−2)

, j = 1
1

4m(n1−β−2)
2m , j = 2

4
π2(n1−β−2)

, j = 3
1

2λ(n1−β−2)
λ
, j = 4.

.

Next, we present the following unified result.
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Theorem 2.27. Let 0 < α < 1, f ∈ C1 ([a,b]) ,0 < β < 1,x ∈ [a,b],n ∈ N : n1−β > 2, j =
1,2,3,4. Then ∣∣ jAn( f ,x)− f (x)

∣∣≤ c j

Γ(α +1)
ω1

(
Dα

x− f , 1
nβ

)
[a,x]

+ω1

(
Dα
∗x f , 1

nβ

)
[x,b]

nαβ
+

+ε j(n)
(∥∥Dα

x− f
∥∥

∞,[a,x] (x−a)α +‖Dα
∗x f‖

∞,[x,b] (b− x)α

)}
.

where c j as in (2.4). We have jAn( f ,x)→ f (x), as n→ ∞.

Proof. From Theorems 2.8, 2.13, 2.18, and 2.23, we obtain the desired conclusion immediately.
�

3. ABOUT BROWNIAN MOTION ON 2−DIMENSIONAL SPHERE

3.1. Describing the Brownian motion on S2. ([22]) The Brownian motion on Sn is a dif-
fusion (Markov) process Wt , t ≥ 0, on Sn whose transition density is a function P(t,x,y) on
(0,∞)×Sn×Sn satisfying ∂P

∂ t =
1
2∆nP, and P(t,x,y)→ δx(y) as t→ 0+, where ∆n is the Laplace-

Beltrami operator of Sn acting on the x-variables and δx(y) is the delta mass at x, i.e. P(t,x,y)
is the heat kernel of Sn. The heat kernel exists, it is unique, positive, and smooth in (t,x,y).

Remark 3.1. The heat kernel P(t,x,y) satisfies the following properties

(1) Symmetry: P(t,x,y) = P(t,y,x).
(2) The semigroup identity, for any s ∈ (0, t), P(t,x,y) =

∫
Sn P(s,x,z)P(t − s,z,y)dµ(z),

where dµ is the area measure element of Sn.
(3) For all t > 0 and x ∈ Sn ∫

Sn P(t,x,y)dµ(y) = 1.
(4) As t → ∞, P(t,x,y) approaches the uniform density on Sn, i.e. limt→∞ P(t,x,y) = 1

An
,

where An is the area of the Sn with radius a. It is also well known that

An =
2π

n+1
2 an

(n−1
2 )!

, for n odd

An =
2n(n

2 −1)!π
n
2 an

(n−1)!
, for n even.

Finally, the symmetry of Sn implies that P(t,x,y) depends only on t and d(x,y), the distance
between x and y. Thus in spherical coordinates it depends on t and the angle ϕ between x and
y. Hence, P(t,x,y) = p(t,ϕ), where p(t,ϕ) satisfies

∂ p
∂ t

=
1
2

∆n p =
1

2a2

[
(n−1)cotϕ · ∂ p

∂ϕ
+

∂ 2 p
∂ϕ2

]
and limt→0+ aAn−1 p(t,ϕ) · sinn−1

ϕ = δ (ϕ), where δ (·) is the standard Dirac delta function on
R.
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3.2. Explicit form of the heat kernel of S2. Let Wt , t ≥ 0 be the Brownian motion on a 2-
dimensional sphere S2 of radius a. The transition density function p(t,ϕ) of Xt is the unique
solution of

∂ p
∂ t

=
1

2a2 sinϕ

(
∂ 2 p(t,ϕ)

∂ϕ2 sinϕ +
∂ p
∂ϕ

cosϕ

)
and limt→0+ 2πa2 sinϕ · p(t,ϕ) = δ (ϕ). The solution to the diffusion equation

∂K(t,ϕ)
∂ t

=
1

sinϕ

(
cosϕ

∂K(t,ϕ)
∂ϕ

+ sinϕ
∂ 2K(t,ϕ)

∂ϕ2

)
with initial condition limt→0+ 2π sin(ϕ)K(t,ϕ) = δ (ϕ) is given by the function

K(t,ϕ) =
1

4π
∑

n∈N
(2n+1)exp

(
−n(n+1)

√
2t
)

P0
n (cosϕ).

Here P0
n , n = 0,1,2, . . . is the associated Legendre polynomials of order zero, i.e.,

P0
n (x) =

1
2nn!
· dn

dxn

[
(x2−1)n] .

This fact implies the following result.

