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Abstract. We discuss in this article a method for the numerical solution of a linear bi-harmonic problem arising
from inverse source problems, like those in electroencephalography. In order to solve this bi-harmonic problem
using low order Lagrange finite element approximations, we reformulate it as a functional equation associated
with a linear boundary operator of the Steklov-Poincaré type. This boundary equation is well-suited to solution
by a conjugate gradient algorithm, requiring the solution of two second order linear elliptic problems per iteration.
The performance of our methodology is validated via the solution of test problems for simple and complex 2D
geometries, disk-shaped domains in particular.
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1. INTRODUCTION

Our initial and main interest is the solution of an inverse source problem from measurements
on the boundary of a bounded region. This problem is related to source sensing, from boundary
data, in an electrical medium with piecewise constant conductivity. One important application
corresponds with the inverse electroencephalography problem to recover sources that represent
biolectrical activity of the brain (see [3], [30], [31], among others). A particular type of source
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uam.mx (L.H. Juárez-Valencia), jconden@fcfm.buap.mx (J.J. Conde-Mones), oliveros@fcfm.buap.mx (J.J.
Oliveros-Oliveros).

Received: June 28, 2022; Accepted: April 26, 2023.
c©2023 Communications in Optimization Theory

1
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is a pointwise source to model epilepsy foci (see, e.g., [29] for further details). The EEG-
measured neural activity from the brain can be described by a simplified two-layered Poisson’s
equation for electrical conduction (see [17], [35] and references therein):

−∇ · (σ ∇y) = u|Ω in D, (1.1)

∂y
∂n

= 0 on ∂D, (1.2)

where y denotes the electrostatic potential, σ the conductivity, u the current sources in Ω (the
region occupied by the brain), n the outward unit normal vector on the boundary ∂D of the
region occupied by the head (whose interior is denoted by D). Of course, the brain, represented
by Ω, is a proper subdomain of D, which boundary we will denote by Γ. The inverse problem
consist in finding an electrical source u acting on Ω from a given measured potential on the
boundary of D:

y = yd on ∂D. (1.3)

If the only available information is the voltage yd on ∂D, then only the harmonic component of
the source u can be identified, and more information is needed to identify the complete source
[15] and [3]. Therefore, we will assume that u belongs to the space

U =
{

v | v ∈ L2(Ω), ∇
2v = 0

}
, (1.4)

thus the above inverse problem for the identification of u can be formulated as a control problem
for an elliptic equation, namely: {

u ∈U ,

J(u)≤ J(v), ∀v ∈U ,
(1.5)

where the functional J : U → R is defined by

J(v) =
1
2

∫
Ω

|v|2dx+
k
2

∫
∂D
|y− yd|2d∂D, (1.6)

where in (1.6): (a) The penalty parameter k is positive and large. (b) Function yd is given
typically in L∞(∂D). (c) y is a function of v via the solution of the Neumann problem (1.1)-
(1.2) whose variational formulation is given byy ∈ H1(D),∫

D
σ ∇y ·∇zdx =

∫
Ω

vzdx, ∀z ∈ H1(D),
(1.7)

with σ ∈ L∞(D), σ(x) ≥ σ0 > 0, a.e. in D. The derivatives in (1.1)-(1.2), (1.4) and (1.7) are
in the sense of distributions. Using the fact that U is a closed subspace of L2(Ω) it is also a
Hilbert space for the cannonical inner-product of L2(Ω) and associated norm.

The minimization problem (1.5) has a unique solution, which can be computed by a conju-
gate gradient algorithm operating in the space U , [22]. The implementation of this algorithm,
or any other descent gradient algorithm, requires the knowledge of the differential DJ(v) of J
at v, ∀v ∈U . A simple perturbation analysis shows that

δJ(v) =
∫

Ω

DJ(v)δvdx, ∀δv ∈U , (1.8)
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with DJ(v) ∈U , and

δJ(v) =
∫

Ω

vδvdx+ k
∫

∂D
(y− yd)δyd∂D, ∀δv ∈U , (1.9)

with δy a linear function of δv via the solution ofδy ∈ H1(D),∫
D

σ∇δy ·∇zdx =
∫

Ω

δvzdx, ∀z ∈ H1(D).
(1.10)

Suppose that p verifiesp ∈ H1(D),∫
D

σ∇p ·∇zdx = k
∫

∂D
(y− yd)zd∂D, ∀z ∈ H1(D).

(1.11)

Combining relation (1.9) with (1.11), we obtain that∫
Ω

DJ(v)δvdx =
∫

Ω

(v+ p)δvdx, ∀δv ∈U , (1.12)

which implies in turn that ∫
Ω

DJ(v)wdx =
∫

Ω

(v+ p)wdx, ∀w ∈U . (1.13)

We have thus shown that DJ(v) is the L2(Ω)-orthogonal projection of the function f = v+ p|Ω
on U , a closed subspace of L2(Ω). Although simple from a conceptual point of view, the
projection from L2(Ω) onto U is, computationally, a non-trivial operation.

Actually the numerical calculation of this projection leads to the solution of a bi-harmonic
problem, as shown in Sect. 2. The numerical solution of this bi-harmonic problem is the main
topic we want to discuss in this paper. For this purpose, we consider in Sect. 3 a boundary
operator formulation of the bi-harmonic problem; we introduce in Sect. 4 a conjugate gradient
(CG) algorithm in order to solve the above boundary operator equation; in Sect. 5 and 6 we
consider the discretization of some elliptic subproblems arising in the CG algorithm; in Sect. 7.1
we consider some bi-harmonic problems with a closed form solution in a open disk, which
are employed to validate the numerical methodology introduced in this article; in Sect. 7.2
we consider a numerical example in a complex 2D domain skull-shape related; finally, some
conclusions are stated in Sect. 8.

The conjugate gradient solution of problem (1.5), and some related applications, will be
addressed in a forthcoming separate article.

2. THE BIHARMONIC PROBLEM

Problem (1.13) is a linear variational problem, which is a particular case of
f ∈ L2(Ω) being given, find g solution ofg ∈U ,∫

Ω

gvdx =
∫

Ω

f vdx, ∀v ∈U .

