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1. INTRODUCTION

This problem was initially formulated in 2014 as one in economics, to modelize the competi-
tion between a new start firm trying to overcome a larger incumbent. Each was interested in two
criteria: margin and total sales, possibly sacrificing the former to increase the latter. However,
it can be seen as a pursuit problem per se, much in the spirit of the many such problems solved
yesteryear by my old friend Josef Shinar, who knew better than any of us mathematicians what
pursuit-evasion means, and to whose memory this article is dedicated.

1.1. The model. The pursuit takes place in the plane (x,y). The parameters of the model are:
• A positive definite 2× 2 matrix A, with A−1 = B, defining the shape of the odograph

domains (Isaacs’ vectorgrams) of the firms,
• two positive numbers r1 and r2 (for rate of change) defining the size of these domains,

with δ := r2− r1 > 0,
• a positive definite 2×2 matrix C, with C−1 = D defining the shape of the target set C,
• a positive number c defining the size of the target set.

For any 2×2 positive definite matrix M, and 2-vector h, we denote by ht the transpose of h, and
‖h‖M = 〈h,Mh〉1/2 = (htMh)1/2. (It is indeed a norm.)
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2 P. BERNHARD

Evader’s and Pursuer’s states z1 and z2 respectively, are of the form

zi =

(
xi
yi

)
, i = 1,2 .

Each is able to have these quantities move according to a velocity

żi = wi =

(
ui
vi

)
, i = 1,2 ,

constrained to stay in the ellipses Wi defined by

‖wi‖A ≤ ri .

Clearly, we may use coordinates centered on Pursuer, and set

z = z1− z2 , ż = w1−w2 , z(0) = z0 := z1(0)− z2(0) .

The aim of Pursuer is to reach as quickly as possible the capture set C= {z | ‖z‖C ≤ c}. More
precisely, it wishes to minimize the guaranteed time to capture, by using a nonanticipative
strategy. We make these concepts precise now.

1.2. Strategies and optimality. Let Wi, i = 1,2 be the set of measurable time functions wi(·)
from R+ into Wi. The following concept is classically used to mean that Pursuer, player 2, may
choose its control w2 as a function of past actions of Evader, player 1.

Definition 1.1. A nonanticipative strategy φ2 of Pursuer is a function from W1 into W2 satisfying
the property: ∀t ∈ R+, ∀w1(·),w′1(·) ∈W1,

[∀s < t,w1(s) = w′1(s)]⇒ [φ2(w1(·))(t) = φ2(w′1(·))(t)].
We denote by Φ2 the set of nonanticipative strategies of Pursuer.

A state feedback w2(t) = ϕ2(z(t)) generates a nonanticipative strategy if it ensures existence
of a unique solution to the differential equation in R2:

ż = w1−ϕ2(z) , z(0) = z0

from any initial condition z0 and for all w1(·) ∈W1.

Concerning the aim of Pursuer, we set:

Definition 1.2. We define the function capture time Tc from R2×W1×Φ2 into R+ as

Tc(z0;w1(·),φ2) = sup{t | ∀s ∈ (0, t),‖z(s)‖C > c}
where z(·) is the unique solution of the differential equation

ż(t) = w1(t)−φ2(w1(·))(t) , z(0) = z0 .

Definition 1.3. We define the guaranteed capture time G : R2×Φ2→ R+ as

G(z0;φ2) = sup
w1(·)∈W1

Tc(z0;w1(·),φ2) .

The aim of Pursuer is to find, if it exists, the strategy φ?
2 minimizing G:

V (z0) = G(z0;φ
?
2 ) = min

φ2∈Φ2
G(z0,φ2) = min

φ2∈Φ2
sup

w1(·)∈W1

Tc(z0;w1(·),φ2) .

We are therefore confronted with a classic pursuit-evasion differential game.
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1.3. Parametrization. One may obviously multiply A and r by the same positive number with-
out changing the odograph set Wi. Using this feauture, we may normalize the matrix A in the
following way: let a be a positive number, b and d be positive numbers whose squares add up
to 1 : b2 +d2 = 1, and

A =
1

a2d2

(
a2 ab
ab 1

)
, A−1 = B =

(
1 −ab
−ab a2

)
.

We rely heavily on the following simple result:

Lemma 1.4. Let A be a positive definite n×n matrix, h a vector of Rn, r a positive number, and

W = {w ∈ Rn | ‖w‖A ≤ r} ,
then

max
w∈W
〈h,w〉= r‖h‖A−1 , reached at w = ŵ =

r
‖h‖A−1

A−1h .