Proposition 3.2. ([22]) The transition density function of the Brownian motion Wt , t ≥ 0 on S2

with radius a it is given by the function

p(t,ϕ) =
1

4πa2 ∑
n∈N

(2n+1)exp
(
−n(n+1)

√
t

a

)
P0

n (cosϕ).

Theorem 3.3. Consider function g : R→ R, which is bounded on [0,π], i.e. there exists M > 0
such that |g(φ)| ≤ M, for every φ ∈ [0,π] , and Lebesgue measurable on R. Let also W (t,φ)
be the Brownian motion on S2. Then the expectation E (|g(W )|)(t) =

∫
π

0 |g(φ)| p(t,φ)dφ is
continuous in t, and E (|g(W )|)(t)≤ πMp(to,φ0) , where p(t0,φ0)= max

(t,φ)∈[t1,t2]×[0,π]
p(t,φ) with

0 < t1 < t2, where p(t,φ) is the transition density function of the Brownian motion Wt , t ≥ 0 on
S2 given by (3.2).

Proof. It is known that the transition density function of the Brownian motion Wt , t ≥ 0 on
S2, p(t,φ) is continuous in (t,φ) ∈ [t1, t2]× [0,π] , t1 > 0. By the extreme value theorem, there
exists (t0,φ0) ∈ [t1, t2]× [0,π] such that p(t0,φ0) = max(t,φ)∈[t1,t2]×[0,π] p(t,φ) . So we have
0 ≤ p(t,φ) ≤ p(t0,φ0) for every (t,φ) ∈ [t1, t2]× [0,π] . Let N ∈ N, tN , t ∈ [t1, t2] : tN → t, as
N → ∞. Then, p(tN ,φ)→ p(t,φ) for every φ ∈ [0,π] . The function g : R→ R, is bounded
on [0,π] , i.e. there is a M > 0 such that |g(φ)| ≤ M, for every φ ∈ [0,π] , and Lebesgue
measurable on R. Furthermore, we have that |g(φ)| p(tN ,φ)→ |g(φ)| p(t,φ) as N → ∞ and
|g(φ)| p(tN ,φ) ≤ |g(φ)| p(to,φ0) for all φ ∈ [0,π] and N ∈ N. So, by dominated convergence
theorem, we obtain that E (|g(W )|)(tN) → E (|g(W )|)(t) as N → ∞. Thus E (|g(W )|)(t) is
proved to be continuous in t. Moreover, |g(φ)| p(t,φ) ≤ Mp(to,φ0) for all t ∈ [t1, t2] and φ ∈
[0,π]. Thus, E (|g(W )|)(t) =

∫
π

0 |g(φ)| p(t,φ)dφ ≤ πMp(to,φ0) . �

Proposition 3.4. Consider function g : R→ R, which is bounded on [0,π] and Lebesgue mea-
surable on R. Let also W (t,φ) be the Brownian motion on S2. Then the expectation E (|g(W )|)(t)
=
∫

π

0 |g(φ)| p(t,φ)dφ is differentiable in t, and ∂E(|g(W )|)
∂ t =

∫
π

0 |g(φ)|
∂ (p(t,φ))

∂ t dφ , which is con-
tinuous in t.
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Proof. As it is mentioned above, the transition density function of the Brownian motion Wt , t ≥ 0
on S2, p(t,φ) is continuous in (t,φ) ∈ [t1, t2]× [0,π] , t1 > 0. We have

E (|g(W )|) =
∫

π

0
|g(φ)| p(t,φ)dφ , for every t ∈ [t1, t2] .

We apply differentiation under the integral sign. We notice

|g(φ)| ∂ p(t,φ)
∂ t

≤M
∥∥∥∥∂ p(t,φ)

∂ t

∥∥∥∥
∞,[t1,t2]×[0,π]

.

Therefore, there exists
∂E (|g(W )|)

∂ t
=
∫

π

0
|g(φ)| ∂ (p(t,φ))

∂ t
dφ ,

which is continuous in t (same proof as in Theorem 3.3). �

4. MAIN RESULTS

We present the following general approximation results of Brownian Motion by neural net-
work operators.

Theorem 4.1. Let 0 < α < 1,n ∈ N : n1−α > 2, t ∈ [t1, t2], where t1 > 0, j = 1,2,3,4. Then,
(1) ∣∣ jAn (E (|g(W )|))(t)− (E (|g(W )|))(t)

∣∣
≤ c j

[
ω1

(
E (|g(W )|) , 1

nα

)
+ γ j(n)‖E (|g(W )|)‖

∞,[t1,t2]

]
=: ρ j(E (|g(W )|)),

and
(2)
∥∥ jAn(E (|g(W )|))−E (|g(W )|)

∥∥
∞,[t1,t2]

≤ ρ j(E (|g(W )|)). Then lim
n→∞

jAn(E (|g(W )|)) =
E (|g(W )|), pointwise and uniformly.