(2.1)
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Indeed (2.1) characterizes g as being the L2(Ω)-orthogonal projection of f on U , a closed
subspace of L2(Ω); actually, it follows from (2.1) that f −g ∈U ⊥. Since

U ⊥ = ∇
2H2

0 (Ω), (2.2)

with H2
0 (Ω) = {ϕ |ϕ ∈H2(Ω), ϕ = 0, ∂ϕ/∂n = 0 on Γ}= D(Ω)

H2(Ω)
(D(Ω) being the space

of the C∞ functions with compact support in Ω), then

f = ( f −∇
2
ψ)+∇

2
ψ, (2.3)

where g= f −∇2ψ and ψ is the unique solution in H2
0 (Ω) of the following bi-harmonic problem

∆
2
ψ = ∆ f in Ω,

ψ = 0 on Γ,

∂ψ

∂n
= 0 on Γ,

(2.4)

where ∆ = ∇2 is the Laplace operator and Γ = ∂Ω. We emphasize that given f ∈ L2(Ω) the
solution of (2.1) in U is g = f −∆ψ where ψ solves (2.4), and hereafter we will concentrate
on the solution of this biharmonic problem.

A classical variational formulation of (2.4) is given byψ ∈ H2
0 (Ω),∫

Ω

∆ψ ∆ϕ dx =
∫

Ω

f ∆ϕ dx, ∀ϕ ∈ H2
0 (Ω).

(2.5)

Problem (2.4), (2.5), can be solved directly using classical numerical approximations. How-
ever, high order approximations are needed in order to deal with the high order derivatives in
the equation. Actually, at present there are many different numerical methods and approaches
in the literature that solve accurately the biharmonic equation, many of them are more popular
or conventional than others. But, even though this equation is somehow classical, its numer-
ical solution is still a topic of active research. For instance, in [1, 4, 5] spline collocation
schemes are used to solve the problem in a rectangular domain or in on the unit square, while in
[2, 6, 7, 18, 36] the biharmonic equation is solved with finite difference schemes on rectangular
regions, also in [8, 28] finite differences schemes are employed but in a circular domain (using
polar coordinates) and irregular domains, respectively. Other classical methods to solve the bi-
harmonic problem in regular and irregular domains are finite element methods. For example, in
[9, 12, 16, 23] the problem is solved using mixed finite elements, while discontinuous Galerkin
and weak Galerkin finite elements are prefered in [13, 32, 33, 38]. Likewise, boundary integral
equations methods have been also used extensively, as in [10, 11, 14, 19, 24, 25, 26, 27, 37].
The list of methods is really quite long and we have only mentioned some of the most common.

In this work, we will describe a method which is a close variant of one of the methods in-
troduced in [23], where a linear boundary operator is employed to reformulate the biharmonic
problem. The linear operator, being elliptical, allows to find the solution by a conjugate gradient
algorithm with an ad-hoc preconditoner, requiring the solution of two second order linear ellip-
tic problems per iteration. This approach is shown to be second order accurate, computationally
cheap and well suited for simple and complex domains.
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So, our main goal in this work is to introduce a reformulation of the problem which allows
low order approximations, like linear finite elements, which are well suited for the numerical
solution of second order elliptic problems on domains Ω of (almost) arbitrary shape. A way to
make this possible is to observe that (2.4) is equivalent to the elliptic system:

∆ω = 0 in Ω,

−∆ψ = ω− f in Ω,

ψ = 0 on Γ,

∂ψ

∂n
= 0 on Γ.

(2.6)

To solve problem (2.4), we are going to reduce the solution of (2.6) to the solution of a ‘kind
of’ boundary integral equation associated with a symmetric strongly positive definite operator
mapping H−1/2(Γ) onto H1/2(Γ). The idea is somehow introducing a functional boundary
operator that relates the trace ω|Γ to the normal derivative ∂ψ/∂n in (2.6). This reduction will
be discussed in Sect. 3 and 4.

3. USING (2.6) TO REDUCE (2.4) TO AN OPERATOR EQUATION IN H−1/2(Γ)

From (2.6), the function ω belongs clearly to the space H(Ω;∆) = {θ |θ ∈ L2(Ω), ∆θ ∈
L2(Ω)}, an important property of the above space being (cf., [34]) that if θ ∈ H(Ω;∆) then θ

has a trace in H−1/2(Γ) and ∂θ/∂n exists in H−3/2(Γ). From these properties the function ω

has a trace in H−1/2(Γ) that we will denote by λ . Consider now the solution ψ of problem
(2.4); we observe that

ψ = ψλ +ψ0, (3.1)
where ψλ and ψ0 are the respective solutions of{

−∆ψλ = ω in Ω,

ψλ = 0 on Γ,
(3.2)

and {
∆ψ0 = f in Ω,

ψ0 = 0 on Γ.
(3.3)

We have thus

− ∂ψλ

∂n
=

∂ψ0

∂n
on Γ. (3.4)

Let us define an operator A mapping H−1/2(Γ) into H1/2(Γ) by

Aµ =−
∂ψµ

∂n
, (3.5)

where ψµ is obtained from µ via the solution of{
∆ωµ = 0 in Ω,

ωµ = µ on Γ,
(3.6)

and {
−∆ψµ = ωµ in Ω,

ψµ = 0 on Γ.
(3.7)
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Operator A is continuous, self-adjoint and positive definite. Indeed, let us consider µ1 and µ2
belonging to H−1/2(Γ); we have then, with obvious notation∫

Γ

∂ψ1

∂n
µ2 dΓ =

∫
Γ

∂ψ1

∂n
ω2 dΓ =

∫
Γ

∂ω2

∂n
ψ1 dΓ+

∫
Ω

(∆ψ1 ω2−∆ω2 ψ1)dx =−
∫

Ω

ω1ω2 dx,
(3.8)

for all µ1,µ2 ∈ H−1/2(Γ).

Remark 3.1. For mathematical rigor, the boundary integrals in (3.8) should be replaced by
appropriate duality pairings.

It follows from (3.8) that

〈Aµ1,µ2〉=
∫

Ω

ω1 ω2 dx, ∀µ1,µ2 ∈ H−1/2(Γ), (3.9)

where in (3.9), 〈·, ·〉 denotes the duality pairing between H−1/2(Γ) and H1/2(Γ), which coin-
cides with the L2(Γ)–inner product if the second argument is smooth enough. Relation (3.9)
implies that A is self-adjoint and positive semi-definite. Operator A is also positive definite
since, from (3.9),

〈Aµ,µ〉= 0 ⇒
∫

Ω

|ωµ |2dx = 0 ⇒ ωµ = 0 ⇒ µ = ωµ |Γ = 0.

Actually, since the bi-harmonic problem∆2Φ = 0 in Ω,

Φ = 0 on Γ,
∂Φ

∂n
= φ on Γ,

(3.10)

has a (unique) solution in H2(Ω)∩H1
0 (Ω), ∀φ ∈ H1/2(Γ), operator A is an isomorphism (alge-

braically and topologically) from H−1/2(Γ) onto H1/2(Γ). Operator A is clearly of the Steklov-
Poincaré type.