As a consequence, with our model, we have, for i = 1,2:

max
wi∈Wi

ui = ri , reached at wi = ri

(
1
−ab

)
,

max
wi∈Wi

vi = ari , reached at wi = ri

(
−b
a

)
.

and symmetrically with the opposite signs for the minima. Therefore, Wi is an ellipse centered
at the origin, inscribed in the rectangle u = ±ri, v = ±ari, which it touches at the points wi as
above and at the opposites. A further hint concerning the role of the parameters is that the area
of Wi is πadr2

i . As d approaches 0, and thus b approaches 1, the points of contact with the
rectangle collapse at the vertices of the rectangle in the first and third quadrants, and the ellipse
shrinks toward the line segment joining them.

A further useful result is that given vi such that |vi| ≤ ari, we have

ui ∈ [ϒ−i (vi),ϒ
+
i (vi)] , (1.1)

with

ϒ
−
i (v) =

1
a

(
−bv−d

√
a2r2

i − v2
)
, ϒ

+
i (v) =

1
a

(
−bv+d

√
a2r2

i − v2
)
. (1.2)

2. COMPLETE INFORMATION GAME

In this section, states and velocities may live in Rn for any integer n.

2.1. General case. Isaacs’ equation for this game is

∀z | ‖z‖C > c , 1+maxw1∈W1〈∇V (z),w1〉−maxw2∈W2〈∇V (z),w2〉= 0 ,
∀z | ‖z‖C = c , V (z) = 0 .

hence, according to Lemma 1.4,

∀z | ‖z‖C > c , 1−δ‖∇V (z)‖B = 0 , (2.1)

∀z | ‖z‖C = c , V (z) = 0 . (2.2)

And the minimizing strategy of Pursuer is

w2(t) = ϕ
?
2 (z(t)) :=

r2

‖∇V (z(t))‖B
B∇V (z(t)) .
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(We may also notice that the worst control w1(·) when Pursuer uses ϕ?
2 is generated by the same

strategy, mutatis mutandis.)
It follows from (2.2) that for any Z ∈ R2 such that ‖Z‖C = c, ∇V (Z) is orthogonal to the

boundary of the capture set C, i.e. parallel to CZ. Using further (2.1) (or rather its limit as
z→ ∂C), we obtain

∇V (Z) =
1

δ‖CZ‖B
CZ .

The equations of the characteristics, or adjoint equations, simply read
d
dt

∇V (z(t)) = 0 ,

hence ∇V (z(t)) is constant along an extremal trajectory. Thus, the extremal trajectory reaching
C in Z is given by

z(t) = Z +
δ

‖CZ‖B
BCZ(Tc− t) .

Moreover, Tc− t =V (z(t)) is the minimum guaranteed capture time. Let

p(t) :=
δ

‖CZ‖B
(Tc− t) ,

we therefore have, for the extremal rajectory reaching C at Z:

z(t) = (I + p(t)BC)Z .

Notice that the product of two positive definite matrices has all its eigenvalues strictly positive.
Hence (I + pBC) is always invertible:

Z = (I + pBC)−1z ,

and for a given z, p can be found by solving

‖(I + pBC)−1z‖C = c . (2.3)

(It may be noticed that Z is therefore the projection, in A-norm, of z on C.) A more appealing,
and numerically easier, form of this equation is

‖(D+ pB)−1z‖D = c . (2.4)

However, it has to be solved numerically for p, yielding

V (z) =
p
δ
‖(D+ pB)−1z‖B , (2.5)

and
ŵi = riω(z) , ω(z) =

1
‖(D+ pB)−1z‖B

B(D+ pB)−1z . (2.6)

Hence, both players should run in straight line in the direction ω , which may not be the pursuer’s
“line of sight” z.

It should be emphasized that, whatever Evader does, Pursuer should continuously solve equa-
tion (2.4) yielding p = p̂(z), and play

w2(t) = ϕ
?
2 (z(t))

with
ϕ
?
2 (z) =

r2

‖(D+ p̂(z)B)−1‖B
B(D+ p̂(z)B)−1z .
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By so doing, at each instant of time, it is guaranteed to “capture” Evader in no more time than
V (z(t)), which will be constant and equal to V (z(0)) if Evader plays optimally, and decreasing
with time otherwise. (It is further known that this is a saddle-point, so that the symmetric
statement holds true also.)