Proof. By Theorem 2.25, we have the desired conclusion immediately. �

Theorem 4.2. Let 0 < α < 1,n ∈ N : n1−α > 2, t ∈ [t1, t2], where t1 > 0, j = 1,2,3,4. Then,
(1) ∣∣∣∣ jAn

(
∂E (|g(W )|)

∂ t

)
(t)−

(
∂E (|g(W )|)

∂ t

)
(t)
∣∣∣∣≤

c j

[
ω1

((
∂E (|g(W )|)

∂ t

)
,

1
nα

)
+ γ j(n)

∥∥∥∥∂E (|g(W )|)
∂ t

∥∥∥∥
∞,[t1,t2]

]
=: ρ j

(
∂E (|g(W )|)

∂ t

)
,

and
(2) ∥∥∥∥ jAn(

∂E (|g(W )|)
∂ t

)− ∂E (|g(W )|)
∂ t

∥∥∥∥
∞,[t1,t2]

≤ ρ j(
∂E (|g(W )|)

∂ t
).

Then lim
n→∞

jAn(
∂E(|g(W )|)

∂ t ) = ∂E(|g(W )|)
∂ t , pointwise and uniformly.

Proof. By Theorem 2.25, we have the desired conclusion immediately. �

Next, we give the following fractional calculus related result.
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Theorem 4.3. Let 0 < α,β < 1, t ∈ [t1, t2], t1 > 0,n ∈ N : n1−β > 2, j = 1,2,3,4. Then∣∣ jAn (E (|g(W )|)(t))−E (|g(W )|)(t)
∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E (|g(W )|) , 1
nβ

)
[t1,t]

+ω1

(
Dα
∗tE (|g(W )|) , 1

nβ

)
[t,t2]

nαβ
+

+ε j(n)
(∥∥Dα

t−E (|g(W )|)
∥∥

∞,[t1,t]
(t− t1)α +‖Dα

∗tE (|g(W )|)‖
∞,[t,t2] (t2− t)α

)}
.

Then jAn(E (|g(W )|))(t)→ E (|g(W )|)(t), as n→ ∞.

Proof. By Theorem 2.27, we have the desired conclusion immediately. �

5. APPLICATIONS

For a function g : R→ R, which is bounded on [0,π] and Lebesgue measurable on R and
W (t,φ) the Brownian motion on S2, we use the following notations E (|g(W )|) := E (|g(W )|)(0)

and ∂E(|g(W )|)
∂ t := E (|g(W )|)(1) . We can apply our main results to function g(W ) =W . Consider

the function g :R→R, where g(x)= x for every x∈R. Let also W (t,φ) be the Brownian motion
on S2. Then the expectation E (|W |)(t) =

∫
π

0 φ p(t,φ)dφ is continuous in t. Moreover,

Corollary 5.1. Let 0<α < 1,n∈N : n1−α > 2, t ∈ [t1, t2], where t1 > 0, i= 0,1 and j = 1,2,3,4.
Then

(1) ∣∣∣ jAn

(
E (|W |)(i)

)
(t)−

(
E (|W |)(i)

)
(t)
∣∣∣≤

c j

[
ω1

(
E (|W |)(i) , 1

nα

)
+ γ j(n)

∥∥∥E (|W |)(i)
∥∥∥

∞,[t1,t2]

]
=: ρ j(E (|W |)(i)),

and
(2) ∥∥∥ jAn

(
E (|W |)(i)

)
−E (|W |)(i)

∥∥∥
∞,[t1,t2]

≤ ρ j(E (|W |)(i)).

Then lim
n→∞

jAn(E (|W |)(i)) = E (|W |)(i), pointwise and uniformly.

Proof. By Theorems 4.1 and 4.2, we have the desired conclusion immediately. �

Next, we give the following fractional calculus related result.

Corollary 5.2. Let 0 < α,β < 1, t ∈ [t1, t2], t1 > 0,n ∈ N : n1−β > 2, j = 1,2,3,4. Then∣∣ jAn (E (|W |)(t))−E (|W |)(t)
∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E (|W |) , 1
nβ

)
[t1,t]

+ω1

(
Dα
∗tE (|W |) , 1

nβ

)
[t,t2]

nαβ
+

+ε j(n)
(∥∥Dα

t−E (|W |)
∥∥

∞,[t1,t]
(t− t1)α +‖Dα

∗tE (|W |)‖
∞,[t,t2] (t2− t)α

)}
.