Back to problem (2.6), the above results imply that the trace λ of ω on Γ is the unique
solution of the functional equation

Aλ =
∂ψ0

∂n
. (3.11)

It has been shown in [23] that if Ω is a disk, then A is a boundary integral operator whose kernel
is known explicitly.

A variational formulation of (3.11) is given byλ ∈ H−1/2(Γ),

〈Aλ ,µ〉=
〈

∂ψ0

∂n
,µ

〉
, ∀µ ∈ H−1/2(Γ),

(3.12)

where in (3.12), 〈·, ·〉 denotes the duality pairing between H−1/2(Γ) and H1/2(Γ) which reduces
to the L2(Γ)–inner product if the second argument is smooth enough.

Summarizing, we remember that the solution of the biharmonic problem is of the form (3.1)
where ψ0 solves (3.3) and ψλ solves (3.2), ω being the solution of (3.6) with µ = λ . Taking ad-
vantage that operator A is self-adjoint and positive definite, we compute λ with a preconditioned
conjugate gradient algorithm, which is described in the next section.
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4. ON THE SOLUTION OF PROBLEM (3.11), (3.12) BY A CONJUGATE GRADIENT

ALGORITHM OPERATING IN H−1/2(Γ)

4.1. Some preliminary considerations. Let S denotes a self–adjoint continuous linear oper-
ator from H−1/2(Γ) into H1/2(Γ). We suppose that operator S is strongly elliptic in the sense
that ∃α > 0, such that 〈Sµ,µ〉 ≥ α‖µ‖2

H−1/2(Γ)
, ∀µ ∈ H−1/2(Γ); in fact, operator S is an iso-

morphism from H−1/2(Γ) onto H1/2(Γ). Actually, it follows from the above properties of S that
the bilinear functional {µ1,µ2}→ 〈Sµ1,µ2〉 defines over H−1/2(Γ) an inner–product whose as-
sociated norm is equivalent to ‖ · ‖H−1/2(Γ). Below, we are going to solve problem (2.6) using a

conjugate gradient algorithm operating in H−1/2(Γ) equipped with the inner–product and norm
associated with operator S, as described above.

It is important to notice that the linear operator S is introduced here with the idea of describing
a preconditioned conjugate gradient algorithm in a general manner. The concrete form of the
preconditoner is introduced in the next subsection.

4.2. Description of the conjugate gradient algorithm. Following [20] (Chapters 3 & 10) and
[21] (Chapter 2), the conjugate gradient algorithm we intend to use for the solution of problem
(3.11), (3.12) reads as follows:

λ
0 is given in H−1/2(Γ) (λ 0 = 0, e.g., but smarter choices may be available). (4.1)

Solve the following elliptic system in H(Ω;∆)×H1
0 (Ω):{

∆ω0 = 0 in Ω,

ω0 = λ 0 on Γ,
(4.2)

{
−∆ψ0 = ω0− f in Ω,

ψ0 = 0 on Γ.
(4.3)

Solve next g0 ∈ H−1/2(Γ),

〈Sg0,µ〉=−
〈

∂ψ0

∂n
,µ

〉
, ∀µ ∈ H−1/2(Γ).

(4.4)

If
〈Sg0,g0〉

max[1,〈Sλ 0,λ 0〉]
≤ tol take λ = λ 0; otherwise, set

w0 = g0. (4.5)

For n ≥ 0, λ n, gn, wn being known, the last two different from 0, compute λ n+1, gn+1 and if
necessary wn+1 as follows:

Solve the following elliptic system in H(Ω;∆)×H1
0 (Ω):{

∆ω
n = 0 in Ω,

ω
n = wn on Γ,

(4.6)

{
−∆ψ

n = ω
n in Ω,

ψ
n = 0 on Γ.

(4.7)
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Solve next gn ∈ H−1/2(Γ),

〈Sgn,µ〉=−
〈

∂ψ
n

∂n
,µ

〉
, ∀µ ∈ H−1/2(Γ),

(4.8)

and compute

ρn =
〈Sgn,gn〉
〈Sgn,wn〉

, (4.9)

λ
n+1 = λ

n−ρnwn, (4.10)

gn+1 = gn−ρngn. (4.11)

If
〈Sgn+1,gn+1〉

max[〈Sg0,g0〉,〈Sλ n+1,λ n+1〉]
≤ tol take λ = λ 0; otherwise, compute

γn =
〈Sgn+1,gn+1〉
〈Sgn,gn〉

, (4.12)

wn+1 = gn+1 + γnwn. (4.13)

Do n+1→ n and return to (4.6).

4.3. A possible choice for operator S. With κ a positive number let us define the boundary
operator B acting on H1/2(Γ) by

Bµ = µ +κ
∂θµ

∂n
, ∀µ ∈ H1/2(Γ), (4.14)

where θµ is the unique solution in H1(Ω) of the following Laplace–Dirichlet problem:{
∆θµ = 0 in Ω,

θµ = µ on Γ.
(4.15)

We have then ∂θµ/∂n ∈ H−1/2(Γ) and (with obvious notation) the relation

〈Bµ1,µ2〉=
∫

Γ

µ1µ2 dΓ+κ

〈
∂θ1

∂n
,µ2

〉
=
∫

Γ

θ1θ2 dΓ+κ

∫
Ω

∇θ1 ·∇θ2 dx, ∀µ1,µ2 ∈ H1/2(Γ),

(4.16)

implying that operator B is a strongly elliptic self–adjoint isomorphism from H1/2(Γ) onto
H−1/2(Γ). On the other hand, the operator S defined by

S = B−1 (4.17)

is a strongly elliptic self–adjoint isomorphism from H−1/2(Γ) onto H1/2(Γ), implying that the
bilinear functional

{µ1,µ2} −→ 〈Sµ1,µ2〉 (4.18)

defines an inner–product over H−1/2(Γ) and therefore, can be used in algorithm (4.1)–(4.13),
as shown in Sect. 4.4, here after.
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4.4. Description of the conjugate gradient algorithm (4.1)-(4.13) when operator S is de-
fined by (4.14)-(4.17). If operator S is defined by (4.14)-(4.17), a more detailed description of
the conjugate gradient algorithm (4.1)-(4.13) is given by:

λ
0 is given in H−1/2(Γ). (4.19)

Solve the following elliptic system in H(Ω;∆)×H1
0 (Ω):{

∆ω0 = 0 in Ω,

ω0 = λ 0 on Γ,
(4.20)

{
−∆ψ0 = ω0− f in Ω,

ψ0 = 0 on Γ.
(4.21)

Next, define r0 ∈ H1/2(Γ) by

r0 =−∂ψ0

∂n
, (4.22)

and θ 0 as the unique solution in H1(Ω) of{
∆θ 0 = 0 in Ω,

θ 0 = r0 on Γ.
(4.23)

Set

g0 = r0 +κ
∂θ 0

∂n
. (4.24)

If
〈r0,g0〉

max[1,〈Sλ 0,λ 0〉]
≤ tol take λ = λ 0; otherwise, set

w0 = g0. (4.25)

For n≥ 0, λ n, rn, gn, wn being known, the three different from 0, compute λ n+1, rn+1, gn+1 and
if necessary wn+1 as follows:

Solve the following elliptic system in H(Ω;∆)×H1
0 (Ω):{

∆ω
n = 0 in Ω,

ω
n = wn on Γ,

(4.26)

{
−∆ψ

n = ω
n in Ω,

ψ
n = 0 on Γ.