2.2. Two particular cases.

2.2.1. Case A = C. The above calculation simplifies greatly in case A = C, hence B = D, or
BC = I. In that case, equation (2.3) is simply (1+ p)−1‖z‖A = c, or

p̂(z) =
‖z‖A

c
−1

and, with an elementary calculation

V (z) =
1
δ
(‖z‖A− c) ,

and
ŵi =

ri

‖z‖A
z ,

i.e. a simple line chase where both players should run along the “line of sight” z = (z1− z2),
regardless for the fact that it may not be a direction of maximum velocity for them.

It is an elementary calculation to check that indeed, ∇V (z) = (1/δ‖z‖A)Az does satisfy
Isaacs’ equation (2.1)(2.2).

2.2.2. Point capture: c = 0. If capture is defined by exact coincidence of the two players’
states, i.e. z = 0, there is no C matrix anymore, but the above formulas remains correct with
c = 0:

V (z) =
‖z‖A

δ
, ŵi =

ri

‖z‖A
z .

This can be seen using, e.g. Tonelli’s construction in calculus of variations which tells us that
we do synthesize a valid Value function by integrating the adjoint equations backward from
z = 0 with all possible vectors λ such that ‖λ‖B = 1/δ as final value of ∇V .

Of course, as previously, the optimal chase is directly along the line of sight, and the optimal
escape as well.

3. PARTIAL INFORMATION GAME

We now turn to the problem where, as in PLato’s allegory of the cave, Pursuer only observes
Evader’s shade on the wall of the cave, say the y coordinate, but not the x coordinate. However,
it knows an interval [X−1 (0),X+

1 (0)] containing x1(0).

3.1. Fundamentals. We aim to apply the theory developed in [1, 3, 4] and more specifically
[5]. We consider a min-sup problem for the dynamics

ż = f (z,w1,w2) , z(0) = 0 , wi ∈Wi , i = 1,2 ,

and performance index

J =U(z(tc))+
∫ tc

0
L(z(t),w1(t),w2(t))dt . (3.1)
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The unknown quantity is ω = (z(0),w1(·)). The available measurement at time t is some
y(t) ∈ Y. The available information at time t is therefore y(s), s ∈ [0, t]. It defines a subset
Ωt , satisfying the axioms proposed in [3], the set of past ω compatible with the past observa-
tions.

One should compute the function “worst conditional cost to come”2 Wt(ζ ), maximum possi-
ble running cost from initial time to t for a trajectory compatible with the available information
at time t, and ending in z(t) = ζ :

Wt(ζ ) = sup
ω∈Ωt |z(t)=ζ

∫ t

0
L(z(s),w1(s),w2(s))ds .

The first step, thus, is to find a “filter” equation of the form

∂

∂ t
Wt = F(Wt ,y(t),w2(t)) , (3.2)

initialized at zero with the a priori information on the initial state z(0). This plays the role
of an (infinite dimensional) state in a Hamilton-Jacobi-Isaacs equation for the Value function
V (t,Wt):

∂V (t,Wt)

∂ t
+ min

w1∈W1
sup
y∈Y

DWV (t,Wt)F(Wt ,y(t),w2(t)) = 0 , (3.3)

V (tc,Wtc) = max
z

[U(z)+Wtc(z)] . (3.4)

where DWV is a chain derivative (see [2])3.
It yields both the optimum pursuit strategies as the maximizing and minimizing strategies in

the Isaacs equation (3.3), and the min-sup value as V (0,W0).

3.2. Point capture.

3.2.1. Information. We particularize the theory sketched above to our pursuit problem. Notice
first that, with the notation (3.1), we have L = 0. Therefore,

Wt(ζ ) =

{
0 if ζ is a possible current state given the information ,
−∞ if ζ is not a possible current state

Moreover, the set of current states compatible with the information is a line interval y = y2(t)−
y1(t) directly observed, and x1(t) ∈ [X−1 (t),X+

1 (t)], or x(t) = x1(t)− x2(t) ∈ [X−(t),X+(t)].
Thus, the function Wt is completely described by a 3-dimensional data. We assume that Evader
can observe ẏ, thus v1. And the filter equation is now, using (1.1) and (1.2):

Ẋ+ =
1
a

[
−bv1 +d

√
a2r2

1− v2
1

]
−u2 ,

Ẋ− =
1
a

[
−bv1−d

√
a2r2

1− v2
1

]
−u2 ,

ẏ = v1− v2 .