Hence, jAn(E (|W |))(t)→ E (|W |)(t), as n→ ∞.
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Proof. By Theorem 4.3, we have the desired conclusion immediately. �

For the next corollaries, we consider the function g : R→ R, where g(x) = cosx for every
x ∈ R. Let also W (t,φ) be the Brownian motion on S2. Then the expectation E (|cosW |)(t) =∫

π

0 |cosφ | p(t,φ)dφ is continuous in t.

Corollary 5.3. Let 0<α < 1,n∈N : n1−α > 2, t ∈ [t1, t2], where t1 > 0, i= 0,1 and j = 1,2,3,4.
Then

(1) ∣∣∣ jAn

(
E (|cosW |)(i)

)
(t)−

(
E (|cosW |)(i)

)
(t)
∣∣∣≤

c j

[
ω1

(
E (|cosW |)(i) , 1

nα

)
+ γ j(n)

∥∥∥E (|cosW |)(i)
∥∥∥

∞,[t1,t2]

]
=: ρ j(E (|cosW |)(i)),

and
(2) ∥∥∥ jAn

(
E (|cosW |)(i)

)
−E (|cosW |)(i)

∥∥∥
∞,[t1,t2]

≤ ρ j(E (|cosW |)(i)).

Then lim
n→∞

jAn(E (|cosW |)(i)) = E (|cosW |)(i), pointwise and uniformly.

Proof. By Theorems 4.1 and 4.2, we have the desired conclusion immediately. �

Next, we give the following fractional calculus related result.

Corollary 5.4. Let 0 < α,β < 1, t ∈ [t1, t2], t1 > 0,n ∈ N : n1−β > 2, j = 1,2,3,4. Then∣∣ jAn (E (|cosW |)(t))−E (|cosW |)(t)
∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E (|cosW |) , 1
nβ

)
[t1,t]

+ω1

(
Dα
∗tE (|cosW |) , 1

nβ

)
[t,t2]

nαβ
+

+ε j(n)
(∥∥Dα

t−E (|cosW |)
∥∥

∞,[t1,t]
(t− t1)α +‖Dα

∗tE (|cosW |)‖
∞,[t,t2] (t2− t)α

)}
.

Then jAn(E (|cosW |))(t)→ E (|cosW |)(t), as n→ ∞.

Proof. By Theorem 4.3, we have the desired conclusion immediately. �

Let the function g : R→R, where g(x) = sinx for every x ∈R. Let also W (t,φ) be the Brow-
nian motion on S2. Then the expectation E (|sinW |)(t) =

∫
π

0 sin(φ)p(t,φ)dφ is continuous in
t.

Corollary 5.5. Let 0<α < 1,n∈N : n1−α > 2, t ∈ [t1, t2], where t1 > 0, i= 0,1 and j = 1,2,3,4.
Then

(1) ∣∣∣ jAn

(
E (|sinW |)(i)

)
(t)−

(
E (|sinW |)(i)

)
(t)
∣∣∣≤

c j

[
ω1

(
E (|sinW |)(i) , 1

nα

)
+ γ j(n)

∥∥∥E (|sinW |)(i)
∥∥∥

∞,[t1,t2]

]
=: ρ j(E (|sinW |)(i)),

and
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(2) ∥∥∥ jAn

(
E (|sinW |)(i)

)
−E (|sinW |)(i)

∥∥∥
∞,[t1,t2]

≤ ρ j(E (|sinW |)(i)).

Then lim
n→∞

jAn(E (|sinW |)(i)) = E (|sinW |)(i), pointwise and uniformly.

Proof. By Theorems 4.1 and 4.2, we have the desired conclusion immediately. �

Next, we give the following fractional calculus related result.

Corollary 5.6. Let 0 < α,β < 1, t ∈ [t1, t2], t1 > 0,n ∈ N : n1−β > 2, j = 1,2,3,4. Then∣∣ jAn (E (|sinW |)(t))−E (|sinW |)(t)
∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E (|sinW |) , 1
nβ

)
[t1,t]

+ω1

(
Dα
∗tE (|sinW |) , 1

nβ

)
[t,t2]

nαβ
+

+ε j(n)
(∥∥Dα

t−E (|sinW |)
∥∥

∞,[t1,t]
(t− t1)α +‖Dα

∗tE (|sinW |)‖
∞,[t,t2] (t2− t)α

)}
.

Then jAn(E (|sinW |))(t)→ E (|sinW |)(t), as n→ ∞.