(4.27)

Next, define rn ∈ H1/2(Γ) by

rn =−∂ψ
n

∂n
, (4.28)

and θ
n as the unique solution in H1(Ω) of{

∆θ
n
= 0 in Ω,

θ
n
= rn on Γ.

(4.29)
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Set

gn = rn +κ
∂θ

n

∂n
. (4.30)

Compute

ρn =
〈rn,gn〉
〈rn,wn〉

, (4.31)

λ
n+1 = λ

n−ρnwn, (4.32)

rn+1 = rn−ρnrn, (4.33)

gn+1 = gn−ρngn. (4.34)

If
〈rn+1,gn+1〉

max[〈r0,g0〉,〈Sλ n+1,λ n+1〉]
≤ tol take λ = λ n+1; otherwise, compute

γn =
〈rn+1,gn+1〉
〈rn,gn〉

, (4.35)

wn+1 = gn+1 + γnwn. (4.36)

Do n+1→ n and return to (4.26).

The finite element implementation of algorithm (4.19)-(4.36) will be discussed below.

5. A MIXED FINITE ELEMENT APPROXIMATION OF PROBLEM (2.4)

5.1. Some preliminary results. Following [23] (see also [20], Chapter 10) we are going to
approximate the bi-harmonic problem (2.4) by a mixed finite element method making the im-
plementation of algorithm (4.19)-(4.36) relatively straightforward. Our starting point will be
the equivalent formulation (2.6) of problem (2.4), that is

∆ω = 0 in Ω,

−∆ψ = ω− f in Ω,

ψ = 0,
∂ψ

∂n
= 0 on Γ.

(5.1)

It is worth noticing that (5.1) implies (from the 1st Green’s formula):

∂ψ

∂n
= 0 ⇐⇒

∫
Ω

( f −ω)ϕ dx+
∫

Ω

∇ψ ·∇ϕ dx = 0, ∀ ϕ ∈ H1(Ω). (5.2)

Relation (5.2) and its discrete analogues will play a most useful role hereafter.

5.2. The fundamental discrete spaces. Let assume that Ω is a bounded polygonal of R2 and
that Th is a triangulation of Ω verifying those classical assumptions listed in, e.g., [20] (Appen-
dix 1) and [21] (Chapter 1). Among them, the facts that all the triangles of Th are closed and
that ∪T∈Th = Ω. From Th we approximate H1(Ω) and H1

0 (Ω) by

Vh = {ϕ |ϕ ∈C0(Ω), ϕ|T ∈ P1, ∀T ∈Th}, (5.3)

and
V0h = {ϕ |ϕ ∈Vh, ϕ|Γ = 0}, (5.4)
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respectively, with P1 the space of the two–variable polynomials of degree ≤ 1. The following
subspace of Vh will be particularly useful concerning the approximation of problem (3.11),
(3.12) and its solution by either direct or iterative methods:

Mh = {ϕ |ϕ ∈Vh, ϕ|T = 0, ∀T ∈Th, ∂T ∩Γ = /0}. (5.5)

We clearly have
Vh =V0h⊕Mh, (5.6)

and (of course)
dim(Mh) = dim(Vh) − dim(V0h).

Actually, dim(Mh) is equal to the number of vertices of Th located on Γ.

5.3. On several approximations of problem (5.1). We approximate problem (5.1) by

{ωh,ψh} ∈Vh×V0h,∫
Ω

∇ωh ·∇ϕ dx = 0, ∀ϕ ∈V0h,∫
Ω

∇ψh ·∇ϕ dx =
∫

Ω

(ωh− fh)ϕ dx, ∀ϕ ∈V0h,∫
Ω

∇ψh ·∇µ dx+
∫

Ω

( fh−ωh)µ dx = 0, ∀µ ∈Mh,

(5.7)

where, in (5.7), fh is an approximation of f belonging to Vh. In order to solve (5.7), we are
going to take advantage of its equivalence with

{λh,ωh,ψh} ∈Mh×Vh×V0h,ωh−λh ∈V0h,∫
Ω

∇ωh ·∇ϕ dx = 0, ∀ϕ ∈V0h,∫
Ω

∇ψh ·∇ϕ dx =
∫

Ω

(ωh− fh)ϕ dx, ∀ϕ ∈V0h,∫
Ω

∇ψh ·∇µ dx+
∫

Ω

( fh−ωh)µ dx = 0, ∀µ ∈Mh,

(5.8)

where λh is nothing but the component of ωh in Mh according to the decomposition (5.6) of
the space Vh; function λh will play for the discrete bi–harmonic problem the role played by the
trace λ of ω for the continuous one. Relations (5.8) imply that λh is the unique solution of the
following linear variational problem in Mh:{

λh ∈Mh,

ah(λh,µ) = Lh(µ), ∀µ ∈Mh,
(5.9)

where, in (5.9), the bilinear functional ah(λh,µ) and the linear functional Lh( ·) are defined,
respectively, by:
(i)

ah(µ1,µ2) =−
∫

Ω

∇ψ1 ·∇µ2 dx+
∫

Ω

ω1µ2 dx, ∀µ1,µ2 ∈Mh, (5.10)

with, ∀ i = 1,2, ωi and ψi uniquely defined byωi−µi ∈V0h,∫
Ω

∇ωi ·∇ϕ dx = 0, ∀ϕ ∈V0h,
(5.11)
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and ψi ∈V0h,∫
Ω

∇ψi ·∇ϕ dx−
∫

Ω

ωi ϕ dx = 0, ∀ϕ ∈V0h.
(5.12)

(ii)

Lh(µ) =
∫

Ω

∇ψ0h ·∇µ dx+
∫

Ω

fh µ dx, ∀µ ∈Mh, (5.13)

with ψ0h the unique solution ofψ0h ∈V0h,∫
Ω

∇ψ0h ·∇ϕ dx =−
∫

Ω

fhϕ dx, ∀ϕ ∈V0h.
(5.14)

We can easily prove that the above relations imply that

ah(µ1,µ2) =
∫

Ω

ω1 ω2 dx, ∀µ1,µ2 ∈Mh, (5.15)

which implies in turn that the bilinear functional ah(·, ·) is symmetric and positive definite over
Mh×Mh. From these properties, problem (5.9) can be solved by a conjugate gradient algorithm
operating in Mh; such an algorithm will be discussed in Sect. 6.3, hereafter.

