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Abstract. In this paper, by introducing a key assumption, we discuss the Hölder-likeness and the q-order metric
regularity of an implicit multifunction. Firstly, we prove that the key assumption is equivalent to the Robinson met-
ric regularity of the implicit multifunction and that under some suitable conditions the key assumption is sufficient
for the Hölder-likeness (metric regularity) of the implicit multifunction. Then, by the Robinson metric regularity
we establish the contingent derivative and the second-order contingent derivative for the implicit multifunction.
Finally, we apply the results obtained to the solution mapping of a parametric vector equilibrium problem.
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1. INTRODUCTION

In this paper we study the Hölder-likeness and q−order metric regularity of the following
implicit multifunction (which is also called a parametric variational system)

S(µ) = {x ∈ K(µ)| f (µ,x) = 0}, (1.1)

where f : Λ×X → R is a real-valued mapping and K : Λ ⇒ X is a set-valued mapping, Λ and
X are two normed spaces whose norms will both be denoted by || · ||.

Many optimal solution mappings of parametric optimization problems can be written as the
form (1.1). For example, the parametric mathematical programming problem (see [15, 29]),
the parametric variational inequality (see [13]), the parametric (set-valued) vector variational
inequality (see [18, 27, 30]), and the parametric (generalized) vector equilibrium problem (see
[17, 20]), etc. Zhao [29] made the optimal solution mapping of a parametric mathematical pro-
gramming problem write as an implicit multifunction which is similar to the form (1.1), and then
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he introduced a key assumption which is equivalent to the lower-semicontinuity of the optimal
solution mapping on certain conditions. Recently, Kien [15] proved that the same results with
those of Zhao [29] are still valid under weaker assumptions. Motivated by the work reported in
[15, 29], Li and Chen [18] made use of a gap function for a weak vector variational inequality
and introduced a similar key assumption with that of [29]. Then under the key assumption they
obtained the lower-semicontinuity of the solution mapping for the problem. Chen et al. [4]
further extended the main results of Li and Chen [18] to the parametric weak vector quasivari-
ational inequality of Stampacchia type in Hausdorff topological vector spaces. Lately, Zhong
and Huang [30] introduced a key assumption similar to that of Li and Chen [18] by virtue of a
gap function for a parametric set-valued weak vector variational inequalities, and under some
conditions they got that the key assumption is equivalent to the lower-semicontinuity of the
optimal solution mapping for the problem.

Recently, the study of Hölder-likeness and q-order metric regularity has attracted a lot of
interest from many researchers due to their wide applications to different areas of variational
analysis and optimization theory, see e.g. [8, 12, 16, 28] and the references therein. Especially,
for an implicit multifunction, Chuong and Kim [8] gave some sufficient conditions of q-order
Robinson metric regularity in terms of the Fréchet/Mordukhovich coderivative.

Motivated by the papers [4, 8, 15, 18, 29, 30], we discuss the Hölder-likeness and the q-order
metric regularity of the implicit multifunction (1.1). Firstly, we introduce a new key assumption,
and then we prove that the key assumption is equivalent to the Robinson metric regularity of
(1.1) and that under some suitable conditions the key assumption is sufficient for the Hölder-
likeness (metric regularity) of (1.1). Then, by the Robinson metric regularity we establish the
contingent derivative and the second-order contingent derivative for the implicit multifunction.
Finally, we apply the results obtained to the solution mapping of a parametric vector equilibrium
problem.

The rest of this paper is organized as follows. In Sect. 2, we recall some important definitions
related with this paper. In Sect. 3, by introducing a key assumption, we study the Hölder-
likeness and the q-order metric regularity of the implicit multifunction (1.1). In Sect. 4, we
apply the results obtained to the solution mapping of a parametric vector equilibrium problem.

2. PRELIMINARIES

In this paper, let X and Λ denote normed spaces, and let F : X ⇒ Λ be a set-valued mapping.
The effective domain, graph and inverse of F are defined by domF := {µ ∈ Λ|F(µ) 6= /0},
gphF := {(µ,x) ∈ Λ×X |x ∈ F(µ)} and F−1(x) := {µ ∈ Λ|x ∈ F(µ)}, respectively. Let g :
Λ→ R be a real-valued mapping.