Proof. By Theorem 4.3, we have the desired conclusion immediately. �

Let the function g : R→ R, where g(x) = tanhx for every x ∈ R. Let also W (t,φ) be the
Brownian motion on S2. Then the expectation E (|tanhW |)(t) =

∫
π

0 |tanh(φ)| p(t,φ)dφ is con-
tinuous in t.

Corollary 5.7. Let 0<α < 1,n∈N : n1−α > 2, t ∈ [t1, t2], where t1 > 0, i= 0,1 and j = 1,2,3,4.
Then

(1) ∣∣∣ jAn

(
E (|tanhW |)(i)

)
(t)−

(
E (|tanhW |)(i)

)
(t)
∣∣∣≤

c j

[
ω1

(
E (|tanhW |)(i) , 1

nα

)
+ γ j(n)

∥∥∥E (|tanhW |)(i)
∥∥∥

∞,[t1,t2]

]
=: ρ j(E (|tanhW |)(i)),

and
(2) ∥∥∥ jAn

(
E (|tanhW |)(i)

)
−E (|tanhW |)(i)

∥∥∥
∞,[t1,t2]

≤ ρ j(E (|tanhW |)(i)).

Then lim
n→∞

jAn(E (|tanhW |)(i)) = E (|tanhW |)(i), pointwise and uniformly.

Proof. By Theorems 4.1 and 4.2, we have the desired conclusion immediately. �

Next, we give the following fractional calculus related result.

Corollary 5.8. Let 0 < α,β < 1, t ∈ [t1, t2], t1 > 0,n ∈ N : n1−β > 2, j = 1,2,3,4. Then∣∣ jAn (E (|tanhW |)(t))−E (|tanhW |)(t)
∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E (|tanhW |) , 1
nβ

)
[t1,t]

+ω1

(
Dα
∗tE (|tanhW |) , 1

nβ

)
[t,t2]

nαβ
+
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+ε j(n)
(∥∥Dα

t−E (|tanhW |)
∥∥

∞,[t1,t]
(t− t1)α +‖Dα

∗tE (|tanhW |)‖
∞,[t,t2] (t2− t)α

)}
.

Then jAn(E (|tanhW |))(t)→ E (|tanhW |)(t), as n→ ∞.

Proof. By Theorem 4.3, we have the desired conclusion immediately. �

In the following let as consider the function g : R→ R, where g(x) = e−`x, ` > 0 for every
x ∈ R. Let also W (t,φ) be the Brownian motion on S2. Then the expectation E

(
e−`x

)
(t) =∫

π

0 e−`φ p(t,φ)dφ is continuous in t.

Corollary 5.9. Let 0 < α < 1,n ∈ N : n1−α > 2, ` > 0 and t ∈ [t1, t2], where t1 > 0, i = 0,1 and
j = 1,2,3,4. Then

(1) ∣∣∣∣ jAn

(
E
(

e−`w
)(i))

(t)−
(

E
(

e−`w
)(i))

(t)
∣∣∣∣≤

c j

[
ω1

(
E
(

e−`w
)(i)

,
1

nα

)
+ γ j(n)

∥∥∥∥E
(

e−`w
)(i)∥∥∥∥

∞,[t1,t2]

]
=: ρ j(E

(
e−`w

)(i)
),

and
(2) ∥∥∥∥ jAn

(
E
(

e−`w
)(i))

−E
(

e−`w
)(i)∥∥∥∥

∞,[t1,t2]
≤ ρ j(E

(
e−`w

)(i)
).

We have that lim
n→∞

jAn(E
(
e−`w

)(i)
) = E

(
e−`w

)(i), pointwise and uniformly.

Proof. By Theorems 4.1 and 4.2, we have the desired conclusion immediately. �

Next, we give the following fractional calculus related result.

Corollary 5.10. Let 0 < α,β < 1, ` > 0, t ∈ [t1, t2], t1 > 0,n ∈N : n1−β > 2, j = 1,2,3,4. Then∣∣∣ jAn

(
E
(

e−`w
)
(t)
)
−E

(
e−`w

)
(t)
∣∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E
(
e−`w

)
, 1

nβ

)
[t1,t]

+ω1

(
Dα
∗tE
(
e−`w

)
, 1

nβ

)
[t,t2]

nαβ
+

+ε j(n)
(∥∥∥Dα

t−E
(

e−`w
)∥∥∥

∞,[t1,t]
(t− t1)α +

∥∥∥Dα
∗tE
(

e−`w
)∥∥∥

∞,[t,t2]
(t2− t)α

)}
.