Remark 5.1. Above, all the L2(Ω)–inner products have been computed exactly. A computer
friendlier alternative is obtained by approximating all the integrals of the form∫

Ω

θ ϕ dx, ∀θ ,ϕ ∈Vh (5.16)

using the trapezoidal rule. We obtain then the following approximation of (5.16):

1
3 ∑

Q∈∑h

|ΩQ |θ(Q)ϕ(Q), ∀θ ,ϕ ∈Vh, (5.17)

where in (5.17): (i) ∑h is the set of all the vertices of Th, (ii) ΩQ is the polygonal union of those
triangles of Th which have Q has a common vertex, (iii) |ΩQ| = measure(ΩQ).

6. ON THE SOLUTION OF PROBLEM (5.9)

6.1. Generalities. If the solution λh of problem (5.9) is known, obtaining the solution {ωh,ψh}
of problem (5.7) is a trivial matter since it requires the solution of two discrete Poisson prob-
lems. Solving such discrete problems being routine nowadays, we will focus on the solution of
problem (5.9), a discrete variant of the boundary equation (3.11). Following [23] and [20], two
classes of solution methods will be discussed, namely: (i) In Sect. 6.2 a quasi–direct method
(as called in [23]), which may be of interest for those situations where many problems (2.4),
differing only by f have to be solved. (ii) In Sect. 6.3, a preconditioned conjugate gradient
algorithm (discrete variant of algorithm (4.19)-(4.36)).
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6.2. A quasi–direct method. Let σh = {Q j}J
j=1 be the set of the vertices of Th located on

Γ; we have then dim(Mh)= J. Next, with every Q j ∈ σh, we associate the shape function w j
uniquely defined by{

w j ∈Vh,

w j(Q j) = 1;w j(Q) = 0, ∀Q vertex of Th, Q 6= Q j.
(6.1)

The set {w j}J
j=1 is clearly a vector basis of Mh. Let us return to the linear variational problem

(5.9): assuming that

λ
n =

J

∑
j=1

λ jw j, (6.2)

problem (5.9) is equivalent to the following linear system

J

∑
j=1

ah(w j,wi) = Lh(wi), 1≤ i≤ J. (6.3)

The matrix (ah(w j,wi))1≤i, j≤J being symmetric and positive definite, its Cholesky factors can
be computed once for all. The computation of the above matrix coefficients and of the right
hand sides takes advantage of relations (5.10) and (5.13) which imply with obvious notation
that:
(i)

ah(w j,wi) =−
∫

Ω

∇ψ j ·∇wi dx+
∫

Ω

ω j wi dx, (6.4)

with, ω j and ψ j uniquely defined byω j−w j ∈V0h,∫
Ω

∇ω j ·∇ϕ dx = 0, ∀ϕ ∈V0h,
(6.5)

and ψ j ∈V0h,∫
Ω

∇ψ j ·∇ϕ dx =
∫

Ω

ω j ϕ dx, ∀ϕ ∈V0h.
(6.6)

An alternative to (6.4) is provided by

ah(w j,wi) =
∫

Ω

ω j ωi dx, (6.7)

(ii)

L(wi) =
∫

Ω

∇ψ0h ·∇wi dx+
∫

Ω

fh wi dx. (6.8)

We observe that the integrals in (6.4) and (6.8) (or their trapezoidal approximations) are simple
to compute since they have to be evaluated on the support of the function wi, that is on the
polygonal ΩQi

. We observe also that the symmetry of matrix (ah(w j,wi))1≤i, j≤J reduces the
computational work necessary to construct it.
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6.3. On the conjugate gradient solution of problem (5.9). An alternative to the quasi–direct
solution method discussed in Section 6.2 is provided by the following discrete variant of algo-
rithm (4.19)–(4.36):

λ0 is given in Mh. (6.9)
Solve the following discrete elliptic system in Vh×V0h:ω0−λ 0 ∈V0h,∫

Ω

∇ω
0 ·∇ϕ dx = 0, ∀ϕ ∈V0h,

(6.10)

ψ0 ∈V0h,∫
Ω

∇ψ
0 ·∇ϕ dx =

∫
Ω

(ω0− fh)ϕ dx, ∀ϕ ∈V0h.
(6.11)

Next, define r0 byr0 ∈Mh,∫
Ω

r0
µ dx =−

∫
Ω

∇ψ
0 ·∇µ dx+

∫
Ω

(ω0− fh)µ dx, ∀µ ∈Mh,
(6.12)

and θ 0 as the unique solution in Vh ofθ 0− r0 ∈V0h,∫
Ω

∇θ
0 ·∇ϕ dx = 0, ∀ϕ ∈V0h.

(6.13)

Compute g0 via the solution ofg0− r0 ∈Mh,∫
Ω

(g0− r0)µ dx = κ

∫
Ω

∇θ
0 ·∇µ dx, ∀µ ∈Mh.

(6.14)

If

∫
Ω

r0g0 dx

max[1,ah(λ 0,λ 0)]
≤ tol take λ = λ 0; otherwise, set

w0 = g0. (6.15)

For n≥ 0, λ n, rn, gn, wn being known, the last three different from 0, compute λ n+1, rn+1, gn+1

and if necessary wn+1 as follows:
Solve the following discrete elliptic system in Vh×V0h:ω

n−wn ∈V0h,∫
Ω

∇ω
n ·∇ϕ dx = 0, ∀ϕ ∈V0h,

(6.16)

ψ
n ∈V0h,∫

Ω

∇ψ
n ·∇ϕ dx =

∫
Ω

ω
n

ϕ dx, ∀ϕ ∈V0h.
(6.17)

Next, define rn byrn ∈Mh,∫
Ω

rn
µ dx =−

∫
Ω

∇ψ
n ·∇µ dx+

∫
Ω

ω
n

µ dx, ∀µ ∈Mh,
(6.18)
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and θ
n ∈Vh as the unique solution ofθ

n− rn ∈V0h,∫
Ω

∇θ
n ·∇ϕ dx = 0, ∀ϕ ∈V0h.