 (3.5)

2called informational state in [4]
3and not just a Gateaux derivative as stated in [5].
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3.2.2. Final phase. We state the following proposition:

Proposition 3.1. A min-sup chase necessarily ends with a line chase at y = 0.

Proof Capture implies y(tc) = 0. But moreover, in a min-sup sense, it cannot happen the first
time that y(t) = 0. Indeed, if it did, a different Evader’s strategy yielding the same information
would, against the same Pursuer’s strategy, avoid capture at that time instant, a contradiction
with the hypothesis that this is supremum of the capture time against Evader’s strategy.

We therefore investigate a final pursuit along y = 0. Let t0 be the time when it begins, and
[X−0 ,X+

0 ] be the interval of possible x at that time. We investigate only the case where the middle
point (X+

0 +X−0 )/2 is positive. The other case is symmetrical, as, as we will see, all happens at
v1 = v2 = 0.
Case X−0 ≥ 0. All the possible positions of Evader are “to the right” of Pursuer. It follows from
the same type of argument as above that a min-sup chase necessarily has Pursuer traverse all of
the set of possible Evader’s positions, hence reach X+(tc) = 0. During this chase, Pursuer must
keep v2 = v1. Its relative x-speed, or Excess speed E , as a function of v1 is

E (v1) = ϒ
+
2 (v1)−ϒ

+
1 (v1) =

d
a

(√
a2r2

2− v2
1−
√

a2r2
1− v2

1

)
.

Its derivative is easily seen to have the sign opposite of v1. It is therefore minimum at v1 = 0
and yields E = dδ .

The min-sup capture time is therefore

tc− t0 =
X+

0
dδ

.

Case X−0 ≤ 0 ≤ X+
0 . Pursuer has reached y = 0 in the set of possible Evader’s positions. We

investigate the sub-case where this happens “left” of the middle point: X+
0 +X−0 < 0. The other

case is symmetrical.
The min-sup chase is easily seen to include first an excursion of Pursuer to X−1 and from

there, traverse all the segment to X+
1 (tc). During that chase, the width X+(t)−X−(t) increases

at a rate F :

F (v1) = ϒ
+
1 (v1)−ϒ

−
1 (v1) =

2d
a

√
a2r2

1− v2
1 .

This is also maximized by v1 = 0, yielding F = 2dr1. So that there is no dilemma for Evader: it
should choose v1 = 0, simultaneously minimizing Pursuer’s speed superiority and maximizing
the rate of widening of the set of its possible positions.

Taking into account the two phases, the min-sup chase lasts

tc− t0 =
−X−0

E
+

1
E

(
X+

0 −X−0 +
−X−0

E
F

)
.

Replacing E and F by their above values yields

tc− t0 =
1

dδ 2 (δX+
0 −2r2X−0 ) .
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Summary of final phase. The final phase happens at y = 0. Pursuer should adapt its velocity v2
to stay equal to the observed v1, and choose its velocity u2 to reach as quickly as compatible
with v2 the closest of the two points X−1 (t) or X+

1 (t), then the other one. The guaranteed (min-
sup) capture time is reached if Evader happens to be at the farthest end of the segment [X−1 ,X+

1 ]
and chooses v1 = 0, and is U(X+(t),X−(t)) given by

U(X+,X−) =



X+

dδ
if 0≤ X− ,

1
dδ 2 (δX+−2r2X−) if −X+ ≤ X− ≤ 0 ,

1
dδ 2 (−δX−+2r2X+) if 0≤ X+ ≤−X− ,

−X−

dδ
if X+ ≤ 0 .

(3.6)

3.2.3. First phase. We may now consider the pursuit problem with dynamics (3.5) ending at
t0 = min{t | y(t) = 0}, with the final cost U as in (3.6) above. We are in the set up of a classical
3-D differential game. We call V its Value function. The problem is globally symmetrical with
respect to the origin. We will therefore investigate the half-space y ≥ 0. The other half-space
follows by symmetry.

Let

Z :=

 X+

X−

y

 , ∇V =

 ∂V/∂X+

∂V/∂X−

∂V/∂y

=

 λ

µ

ν

 ,
λ +µ = φ ,
λ −µ = ψ .