We have jAn(E
(
e−`w

)
)(t)→ E

(
e−`w

)
(t), as n→ ∞.

Proof. By Theorem 4.3, we have the desired conclusion immediately. �

In the following we consider the logistic sigmoid function g : R→ R, where g(x) = 1
1+e−x

for every x ∈ R. Let also W (t,φ) be the Brownian motion on S2. Then the expectation
E
(

1
1+e−W

)
(t) =

∫
π

0
1

1+e−φ p(t,φ)dφ is continuous in t.

Corollary 5.11. Let 0 < α < 1,n ∈ N : n1−α > 2 and t ∈ [t1, t2], where t1 > 0, i = 0,1 and
j = 1,2,3,4. Then
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(1) ∣∣∣∣∣ jAn

(
E
(

1
1+ e−W

)(i)
)
(t)−

(
E
(

1
1+ e−W

)(i)
)
(t)

∣∣∣∣∣≤
c j

ω1

(
E
(

1
1+ e−W

)(i)

,
1

nα

)
+ γ j(n)

∥∥∥∥∥E
(

1
1+ e−W

)(i)
∥∥∥∥∥

∞,[t1,t2]

=: ρ j(E
(

1
1+ e−W

)(i)

),

and
(2) ∥∥∥∥∥ jAn

(
E
(

1
1+ e−W

)(i)
)
−E

(
1

1+ e−W

)(i)
∥∥∥∥∥

∞,[t1,t2]

≤ ρ j(E
(

1
1+ e−W

)(i)

).

We have that lim
n→∞

jAn(E
(

1
1+e−W

)(i)
) = E

(
1

1+e−W

)(i)
, pointwise and uniformly.

Proof. By Theorems 4.1 and 4.2, we have the desired conclusion immediately. �

Next, we give the following fractional calculus related result.

Corollary 5.12. Let 0 < α,β < 1, , t ∈ [t1, t2], t1 > 0,n ∈ N : n1−β > 2, j = 1,2,3,4. Then∣∣∣∣ jAn

(
E
(

1
1+ e−W

)
(t)
)
−E

(
1

1+ e−W

)
(t)
∣∣∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E
(

1
1+e−W

)
, 1

nβ

)
[t1,t]

+ω1

(
Dα
∗tE
(

1
1+e−W

)
, 1

nβ

)
[t,t2]

nαβ
+

+ε j(n)

(∥∥∥∥Dα

t−E
(

1
1+ e−W

)∥∥∥∥
∞,[t1,t]

(t− t1)α +

∥∥∥∥Dα
∗tE
(

1
1+ e−W

)∥∥∥∥
∞,[t,t2]

(t2− t)α

)}
.

We have jAn

(
E
(

1
1+e−W

))
(t)→ E

(
1

1+e−W

)
(t), as n→ ∞.

Proof. By Theorem 4.3, we have the desired conclusion immediately. �

Let now as consider the generalised logistic sigmoid function g : R → R, where g(x) =
(1+ e−x)

−δ , where δ > 0, for every x ∈ R. Let also W (t,φ) be the Brownian motion on S2.
Then the expectation E

((
1+ e−W)−δ

)
(t) =

∫
π

0
(
1+ e−φ

)−δ p(t,φ)dφ is continuous in t.

Corollary 5.13. Let 0 < α < 1,δ > 0,n ∈ N : n1−α > 2 and t ∈ [t1, t2], where t1 > 0, i = 0,1
and j = 1,2,3,4. Then

(1) ∣∣∣∣ jAn

(
E
((

1+ e−W)−δ
)(i))

(t)−
(

E
((

1+ e−W)−δ
)(i))

(t)
∣∣∣∣≤

c j

[
ω1

(
E
((

1+ e−W)−δ
)(i)

,
1

nα

)
+ γ j(n)

∥∥∥∥E
((

1+ e−W)−δ
)(i)∥∥∥∥

∞,[t1,t2]

]

=: ρ j

(
E
((

1+ e−W)−δ
)(i))

,
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and
(2)∥∥∥∥ jAn

(
E
((

1+ e−W)−δ
)(i))

−E
((

1+ e−W)−δ
)(i)∥∥∥∥

∞,[t1,t2]
≤ ρ j(E

((
1+ e−W)−δ

)(i)
).

We have that lim
n→∞

jAn(E
((

1+ e−W)−δ
)(i)

) = E
((

1+ e−W)−δ
)(i)

, pointwise and uni-
formly.

Proof. By Theorems 4.1 and 4.2, we have the desired conclusion immediately. �

Next, we give the following fractional calculus related result.