(6.19)

Compute gn ∈Mh as the solution ofgn ∈Mh,∫
Ω

(gn− rn)µ dx = κ

∫
Ω

∇θ
n ·∇µ dx = 0, ∀µ ∈Mh,

(6.20)

and then

ρn =

∫
Ω

rngn dx∫
Ω

rnwn dx
, (6.21)

λ
n+1 = λ

n−ρnwn, (6.22)

rn+1 = rn−ρnrn, (6.23)

gn+1 = gn−ρngn. (6.24)

If

∫
Ω

rn+1gn+1 dx

max
[∫

Ω

r0g0 dx, ah(λ
n+1,λ n+1)

] ≤ tol take λ = λ 0; otherwise, compute

γn =

∫
Ω

rn+1gn+1 dx∫
Ω

rngn dx
, (6.25)

wn+1 = gn+1 + γnwn. (6.26)

Do n+1→ n and return to (6.16).
Actually, if discrete elliptic solvers are available the implementation of algorithm (6.9)-(6.26)

is not that complicated, particularly if taking advantage of Sect. 5.1, we use (5.17) to replace
all the integrals of the (5.16) type. The only delicate matter left to address is the calculation of
the quantities ah(λ

0,λ 0) and ah(λ
n+1,λ n+1) occurring in the stopping criteria. Since λ n+1 =

λ n−ρnwn, we have

ah(λ
n+1,λ n+1) = ah(λ

n,λ n)−2ρn ah(wn,λ n)+ρ
2
n ah(wn,wn). (6.27)

The quantities ρn and ah(wn,wn)(=
∫

Ω
rn wn dx) are known. On the other hand the relation

ah(wn,λ n) =−
∫

Ω

∇ψ
n ·∇λ

n dx+
∫

Ω

ω
n

λ
n dx (6.28)

implies that the second term in the right–hand side of (6.27) is easy to compute. Therefore com-
puting ah(λ

n+1,λ n+1) is also easy if one knows ah(λ
n,λ n), that is (by induction) ah(λ

0,λ 0).
Actually,

ah(λ
0,λ 0) =−

∫
Ω

∇Ψ
0 ·∇λ

0 dx+
∫

Ω

Ω
0

λ
0 dx

(
=
∫

Ω

|Ω0|2 dx
)
, (6.29)
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where, in (6.29), {Ω0,Ψ0} ∈Vh×V0h, is uniquely defined by:Ω0−λ 0 ∈V0h,∫
Ω

∇Ω
0 ·∇ϕ dx = 0, ∀ϕ ∈V0h,

(6.30)

Ψ0 ∈V0h,∫
Ω

∇Ψ
0 ·∇ϕ dx =

∫
Ω

Ω
0

ϕ dx, ∀ϕ ∈V0h.
(6.31)

7. NUMERICAL EXAMPLES

Before we present numerical results, we would like to remember that a possible choice for
operator S is given by (4.17), where B depends on the parameter κ, as is shown in (4.14). The
following numerical experiments show that a good option is to choose 0≤ κ < 1.

7.1. Numerical solution of some bi-harmonic problems with closed form solution. We pro-
vide closed form solutions to three particular bi-harmonic problems of type (2.4) in the unit disk
Ω =

{
(x1, x2) |x2

1 + x2
2 < 1

}
and boundary Γ = ∂Ω. We take advantage of these problems to

validate the methodology we discussed in Sect. 3 to Sect. 6, in particular the conjugate gradient
algorithm (6.9)–(6.26). In order to test convergence of the numerical results, three different
meshes are considered for the finite element discretization of the elliptical problems that arise
in that algorithm: a base mesh M1, which includes 146 vertices and 258 triangles, with mesh
size h = 0.1 approximately; M2 with 549 vertices and 1032 triangles, obtained by a regular re-
finement of M1; M3 with 2129 vertices and 4128 triangles and obtained by a regular refinement
of M2. These meshes are visualized in Figure 1.

FIGURE 1. Mesh M1 on a circular domain of radius 1 and its two regular
refinements, M2 and M3.

Example 7.1. The first bi-harmonic problem we consider is the simple one defined by
∆

2
ψ = 64 in Ω,

ψ = 0 on Γ,
∂ψ

∂n
= 0 on Γ.

(7.1)
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The unique solution of this problem is given by ψ(x1, x2) = (r2− 1)2, ∀(x1, x2) ∈ Ω, with

r =
√

x2
1 + x2

2, and compatible function f given by f (x1, x2) = 16r2−8+ϕ(x1, x2), where ϕ is
an arbitrary harmonic function.

The numerical results for different values of κ are summarized in Table 1, with tol = 10−5 to
stop de CG iterations for all cases. In that table, n denotes de number of cg-iterations necessary
to obtain the numerical solution ψn

h within the given tolerance,

Er(ψn
h ,ψ) = ‖ψn

h −ψ‖L2(Ω) /‖ψ‖L2(Ω)

is the relative error, and finally rM1,M2 , rM2,M3 are the numerical rates of convergence. These
results show that the numerical method is of order close to two for all values of κ . For smaller
values of the stopping parameter tol more iterations are needed to get convergence. Figure 2
shows the numerical solution with mesh M3.

TABLE 1. Numerical results for problem (7.1) for different values of κ , tol = 10−5.
Mesh M1 M2 M3 Rate of convergence

κ n Er(ψn
h ,ψ) n Er(ψn

h ,ψ) n Er(ψn
h ,ψ) rM1,M2 rM2,M3

0 1 3.9107×10−2 1 9.8778×10−3 1 2.4774×10−3 1.9852 1.9954
10−8 1 3.9107×10−2 1 9.8778×10−3 1 2.4774×10−3 1.9852 1.9954
10−4 1 3.9107×10−2 1 9.8778×10−3 1 2.4774×10−3 1.9852 1.9954
10−1 1 3.9107×10−2 1 9.8778×10−3 1 2.4774×10−3 1.9852 1.9954
100 9 3.8920×10−2 1 9.8778×10−3 1 2.4774×10−3 1.9783 1.9954
101 5 3.9146×10−2 1 9.8778×10−3 1 2.4774×10−3 1.9866 2.0311
104 3 3.9386×10−2 8 1.0168×10−2 9 2.5557×10−3 1.9536 1.9923
108 3 3.9386×10−2 8 1.0168×10−2 9 2.5557×10−3 1.9536 1.9923

FIGURE 2. Exact solution ψ of problem (7.1) (left), approximated solution ψn
h

(center) and their difference (right). Mesh M3, n = 1, κ = 10−4, tol = 10−5.

Example 7.2. The second bi-harmonic problem we consider reads as
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∆

2
ψ = 16r2er2

(r8 +10r6 +23r4 +8r2−2) in Ω,

ψ = 0 on Γ,
∂ψ

∂n
= 0 on Γ.