φ and ψ are the partial derivatives of V with respect to, respectively, the mid point and the half
width of the segment [X−,X+]. Let also

H1(∇V,v1) =

(
ν− bφ

a

)
v1 +

dψ

a

√
a2r2

1− v2
1 ,

H2(∇V,w2) = φu2 +νv2 .

Isaacs’ equation reads{
∀t < t0 , 1+ max

v1∈[−ar1,ar1]
H1(∇V,v1)− max

w2∈W2
H2(∇V,w2) = 0 ,

t = t0 , V (t0,Z) =U(X+,X−) .

It is convenient to introduce the quantity

χ := aν−bφ .

One easily sees that the maximum of H1 is reached at

v1 = v̂1 = r1
aχ√

χ2 +d2ψ2
⇒ ϒ

±
1 (v̂1) = r1

−bχ±d2ψ√
χ2 +d2ψ2

(3.7)

and is equal to

H̄1 = r1

√
χ2 +d2ψ2 .
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Using lemma 1.4 and b2 +d2 = 1, we see that the maximum of H2 is reached at

w2 = ŵ2 =
r2√

χ2 +d2φ 2

(
−bχ +d2φ

aχ

)
(3.8)

and is equal to

H̄2 = r2

√
χ2 +d2φ 2 .

Moreover, the equations of the characteristics (or adjoint equations) of Isaacs’ equation are just
d∇V/dt = 0, so that λ , µ , ν , φ , ψ , and χ are constant along each characteristic line, which also
is a min-max chase. It follows from equations (3.5), (3.7), (3.8), that these are straight lines
ending at y = 0.

We are left with the task of determining these directions as a function of the initial state Z(0).
To do this, we have the transversality conditions to find λ and µ , hence φ and ψ , at the end time
t0, and Isaacs’ equation

1+ r1

√
χ2 +d2ψ2− r2

√
χ2 +d2φ 2 = 0 . (3.9)

to find ν at that time. And since this is an equation for χ2, we shall retain its (positive) square
root for χ , corresponding to v2− v1 > 0, i.e. y > 0. We therefore investigate the characteristic
lines from final time backward, as a function of Z(t0).
Case X−0 < 0<X+

0 . Two sub-cases occur depending on whether X+
0 +X−0 is positive or negative.

however, it follows from equation (3.6) that switching from the first sub-case to the second
changes λ in −µ , µ in −λ , and therefore φ in −φ and leaves ψ unchanged. Only φ 2 and ψ2

appear in equation (3.9), so that we may consider the first sub-case only.
Equation (3.6) now yields(

λ

µ

)
=

( 1
dδ
−2r2
dδ 2

)
,

(
dφ

dψ

)
=

1
δ 2

(
−r1− r2
3r2− r1

)
.

Observe first that χ = 0 is again a solution of (3.9) with these values of φ and ψ . This again
corresponds to the final phase and do not provide characteristic lines to compute V and the
strategies for positive y. And it follows from the analysis given in the appendix that this is the
only solution of equation (3.9).

Thus there is no characteristic line, or min-max trajectory arriving at a point having a neigh-
borhood where U is differentiable. One must therefore look at trajectories arriving at one of the
points where U is not differentiable: the mid point and the extreme points of the segment.
Case X−0 +X+

0 = 0. This is a relative maximum of U , where it has a nontrivial superdifferential.
However, Pursuer has a global maneuverability superiority over its opponent. It could chose to
reach y = 0 at a small value to the left or to the right. At worst, this would produce a second
order increase in t0, but a first order decrease in U , therefore a better result for it. Thus, no
optimal pursuit can end there.

The reader is reminded that such symbols as dδ , dφ , dψ are not differentials but the products of d =
√

1−b2

with δ , φ and ψ respectively.
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Case X−0 = 0. At X−0 = 0, the function U has a local minimum, with a nontrivial subdifferential,
obtained as all the convex combinations of the two gradients, i.e.(

λ

µ

)
=

1
dδ 2

(
δ

−2θr2

)
,

(
dφ

dψ

)
=

1
δ 2

(
δ −2θr2
δ +2θr2

)
, θ ∈ [0,1] .

It follows from the general theory of differential games (or from Tonelli’s construction in the
calculus of variations) that each subdifferential, together with a ν value satisfying equation
(3.9), can generate backward a valid characteristic line. And the analysis of that equation in the
appendix shows that there is indeed one and only one (positive) solution for χ , hence for ν .