Corollary 5.14. Let 0 < α,β < 1,δ > 0, t ∈ [t1, t2], t1 > 0,n ∈N : n1−β > 2, j = 1,2,3,4. Then∣∣∣ jAn

(
E
((

1+ e−W)−δ
)
(t)
)
−E

((
1+ e−W)−δ

)
(t)
∣∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E
((

1+ e−W)−δ
)
, 1

nβ

)
[t1,t]

+ω1

(
Dα
∗tE
((

1+ e−W)−δ
)
, 1

nβ

)
[t,t2]

nαβ
+

+ε j(n)
(∥∥∥Dα

t−E
((

1+ e−W)−δ
)∥∥∥

∞,[t1,t]
(t− t1)α +

∥∥∥Dα
∗tE
((

1+ e−W)−δ
)∥∥∥

∞,[t,t2]
(t2− t)α

)}
.

We have jAn

(
E
((

1+ e−W)−δ
))

(t)→ E
((

1+ e−W)−δ
)
(t), as n→ ∞.

Proof. By Theorem 4.3, we have the desired conclusion immediately. �

The Gompertz function g : R→ R, with g(x) = eµe−x
,µ < 0 is a sigmoid function which

describes growth as being slowest at the start and end of a given time period. Let W (t,φ) be the
Brownian motion on S2. Then the expectation E

(
eµe−W

)
(t) =

∫
π

0 eµe−φ

p(t,φ)dφ is continuous
in t.

Corollary 5.15. Let 0 < α < 1,µ < 0,n ∈ N : n1−α > 2 and t ∈ [t1, t2], where t1 > 0, i = 0,1
and j = 1,2,3,4. Then

(1) ∣∣∣∣ jAn

(
E
(

eµe−W
)(i))

(t)−
(

E
(

eµe−W
)(i))

(t)
∣∣∣∣≤

c j

[
ω1

(
E
((

eµe−W
)(i)

,

)
1

nα

)
+ γ j(n)

∥∥∥∥E
((

eµe−W
)(i))∥∥∥∥

∞,[t1,t2]

]
=: ρ j

(
E
(

eµe−W
)(i))

,

and
(2) ∥∥∥∥ jAn

(
E
(
(eµe−W

)(i))
−E

((
eµe−W

)(i))∥∥∥∥
∞,[t1,t2]

≤ ρ j(E
(

eµe−W
)(i)

).

We have that lim
n→∞

jAn(E
(

eµe−W
)(i)

) = E
(

eµe−W
)(i)

, pointwise, and uniformly.

Proof. By Theorems 4.1 and 4.2, we have the desired conclusion immediately. �
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Next, we give the following fractional calculus related result.

Corollary 5.16. Let 0 < α,β < 1,µ < 0, t ∈ [t1, t2], t1 > 0,n ∈N : n1−β > 2, j = 1,2,3,4. Then∣∣∣ jAn

(
E
(

eµe−W
)
(t)
)
−E

(
eµe−W

)
(t)
∣∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E
(

eµe−W
)
, 1

nβ

)
[t1,t]

+ω1

(
Dα
∗tE
(

eµe−W
)
, 1

nβ

)
[t,t2]

nαβ
+

+ε j(n)
(∥∥∥Dα

t−E
(

eµe−W
)∥∥∥

∞,[t1,t]
(t− t1)α +

∥∥∥Dα
∗tE
(

eµe−W
)∥∥∥

∞,[t,t2]
(t2− t)α

)}
.

We have jAn

(
E
(

eµe−W
))

(t)→ E
(

eµe−W
)
(t), as n→ ∞.

Proof. By Theorem 4.3, we have the desired conclusion immediately. �

Another special case of The Gompertz functions is g : R→ R, with g(x) = e−eκx
,κ < 0. Let

W (t,φ) be the Brownian motion on S2. Then the expectation E
(

e−eκW
)
(t)=

∫
π

0 e−e−κφ

p(t,φ)dφ

is continuous in t.

Corollary 5.17. Let 0 < α < 1,κ < 0,n ∈ N : n1−α > 2 and t ∈ [t1, t2], where t1 > 0, i = 0,1
and j = 1,2,3,4. Then

(1) ∣∣∣∣ jAn

(
E
(

e−eκW
)(i))

(t)−
(

E
(

e−eκW
)(i))

(t)
∣∣∣∣≤

c j

[
ω1

(
E
((

e−eκW
)(i)

,

)
1

nα

)
+ γ j(n)

∥∥∥∥E
((

e−eκW
)(i))∥∥∥∥

∞,[t1,t2]

]
=: ρ j

(
E
(

e−eκW
)(i))

and
(2) ∥∥∥∥ jAn

(
E
(

e−eκW
)(i))

−E
(

e−eκW
)(i)∥∥∥∥

∞,[t1,t2]
≤ ρ j

(
E
(

e−eκW
)(i))

.