Definition 2.1. Given a point (µ̂, x̂) ∈ gphF ,
(i): F is said to be Hölder continuous around µ̂ with constant c≥ 0 and exponent q > 0 if

and only if there exists a neighborhood U of µ̂ such that

F(µ1)⊆ F(µ2)+ c||µ1−µ2||qB, ∀µ1,µ2 ∈U,

where B⊂ Λ indicates the open unit ball.
(ii): F is said to be Hölder-like around (µ̂, x̂) with constant l > 0 and exponent q > 0 if

and only if there exist neighborhoods U of µ̂ and W of x̂ such that

F(µ1)∩W ⊆ F(µ2)+ l||µ1−µ2||qB, ∀µ1,µ2 ∈U.
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In the above definition, when q = 1, Hölder continuity and Hölder-likeness reduce to Lips-
chitz continuous and Lipschitz-likeness, respectively. The later properties have been extensively
investigated for set-valued mappings and single-valued mappings, see [2, 9, 25].

Definition 2.2. Given a point (µ̂, x̂) ∈ gphF , F is said to be q-order metrically regular around
(µ̂, x̂) with constant k > 0 if and only if there exist neighborhoods U of µ̂ and W of x̂ such that

d(µ,F−1(x))≤ kdq(x,F(µ)), ∀µ ∈U,x ∈W,

where the distance from x ∈ X to A ⊂ X is defined by d(x,A) := infa∈A ||x− a|| with the con-
vention that d(x, /0) = ∞.

It is well known that q-order metrically regularity of F is equivalent to Hölder-likeness with
exponent q > 0 of F−1, see [8, Theorem 7].

Definition 2.3. The implicit multifunction S defined by (1.1) is called q-order Robinson metric
regularity around (µ̂, x̂) ∈ gphS if there exist γ > 0 and neighborhoods U of µ̂ , V of x̂ such that

d(x,S(µ))≤ γ| f (µ,x)|q, ∀µ ∈U,x ∈ K(µ)∩V.

Remark 2.1 (i) Note that Robinson metric regularity is originated by Robinson [21, 22, 23]. (ii)
If f (µ,x) = f (x) and K(µ) = K,∀µ ∈U and x ∈ K(µ)∩V , then the Robinson metric regularity
reduces to the classical error bound.

Definition 2.4. g is said to be Hadamard directionally differentiable at µ̂ in the direction µ if
the following limit exists:

lim
t↓0,µ ′→µ

g(µ̂ + tµ ′)−g(µ̂)
t

,

and the directional derivative is denoted by g′(µ̂)(µ). If g is Hadamard directionally differen-
tiable at µ̂ in all direction, then g is said to be Hadamard directionally differentiable at û.

Definition 2.5. ([1, 2]) Let K be a subset of X and x̂ ∈ cl K, where cl K denotes the closure of
K. The contingent cone of K at x̂ is the set

T (K, x̂) := {x|∃hn ↓ 0 and {xn} ⊂ X with xn→ x and x̂+hnxn ∈ K,∀n}.

The adjacent cone of K at x̂ is the set

T b(K, x̂) := {x|∀hn ↓ 0,∃{xn} ⊂ X with xn→ x and x̂+hnxn ∈ K,∀n}.

K is said to be derivable at x̂ if T (K, x̂) = T b(K, x̂). The second-order contingent set of K at x̂
in the direction w ∈ X is the set

T (2)(K, x̂,w) := {x|∃hn ↓ 0 and {xn} ⊂ X with xn→ x and x̂+hnw+
1
2

h2
nxn ∈ K, ∀n}.

Let (µ̂, x̂)∈ gphF . The contingent derivative of F at (µ̂, x̂) is the set-valued mapping DF(µ̂, x̂) :
Λ ⇒ X whose graph is T (gphF ,(µ̂, x̂)). The adjacent derivative of F at (µ̂, x̂) is the set-
valued mapping DbF(µ̂, x̂) : Λ ⇒ X whose graph is T b(gphF,(µ̂, x̂)). F is said to be proto-
differentiable at (µ̂, x̂) if and only if T (gphF ,(µ̂, x̂)) = T b(gphF,(µ̂, x̂)) (see [24, 25]). Let
(ŵ, v̂) ∈ T (gphF,(µ̂, x̂)). The second-order contingent derivative of F at (µ̂, x̂) in the direction
(ŵ, v̂) is the set-valued map D(2)F(µ̂, x̂, ŵ, v̂) : Λ ⇒ X whose graph is T (2)(gphF,(µ̂, x̂),(ŵ, v̂)).
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3. MAIN RESULTS