This generates a field of characteristic straight lines, obtained by placing v̂1 and ŵ2 as given
by equations (3.7) and (3.8) in equations (3.5) and integrating backward from Z(t0)= (X+

0 ,0,0),
and on each of them, the optimal pursuit strategy ŵ2 and a candidate Value of the game as a
function of the end parameters and integration time:

V−(Z) = t0− t +
X+

0
dδ

. (3.10)

The region of Z ∈R3 thus covered is indeed three dimensional, as the state Z(t) reached depends
on three degrees of freedom: X+

0 , θ defining the slope of the characteristic line, and the length
of time of (backward) integration t0− t. It should be noticed that the influence of X+

0 is just a
translation of the characteristic line parallel to that axis.
Case X+

0 = 0. This case is similar to the previous one, except that now, due to the symmetry of
U , we have(

λ

µ

)
=

1
dδ 2

(
2θr2
−δ

)
,

(
dφ

dψ

)
=

1
δ 2

(
−δ +2θr2
δ +2θr2

)
, θ ∈ [0,1] .

Only û2 is modified as a consequence. The candidate Value is

V+(Z) = t0− t−
X−0
dδ

. (3.11)

The two fields just constructed overlap. They must be curtailed at a decision surface (in
technical terms an evader dispersal surface) characterized by the equality of the candidates
Value (3.10) and (3.11) in both fields. Giving a more explicit formula for this surface is difficult,
but we show hereafter how to compute the correct optimal pursuit strategy in real time.

3.2.4. Synthesis of he min-sup pursuit strategy. The optimal pursuit strategy is therefore ob-
tained by finding the characteristic lines through the current state in both fields, choosing the
one with the smallest Value, and applying the control w2 given by equation (3.8). And these
characteristic lines are completely determined by the direction from the current state to the
origin in the (X−,y) and (X+,y) planes.

We need to notice that, in both fields, t0− t = y(t)/(v̂2− v̂1), and that in the field toward
X−0 = 0,

X+
0 = X+(t)+

y(t)
v̂2− v̂1

(
ϒ
+
1 (v̂1)− û2

)
and hence

V−(Z) = α
−y+

X+

dδ
with α

− =
1

v̂2− v̂1

[
1+

ϒ+(v̂1)− û2

dδ

]
. (3.12)
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And a similar calculation shows that in the field toward X+
0 = 0,

V+(Z) = α
+y− X−

dδ
with α

+ =
1

v̂2− v̂1

[
1−

ϒ
−
1 (v̂1)− û2

dδ

]
. (3.13)

Numerical procedure. We propose the following procedure for Pursuer:

(1) Off-line, for both fields of characteristic lines, sample θ with a small enough step, and
draw charts showing, as a function of the (inverse) slopes

û2−ϒ
−
1 (v̂1)

v̂2− v̂1
=

X−(t)
y(t)

respectively
û2−ϒ

+
1 (v̂1)

v̂2− v̂1
=

X+(t)
y(t)

of the characteristic lines, the values of α− or α+ according to equations (3.12) and
(3.13) respectively, and the inverse slope of the optimal chase strategy û2/v̂2. (We
choose the inverse slopes and not the slopes to avoid having to deal with an infinite
slope in the interior of the range of interest.)

(2) On-line, continuously integrate equations (3.5) for X+ and X− with the observed v1 and
its controls w2.

(3) On-line, continuously measure the inverse slopes X−/y and X+/y, check on the two
charts the values of α− and α+ and evaluate V−(Z) and V+(Z) according to equations
(3.12) and (3.13) respectively.

(4) On-line, choose the field with the smallest candidate Value, and apply maximum speed
in the direction determined by the slope û2/v̂2 as specified by the corresponding chart.

(5) Upon reaching y = 0 at one end of the segment [X−,X+], keep v2 = v1 (i.e. y = 0) and
move at maximum compatible speed in the direction of the opposite end of the segment
until capture.

The fourth step involves checking in real time on which side of the decision surface the state
lies, without having ever explicitly determined that surface.

Figure 3.2.4 shows such charts. (Careful check shows that the different “branches” are not
linear, nor do the different graphs go through the origin.)
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FIGURE 1. The charts giving α− and û2/v̂2 as a function of X−/y (top) or α+

and û2/v̂2 as a function of X+/y, (bottom) for a = 1, b = d = 1/
√

2, r1 = 1,
r2 = 1.5.
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3.2.5. Asymptotic analysis. One may compute the asymptotic behavior of û2/v̂2 and α± as
functions of X±/y in both fields as θ → 0 and, respectively as θ → 1. In both cases χ → 0+
and the quantities considered diverge to infinity. With straightforward algebra, one finds:
Field toward X−0 = 0.