(7.2)

The unique solution this time is given by ψ(x1, x2) = er2
(r2 − 1)2, ∀(x1, x2) ∈ Ω̄, and the

compatible functions f are given by f (x1, x2) = 4er2
(r6 +3r4− r2−1)+ϕ(x1, x2), ϕ being an

arbitrary harmonic function.
The numerical results are summarized in Table 2, which were again obtained with the same

stopping parameter: tol = 10−5. These results show a convergence rate of order two when
0≤ κ ≤ 108. Figure 3 shows the solution in this case.

TABLE 2. Numerical results for problem (7.2) for different values of κ , tol = 10−5.
Mesh M1 M2 M3 Rate of convergence

κ n Er(ψn
h ,ψ) n Er(ψn

h ,ψ) n Er(ψn
h ,ψ) rM1,M2 rM2,M3

0 5 1.2498×10−1 1 2.2730×10−2 1 5.6235×10−3 2.4590 2.0151
10−8 5 1.2498×10−1 1 2.2730×10−2 1 5.6235×10−3 2.4590 2.0151
10−4 5 1.2485×10−1 1 2.2730×10−2 1 5.6235×10−3 2.4575 2.0151
10−1 5 1.1627×10−1 1 2.2730×10−2 1 5.6235×10−3 2.3548 2.0151
100 39 2.0335×10−1 1 2.2730×10−2 1 5.6235×10−3 3.1613 2.0151
101 3 9.2488×10−2 3 2.3069×10−2 1 5.6235×10−3 2.0033 2.0364
104 3 9.4737×10−2 3 2.3356×10−2 3 5.7783×10−3 2.0201 2.0151
108 3 9.4739×10−2 3 2.3346×10−2 3 5.7783×10−3 2.0208 2.0146

FIGURE 3. Exact solution ψ of problem (7.2) (left), approximated solution ψn
h

(center) and their difference (right). Mesh M3, n = 1, κ = 10−4, tol = 10−5.

Example 7.3. This problem is more interesting, in some sense. It is defined by
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∆

2
ψ = 2πδ(0,0) in Ω,

ψ = 0 on Γ,
∂ψ

∂n
= 0 on Γ,

(7.3)

where δ(0,0) is the Dirac measure at (0, 0). Problem (7.3) has a unique solution in H2
0 (Ω) given

by

ψ(x1, x2) = r2 lnr/4+(1− r2)/8, ∀(x1, x2) ∈ Ω̄,

and compatible functions f being given by f (x1, x2) = lnr +ϕ(x1, x2), ϕ being an arbitrary
harmonic function.

The numerical results are summarized in Table 3. Those results were obtained with the
stopping parameter tol = 10−5. For this case second order convergence is attained with the first
refinement of mesh M1, but this rate is lost with the second refinement. We think that the loss
of regularity of the solution at the origin explains this behavior. Figure 4 shows the solution ψn

h
for κ = 10−4 with the mesh M3.

TABLE 3. Numerical results for problem (7.3) for different values of κ , tol = 10−5.
Mesh M1 M2 M3 Rate of convergence

κ n Er(ψn
h ,ψ) n Er(ψn

h ,ψ) n Er(ψn
h ,ψ) rM1,M2 rM2,M3

0 1 2.3571×10−2 1 5.8149×10−3 1 3.1579×10−3 2.0192 0.8808
10−8 1 2.3571×10−2 1 5.8149×10−3 1 3.1579×10−3 2.0192 0.8808
10−4 1 2.3571×10−2 1 5.8149×10−3 1 3.1579×10−3 2.0192 0.8808
10−1 1 2.3571×10−2 1 5.8149×10−3 1 3.1579×10−3 2.0192 0.8808
100 1 2.3571×10−2 1 5.8149×10−3 1 3.1579×10−3 2.0192 0.8808
101 1 2.3571×10−2 1 5.8149×10−3 1 3.1579×10−3 2.0192 0.8808
104 12 2.3361×10−2 1 5.8149×10−3 1 3.1579×10−3 2.0063 0.8808
108 12 2.3361×10−2 5 6.0156×10−3 6 3.2054×10−3 1.9573 0.9082

For this example we present the following table, where we show the numerical errors obtained
with the H1 semi-norm instead of the L2 norm.
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TABLE 4. Numerical results for problem (7.3) for different values of κ , tol =
10−5, where the relative errors are calculated with the H1 semi-norm.

Mesh M1(723,1349) M2(2794,5396) M3(10983,21584) Rate of convergence
κ n Er(ψn

h ,ψ)H1(Ω) n Er(ψn
h ,ψ)H1(Ω) n Er(ψn

h ,ψ)H1(Ω) rM1,M2 rM2,M3

0 1 3.7868×10−2 1 1.0114×10−2 1 4.5706×10−3 1.9046 1.1459
10−8 1 3.7868×10−2 1 1.0114×10−2 1 4.5706×10−3 1.9046 1.1459
10−4 1 3.7868×10−2 1 1.0114×10−2 1 4.5706×10−3 1.9046 1.1459
10−1 1 3.7868×10−2 1 1.0114×10−2 1 4.5706×10−3 1.9046 1.1459
100 1 3.7868×10−2 1 1.0114×10−2 1 4.5706×10−3 1.9046 1.1459
101 1 3.7868×10−2 1 1.0114×10−2 1 4.5706×10−3 1.9046 1.1459
104 12 3.7432×10−2 1 1.0114×10−2 1 4.5706×10−3 1.8879 1.1459
108 12 3.7432×10−2 5 1.0114×10−2 6 4.5889×10−3 1.8879 1.1401

The relative errors obtained with the H1 semi-norm are slightly higher than those obtained
with the L2 norm, but there is a improvement on the rate of convergence for the second re-
finement of the mesh, as show in the last column of Table 4. However, we are not able to
elucidate new relevant information from this table. As we have already said before, the low rate
of convergence with the second refinement is due to the loss of regularity of the solution at the
origin.

Figure 4 illustrates the exact and approximated solution obtained with κ = 10−4.

FIGURE 4. Exact solution ψ of problem (7.3) (left), approximated solution ψn
h

(center) and their difference (right). Mesh M3, n = 1, (right), κ = 10−4, tol =
10−5.

7.2. Numerical results for a 2D complex region. Here we consider a non circular 2D complex
region as computational domain. Like in the previous examples, for the numerical experiments
we discretize this domain with triangular elements and consider three different meshes, which
we will still call M1, M2 and M3, each one is obtained as a regular refinement of the previous
one, as shown in Figure 5.
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FIGURE 5. Mesh M1 on a complex domain, with 723 vertices and 1349 trian-
gles, and its two regular refinements: M2 with 2794 vertices and 5396 triangles,
M3 with 10983 vertices and 21584 triangles.