In this section, we establish several implicit multifunction theorems for (1.1).
It follows from (1.1) that S has close relationship with f . Motivated by the papers [15, 18,

29, 30], we introduce a key assumption as follows:

(A1) ∃α > 0,δ > 0,q > 0 such that ∀µ ∈ B(µ̂,δ ),∀ε > 0 and ∀x ∈ K(µ)\U(S(µ),ε)

with x ∈ B(x̂,δ ), one has | f (µ,x)|q ≥ αε,

where x̂ ∈ S(µ̂), B(µ̂,δ ) indicates the open ball centered at µ̂ with radius δ and U(S(µ),ε) =
{x ∈ K(µ)|d(x,S(µ))< ε}.

Geometrically, the hypothesis (A1) means that, there exist positive numbers α and δ , such
that for all problems in the δ -neighborhood of the parameter µ̂ and for all ε > 0, if a feasible
point x ∈ B(x̂,δ ) is away from the solution set by a distance of at least ε , then a “gap” by an
amount with ε (i.e., αε) will be yielded.

Throughout this paper, we always assume that S(µ) 6= /0, for all µ in a neighborhood of µ̂ ∈Λ.
At first, we need the following important lemma.

Lemma 3.1. The assumption (A1) is equivalent to the q-order Robinson metric regularity of S
around (µ̂, x̂) in (1.1).

Proof. Let (A1) hold. Then, for each µ ∈ B(µ̂,δ ) and x ∈ K(µ)∩B(x̂,δ ), there are two cases:
(i) x ∈ S(µ); (ii) x 6∈ S(µ). If the former case is true, then we need not to prove. If the latter case
holds, then by (A1), for any ε ≤ d(x,S(µ)), we have that | f (µ,x)|q ≥ αε . Thus, | f (µ,x)|q ≥
αd(x,S(µ)).

Let S be q-order Robinson metrically regular around µ̂ ∈ Λ, i.e., there exist γ > 0 and δ > 0
such that

d(x,S(µ))≤ γ| f (µ,x)|q, ∀µ ∈ B(µ̂,δ ),x ∈ K(µ)∩B(x̂,δ ).
Set α := 1

γ
. For each µ ∈ B(µ̂,δ ), each ε > 0 and x ∈ K(µ)\U(S(µ),ε) with x ∈ B(x̂,δ ), one

has
ε ≤ d(x,S(µ))≤ γ| f (µ,x)|q.

Thus, | f (µ,x)|q ≥ αε . This completes the proof. �

Remark 3.2. (a) It follows from Theorem 3.2 in [26] that sufficient conditions for (A1) with
q = 1 are as follows:

(i): f is metrically regular around (µ̂, x̂,0) with respect to x uniformly in µ with a constant
γ > 0, i.e., there exist neighborhoods U of µ̂ , V of x̂ and W of 0 such that

d(x, f−1
µ (z))≤ γ|z− f (µ,x)|, ∀µ ∈U,x ∈ K(µ)∩V,z ∈W,

where f−1
µ (z) = {x ∈ K(µ)|z = f (µ,x)};

(ii): f is continuous around (µ̂, x̂) with respect to x uniformly in µ;
(iii): f is calm at (µ̂, x̂) with respect to µ uniformly in x, i.e., there exist a constant α > 0

and neighborhoods Vµ̂ , Vx̂ such that

|| f (µ,x)− f (µ̂,x)|| ≤ α||µ− µ̂|| ∀µ ∈Vµ̂ ,x ∈Vx̂;

(iv): X is a complete normed space.
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(b) If (1.1) does not relate to the parametric µ , then it follows from Lemma 3.1 that the
following statements are equivalent:

(i): ∃α > 0,δ > 0,q > 0 such that ∀ε > 0 and ∀x ∈ K\U(S,ε) with x ∈ B(x̂,δ ),one has

| f (x)|q ≥ αε;

(ii): f has a q-order error bound α > 0 at x̂, i.e., | f (x)|q ≥ αd(x,S),∀x ∈ K∩B(x̂,δ ).

Next, we give the first implicit multifunction theorem of this paper.