• θ → 0
X−

y
' d

r1 + r2

aδ 2χ
− b

a
,

û2

v̂2
' r2− r1

r2 + r1

X−

y
− b

a
2r1

r2 + r1
,

α
− ' b

adδ

• θ → 1
X−

y
' −d

(r2 + r1)(3r2− r1)

(3r2 + r1)aδ 2χ
− b

a
,

û2

v̂2
' 3r2 + r1

3r2− r1

X−

y
+

b
a

2r1

3r2− r1
,

α
− ' −2

r2

dδ 2
X−

y
− b

a
r2 + r1

dδ 2 .

Field toward X+
0 = 0.

• θ → 0
X+

y
' −d

r1 + r2

aδ 2χ
− b

a
,

û2

v̂2
' r2− r1

r2 + r1

X+

y
− b

a
2r1

r2 + r1
,

α
+ ' − b

adδ

• θ → 1
X+

y
' d

(r2 + r1)(3r2− r1)

(3r2 + r1)aδ 2χ
− b

a
,

û2

v̂2
' 3r2 + r1

3r2− r1

X+

y
+

b
a

2r1

3r2− r1
,

α
+ ' 2

r2

dδ 2
X+

y
+

b
a

r2 + r1

dδ 2 .

Hence, as a function of X±/y, the asymptotic formulas for û2/v̂2 are identical in both fields,
while those for α± are just opposite. It follows that, as y→ 0 with X− = −X+, both V− and
V+ converge towards

V (X+,−X+,0) =
3r2− r1

dδ 2 X+ =U(X+,−X+) .

It follows also that the decision surface separating the two optimal fields reaches the axis y = 0
at (X+ +X−)/2. However, looking at the formulas (3.7) and (3.8), one easily sees that the
solution of the pursuit problem is symmetrical with respect to the plane X++X− = 0 if and
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only if b = 0. Indeed, in that case, the ellipses W1 and W2 have their symmetry axes aligned
with the axes x and y, and therefore, the whole problem is symmetrical. In that case, the decision
surface is just the plane X++X− = 0.

We may also notice that the asymptotes of the curve û2/v̂2 as a function of X±/y meet at the
point (−b/a −b/a). Therefore, while the slopes of these asymptotes only depend on the ratio
r2/r1, their positions in translation, as characterized by their intersection point, depend only on
the coefficients a and b of the matrix A. The asymptotes of the curves giving α± also meet at
X±/y =−b/a.

3.3. Set capture. We consider now that Pursuer has achieved its goal when z ∈ C where C is a
bounded convex set of R2, not necessarily the ellipse of the previous section.

Assumption There exists no (ξ ,η) ∈ R2 such that the set inclusion(
[ξ +X−(0),ξ +X+(0)]

η

)
⊂ C

holds. Typically, if C is the ellipse

‖z‖C ≤ c with C =

(
1 αβ

αβ α2

)
, (3.14)

this means that X+(0)−X−(0)> 2c.
The same reasoning as in Proposition 3.1 shows that the min-sup capture time has to be when

[X−,X+]⊂C. If no translation of the initial uncertainty interval holds in C, and consequently for
no later such interval either, the only way to make it shrink is by reaching y = 0 and traversing
that axis as in subsection 3.2.2 above.

Let [γ−,γ+] be the intersection of the x axis with C. Typically, if C is the ellipse (3.14),
−γ− = γ+ = c. Let X̃− = X−− γ−, and X̃+ = X+− γ+. They obey the same dynamical
equations as X− and X+, with translated initial conditions. Then, all the above analysis holds
with these new variables replacing X− and X+.

4. CONCLUSION

We have therefore proposed a complete solution of the min-sup pursuit problem, or best
guaranteed capture time problem, with an interval information on the initial Evader’s abscissa
and no further information on this coordinate, except the one that Pursuer can infer from the
continuous and instantaneous knowledge of Evader’s other coordinate. And this, assuming that
the model, i.e. the cinematic possibilities (the odograph domain) of both players is common
knowledge, and as simple as we have assumed.