We have that lim
n→∞

jAn(E
(

e−eκW
)(i)

) = E
(

e−eκW
)(i)

, pointwise, and uniformly.

Proof. By Theorems 4.1 and 4.2, we have the desired conclusion immediately. �

Next, we give the following fractional calculus related result.

Corollary 5.18. Let 0 < α,β < 1,κ < 0, t ∈ [t1, t2], t1 > 0,n ∈N : n1−β > 2, j = 1,2,3,4. Then∣∣∣ jAn

(
E
(

e−eκW
)
(t)
)
−E

(
e−eκW

)
(t)
∣∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E
(

e−eκW
)
, 1

nβ

)
[t1,t]

+ω1

(
Dα
∗tE
(

e−eκW
)
, 1

nβ

)
[t,t2]

nαβ
+

+ε j(n)
(∥∥∥Dα

t−E
(

e−eκW
)∥∥∥

∞,[t1,t]
(t− t1)α +

∥∥∥Dα
∗tE
(

e−eκW
)∥∥∥

∞,[t,t2]
(t2− t)α

)}
.
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We have jAn

(
E
(

e−eκW
))

(t)→ E
(

e−eκW
)
(t), as n→ ∞.

Proof. By Theorem 4.3, we have the desired conclusion immediately. �

Finally, we consider the function g : R → R, with g(x) = P0
m (cosx), where P0

m(x) is the
Legendre Polynomial of degree m. Let W (t,φ) be the Brownian motion on S2. Then the expec-
tation E

(∣∣P0
m (cosW )

∣∣)(t) = ∫ π

0

∣∣P0
m (cosφ)

∣∣ p(t,φ)dφ is continuous in t.

Corollary 5.19. Let 0 < α < 1,n ∈ N : n1−α > 2 and t ∈ [t1, t2], where t1 > 0, i = 0,1 and
j = 1,2,3,4. Then

(1) ∣∣∣ jAn

(
E
(∣∣P0

m (cosW )
∣∣)(i))(t)−(E

(∣∣P0
m (cosW )

∣∣)(i))(t)∣∣∣≤
c j

[
ω1

(
E
((∣∣P0

m (cosW )
∣∣)(i) ,) 1

nα

)
+ γ j(n)

∥∥∥E
((∣∣P0

m (cosW )
∣∣)(i))∥∥∥

∞,[t1,t2]

]

=: ρ j

(
E
(∣∣P0

m (cosW )
∣∣)(i)) ,

and
(2)∥∥∥ jAn

(
E
(∣∣P0

m (cosW )
∣∣)(i))−E

(∣∣P0
m (cosW )

∣∣)(i)∥∥∥
∞,[t1,t2]

≤ ρ j

(
E
(∣∣P0

m (cosW )
∣∣)(i)) .

We have that lim
n→∞

jAn(E
(∣∣P0

n (cosW )
∣∣)(i)) = E

(∣∣P0
n (cosW )

∣∣)(i), pointwise, and uni-
formly.

Proof. By Theorems 4.1 and 4.2, we have the desired conclusion immediately. �

Next, we give the following fractional calculus related result.

Corollary 5.20. Let 0 < α,β < 1, t ∈ [t1, t2], t1 > 0,n ∈ N : n1−β > 2, j = 1,2,3,4. Then∣∣ jAn
(
E
(∣∣P0

m (cosW )
∣∣)(t))−E

(∣∣P0
m (cosW )

∣∣)(t)∣∣≤ c j

Γ(α +1)
ω1

(
Dα

t−E
(∣∣P0

m (cosW )
∣∣) , 1

nβ

)
[t1,t]

+ω1

(
Dα
∗tE
(∣∣P0

m (cosW )
∣∣) , 1

nβ

)
[t,t2]

nαβ
+

+ε j(n)
(∥∥Dα

t−E
(∣∣P0

m (cosW )
∣∣)∥∥

∞,[t1,t]
(t− t1)α +

∥∥Dα
∗tE
(∣∣P0

m (cosW )
∣∣)∥∥

∞,[t,t2]
(t2− t)α

)}
.

We have jAn
(
E
(∣∣P0

m (cosW )
∣∣))(t)→ E

(∣∣P0
m (cosW )

∣∣)(t), as n→ ∞.

Proof. By Theorem 4.3, we have the desired conclusion immediately. �
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