Theorem 3.3. Let (A1) hold. If K is Hölder-like around (µ̂, x̂) with constant l1 > 0 and exponent
q1 > 0 and f is Hölder continuous around (µ̂, x̂) with constant l2 > 0 and exponent q2 > 0, then
S is Hölder-like around (µ̂, x̂) with exponent min{q1,qq2,qq1q2}.

Proof. Fix µ,µ ′ ∈ B(µ̂,δ ) and x ∈ S(µ)∩B(x̂,δ ). Since K is Hölder-like around (µ̂, x̂) with
constant l1 > 0 and exponent q1 > 0, there exists x′ ∈ K(µ ′) such that ||x−x′|| ≤ l1||µ−µ ′||q1 .
By Lemma 3.1, we have

d(x,S(µ ′)) ≤ ||x− x′||+d(x′,S(µ ′))

≤ l1||µ−µ
′||q1 +

1
α
| f (µ ′,x′)|q

= l1||µ−µ
′||q1 +

1
α
| f (µ ′,x′)− f (µ,x)|q

≤ l1||µ−µ
′||q1 +

1
α

l2(||µ−µ
′||+ ||x− x′||)qq2

≤ l1||µ−µ
′||q1 +

1
α

l2(l1 +1)||µ−µ
′||qq2 min{q1,1}

≤ l1l2 + l2 + l1α

α
||µ−µ

′||min{q1,qq2,qq1q2}.

This completes the proof. �

The assumption (A1) is very important for the above theorem and the following examples
illustrate that it is essential.

Example 3.4. Let X = R,Λ = R2,

K(µ) =

{
[−µ2,µ2] if µ2 ≥ 0,
/0 if µ2 < 0

and

f (µ,x) =


µ1x4 if µ1 > 0,
0 if µ1 = 0,
µ1(x4−µ4

2 ) if µ1 < 0.
Then we easily verify that

S(µ) =


{0} if µ1 > 0,µ2 ≥ 0,
[−µ2,µ2] if µ1 = 0,µ2 ≥ 0,
{−µ2,µ2} if µ1 < 0,µ2 ≥ 0.

Set µ̂ = (0,1)T and x̄ = 0. It is easy to verify that the assumption (A1) does not hold when
µ1 ↓ 0, µ2 > 0 and x→ 0. Thus, Theorem 3.3 is not applicable. Moreover, it is easy to verify
that S is not Hölder-like around (µ̂, x̂).
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Example 3.5. Let X = R,Λ = R2, K(µ) = [−|µ2|,µ2] and

h(µ,x) =


µ1(x+ |µ2|) if µ1 > 0,
0 if µ1 = 0,
µ1(x−µ2) if µ1 < 0.

Then we easily verify that

S(µ) =


{−|µ2|} if µ1 > 0,
[−|µ2|,µ2] if µ1 = 0,
{µ2} if µ1 < 0

Set µ̂ = (1,1)T and x̄ =−1. It is easy to verify that all conditions of Theorem 3.3 hold. Thus,
Theorem 3.3 is applicable.

To establish the metric regularity of the implicit multifunction (1.1), we introduce the follow-
ing assumption:

(A′1) ∃α > 0,δ > 0,q > 0 such that ∀x ∈ B(x̂,δ ),∀ε > 0 and ∀µ ∈ K−1(x)\U(S−1(x),ε)

with µ ∈ B(µ̂,δ ), one has | f (µ,x)|q ≥ αε,

where µ̂ ∈ S−1(x̂) and U(S−1(x),ε) = {µ ∈ K−1(x)|d(µ,S−1(x))< ε}.

Theorem 3.6. Let (A′1) hold. If K is q1-order metrically regular around (µ̂, x̂) with constant
l1 > 0 and f is Hölder continuous around (µ̂, x̂) with constant l2 > 0 and exponent q2 > 0, then
S is min{q1,qq2,qq1q2}-order metrically regular around (µ̂, x̂).

Proof. Let Q(x) = {µ ∈K−1(x)| f (µ,x) = 0}. It follows from Theorem 3.3 and the equivalence
between the metric regularity and the Hölder-likeness that we easily get Q is Hölder-likeness
around (µ̂, x̂). Since Q(x) = S−1(x), S is min{q1,qq2,qq1q2}-order metrically regular around
(µ̂, x̂). This completes the proof. �

Now we establish the third implicit multifunction theorem.