Yet this is the correct solution assuming that “capture”, i.e. the coincidence of both coordi-
nates of both players, can be observed when it occurs. This is implied by the last two words of
the synthesis: “until capture”. One may easily think that for some aplications of this model, this
is not the case. In an application in industrial strategy, for instance, one could then modify the
problem as “best guaranteed time to a Pareto superior position than the pursuer”. The solution
is to use only the field of extremals toward X+

0 = 0, and once there, use any control such that
v2 ≥ v1, and u2 = ϒ

+
2 (v2).
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APPENDIX A. SOLVING EQUATION (3.9)

A formula for χ2. We need to solve equation (3.9) for χ2. We rewrite it as

r1

√
χ2 +d2ψ2 +1 = r2

√
χ2 +d2φ 2 ,

and we know that, if it gives a positive χ2, then χ =
√

χ2 will generate the characteristic lines
in the half space y > 0, and χ =−

√
χ2 in the half space y < 0. Both sides above are positive.

So we introduce no spurious solution by equating the squares. We rearrange as

(r2
2− r2

1)χ
2 + r2

2d2
φ

2− r2
1d2

ψ
2−1 = 2r1

√
χ2 +d2ψ2 .

We shall again equate the squares of both sides. But now this introduces a spurious “solution”,
solving

(r2
2− r2

1)χ
2 + r2

2d2
φ

2− r2
1d2

ψ
2−1 =−2r1

√
χ2 +d2ψ2

The left hand side is positive for the true solution and negative for the spurious one. Therefore,
the true solution will be the largest of the two roots in χ2. Squaring both sides, we arrive at an
equation of the form

Pχ
4 +2Qχ

2 +R = 0 . (A.1)

with
P = (r2

2− r2
1)

2 ,

Q = (r2
2− r2

1)(r
2
2d2φ 2− r2

1d2ψ2)− r2
2− r2

1

R = r4
2d4φ 4 + r4

1d4ψ4−2r2
1r2

2d4φ 2ψ2−2r2
2d2φ 2−2r2

1d2ψ2 +1 .

(A.2)

This is a second degree algebraic equation for χ2. Clearly, P is positive. It follows from the
above analysis that the required root is

χ
2 =

1
P
(−Q+

√
Q2−PR) . (A.3)

We already know that for θ = 0 and θ = 1, the solution is χ2 = 0. Indeed, it can be directly
checked that for these particular values, we get R = 0. The rest of the appendix is devoted to
proving the following:

Proposition A.1. Formulas (A.2)(A.3) provide a real positive χ2 for every θ ∈ (0,1).

A particular value of θ . A particular case arises when

θ =
δ

2r2
=

1
2
− r1

2r2
∈
(

0,
1
4

)
,

giving φ = 0. Equation (3.9) then reads

r1

√
χ2 +

4
δ 2 +1 = r2|χ| ,

Squaring both sides, this is equivalent to

χ
2(r2

2− r2
1)−2r2χ +1−

4r2
1

δ 2 = 0 .
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The discriminant of this second degree algebraic equation is

∆ = r2
2− (r2

2− r2
1)

(
1−4

r2
1

δ 2

)
= r2

1
5r2 +3r1

δ
> 0 .

Therefore this equation has two roots, whose sum is positive. Thus the maximum root is posi-
tive. By continuity, there is a range of θ for which formula (A.3) yields a positive value.

Proof of the proposition. If formula (A.3) gives a negative value for some θ ∈ (0,1), by
continuity there is to be a value of θ in that range where the same formula yields χ2 = 0.
However, if this solves equation (3.9), then we must have

1+ r1dψ− r2d|φ |= 0 .

If φ > 0, this reads

δ
2 + r1(δ +2r2θ)− r2(δ −2r2θ) = 2r2δθ = 0 ,

i.e. θ = 0, and if φ < 0,

δ
2 + r1(δ +2r2θ)− r2(2r2θ −δ ) = 2r2δ (1−θ) = 0 ,

i.e. θ = 1. Therefore, formula (A.3) is never negative in the range θ ∈ (0,1).
The other way the proposition could be false is if the discriminant Q2−PR becomes negative.

But by continuity, it has to be zero for some value of θ ∈ (0,1). At that value, both solutions of
(A.1) coincide. But the spurious solution yields

1+ r1

√
χ2 +d2ψ2− r2

√
χ2 +d2φ 2 = 2

while the correct one yields zero. Therefore these two values of χ2 cannot coincide. The
proposition is therefore proved.
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