Example 7.4. We consider the function

f (x,y) = e−[(x−x0)
2+(y−y0)

2]/2β 2
{
− 2

β 2 +
1

β 4

[
(x− x0)

2 +(y− y0)
2]} , (7.4)

where (x0,y0) is a point in Ω and β 2 > 0 is a small postive constant. The following function

ψ(x,y) = e−[(x−x0)
2+(y−y0)

2)]/2β 2
, (x,y) ∈Ω, (7.5)

is a very close approximation to the solution of the bi-harmonic problem (2.4). Although,
this function satisfies the differential equation, it does not satisfy exactly the homogeneous
boundary conditions; however, both this function and its normal derivative almost vanish at the
boundary if (x0,y0) is a point in Ω far enough from its boundary Γ, due to the rapid decay of
the exponential function as (x,y) moves away from (x0,y0). Therefore, for the next numerical
experiments we will compute the relative error using this function instead of the exact solution
of the biharmonic problem (2.4), where we consider the compatible function f (x,y) given by
(7.4).

Next, we consider two numerical examples: one for β 2 = 0.05 and the other for β 2 = 0.02.
For these examples we will pick the point (x0,y0) = (0.3767,0.6087).

Numerical results for β 2 = 0.05.

The numerical results are summarized in Table 5 for different values of the parameter κ .
This time the stopping parameter is fixed at tol = 10−5 for all cases. We observe, that the
errors decrease with each mesh for each case, obtaining second order numerical convergence
for 0 ≤ κ ≤ 108. Figure 6 shows the approximate solution ψn

h for κ = 10−4 obtained with the
mesh M3.
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TABLE 5. Numerical results for different values of κ , tol = 10−5, β 2 = 0.05,
complex domain.

Mesh M1(723,1349) M2(2794,5396) M3(10983,21584) Rate of convergence
κ n Er(ψn

h ,ψ) n Er(ψn
h ,ψ) n Er(ψn

h ,ψ) rM1,M2 rM2,M3

0 1 1.8881×10−2 1 4.8150×10−3 1 1.1823×10−3 1.9713 2.0259
10−8 1 1.8881×10−2 1 4.8150×10−3 1 1.1823×10−3 1.9713 2.0259
10−4 1 1.8881×10−2 1 4.8150×10−3 1 1.1823×10−3 1.9713 2.0259
10−1 1 1.8881×10−2 1 4.8150×10−3 1 1.1823×10−3 1.9713 2.0259
100 1 1.8881×10−2 1 4.8150×10−3 1 1.1823×10−3 1.9713 2.0259
101 1 1.8881×10−2 1 4.8150×10−3 1 1.1823×10−3 1.9713 2.0259
104 9 1.7464×10−2 1 4.8150×10−3 1 1.1823×10−3 1.8588 2.0259
108 9 1.7464×10−2 9 4.6631×10−3 2 1.6674×10−3 1.9050 0.4466

For this case we also computed the relative errors with the H1 semi-norm, which again are
slightly higher than those obtained with the L2 norm. We decided no to include a complete table
again, but only we want to say that converge rates are approximately 1.92 for the first refinement
and 1.95 for the second refinement.

FIGURE 6. Graph of exact solution ψ (left), approximate solution ψn
h (center)

and their difference (right). Mesh M3, n = 1, κ = 10−4, tol = 10−5, (x0,y0) =
(0.3767,0.6087), β 2 = 0.05.

Numerical results for β 2 = 0.02

These results are summarized in Table 6 for different values of κ , where the stopping criterion
is again fixed at tol = 10−5. Figure 7 shows the exact and approximate solutions, the last one
obtained with the mesh M3 and κ = 10−4.

This time we obtain a slight loss of precision in the numerical results (and of the order of
convergence), when compared with the numerical results of the previous example. We believe
that this loss of accuracy is due to the lack of resolution around the region where the ‘spike’
of the solution appears, since the same meshes are used to compute the numerical solutions for
both cases, β 2 = 0.05 and β 2 = 0.02.
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TABLE 6. Numerical results for different values of κ , tol = 10−5, β 2 = 0.02,
complex domain.

Mesh M1(723,1349) M2(2794,5396) M3(10983,21584) Rate of convergence
κ n Er(ψn

h ,ψ) n Er(ψn
h ,ψ) n Er(ψn

h ,ψ) rM1,M2 rM2,M3

0 1 3.9538×10−2 1 1.0668×10−2 1 2.7217×10−3 1.8900 1.9707
10−8 1 3.9538×10−2 1 1.0668×10−2 1 2.7217×10−3 1.8900 1.9707
10−4 1 3.9538×10−2 1 1.0668×10−2 1 2.7217×10−3 1.8900 1.9707
10−1 1 3.9538×10−2 1 1.0668×10−2 1 2.7217×10−3 1.8900 1.9707
100 1 3.9538×10−2 1 1.0668×10−2 1 2.7217×10−3 1.8900 1.9707
101 1 3.9538×10−2 1 1.0668×10−2 1 2.7217×10−3 1.8900 1.9707
104 1 3.9538×10−2 1 1.0668×10−2 1 2.7217×10−3 1.8900 1.9707
108 101 3.9163×10−2 9 1.0612×10−2 1 2.7217×10−3 1.8838 1.9631

FIGURE 7. Graph of exact solution ψ (left), approximate solution ψn
h (center)

and their difference (right). Mesh M3, n = 1, κ = 10−4, tol = 10−5, (x0,y0) =
(0.3767,0.6087), β 2 = 0.02.

8. CONCLUSIONS

We solved numerically a linear bi-harmonic problem, which arises when solving inverse
problems in electro-encephalography, using low order Lagrange finite element approximations.
We reformulate the problem as a functional equation associated with a linear boundary operator
of the Steklov-Poincare type, for which we apply a conjugate gradient algorithm that requires
the solution of some few second-order elliptic equations per iteration. The numerical experi-
ments we performed show that this method is efficient and accurate for the given bi-harmonic
problem defined in simple and complex 2D domains. We can claim that the method is second
order accurate, unless the resolution of the mesh does does not capture high gradients, but even
for this case accurate solutions are obtained.
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located on separation interfaces of two different homogeneous media, Advances in Differential Equations
and Control Processes, 20 (2019) 53-97.

[32] L. Mu, J. Wang, Y. Wang, X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, In:
O.P. Iliev, S.D. Margenov, P.D. Minev, P.S. Vassilevski, L.T. Zikatanov (eds.) Numerical Solution of Partial
Differential Equations: Theory, Algorithms, and Their Applications, pp. 247-277, Springer, New York, 2013.

[33] L. Mu, J. Wang, X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal
meshes, Numerical Methods for Partial Differential Equations 30 (2014) 1003-1029.
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