Theorem 3.7. Let x̂ ∈ S(µ̂). Suppose (A1) holds with q = 1 and f is Hadamard directionally
differentiable at (µ̂, x̂). Then for each µ ∈ dom(DS(µ̂, x̂)) one has

DS(µ̂, x̂)(µ) = {x ∈ DK(µ̂, x̂)(µ)| f ′(µ̂, x̂)(µ,x) = 0}. (3.1)

When K is proto-differentiable at (µ̂, x̂), S is also proto-differentiable at (µ̂, x̂).

Proof. Let µ ∈ dom(DS(µ̂, x̂)) and x ∈ DS(µ̂, x̂)(µ). Then there exist sequences tn ↓ 0 and
(µn,xn)→ (µ,x) such that

x̂+ tnxn ∈ S(µ̂ + tnµn),

which implies that x̂+tnxn ∈K(µ̂ +tnµn) and f (µ̂ +tnµn, x̂+tnxn) = 0. Thus, x∈DK(µ̂, x̂)(µ).
It follows from Hadamard directional differentiability of f at (µ̂, x̂) that

f (µ̂ + tnµn, x̂+ tnxn) = f (µ̂, x̂)+ tn f ′(µ̂, x̂)(µn,xn)+o(||(tnµn, tnxn)||). (3.2)

Thus, we easily get that f ′(µ̂, x̂)(µ,x) = 0. Consequently, the right set of (3.1) includes the left
set.

Let x∈{x∈DK(µ̂, x̂)(µ)| f ′(µ̂, x̂)(µ,x)= 0}. Then there exist sequences tn ↓ 0 and (µn,xn)→
(µ,x) such that

x̂+ tnxn ∈ K(µ̂ + tnµn).
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By Lemma 3.1 and by (3.2), we have that S is Robinson metrically regular around (µ̂, x̂). Then
for sufficiently large n we get

αd(x̂+ tnxn,S(µ̂ + tnµn))≤ | f (µ̂ + tnµn, x̂+ tnxn)|= tnβn,

where βn = | f ′(µ̂, x̂)(µn,xn)+
o(||(tnµn,tnxn)||)

tn
| and it is clear that βn ↓ 0. Hence,

x̂+ tnxn ∈ S(µ̂ + tnµn)+
1
α
(tnβn + t2

n)B̄,

where B̄⊂ X denotes the closed unit ball, i.e., there exists bn ∈ B̄ such that

x̂+ tn[xn−
1
α
(βn + tn)bn] ∈ S(µ̂ + tnµn).

Since 1
α
(βn + tn)||bn|| → 0, we get x ∈ DS(µ̂, x̂)(µ). Hence, (3.1) is valid.

To prove that S is proto-differentiable at (µ̂, x̂), it follows from the above proof procedure
that we only need to verify

DbS(µ̂, x̂)(µ)⊃ {x ∈ DbK(µ̂, x̂)(µ)| f ′(µ̂, x̂)(µ,x) = 0},

whose proof procedure is similar to that of the above process. So we omit it. This completes
the proof. �

To obtain the final implicit multifunction theorem in this paper, we need the following inter-
esting result.

Lemma 3.8. Let (µ̂, x̂) ∈ gphS and f be Hadamard directionally differentiable at (µ̂, x̂). Con-
sider the following statements:

(i): There exists α > 0 such that ∀µ ∈ domDS(µ̂, x̂),∀ε > 0 and ∀x ∈ DK(µ̂, x̂)(µ) with
x 6∈U(DS(µ̂, x̂)(µ),ε), one has

| f ′(µ̂, x̂)(µ,x)| ≥ αε.

(ii): There exists α > 0 such that

αd(x,DS(µ̂, x̂)(µ))≤ | f ′(µ̂, x̂)(µ,x)|, ∀µ ∈ domDS(µ̂, x̂),x ∈ DK(µ̂, x̂)(µ).

(iii): S is Robinson metrically regular around (µ̂, x̂).
Then (i) and (ii) are equivalent. If X is finite dimensional, then (iii) implies (i) and (ii).

Proof. The proof of the equivalence between (i) and (ii) is similar to that of Lemma 3.1. So
we omit it. Now, we only need to prove that (iii) implies (ii). Let (iii) hold. For each µ ∈
domDS(µ̂, x̂) and x ∈ DK(µ̂, x̂)(µ), there exist sequences tn ↓ 0 and (µn,xn)→ (µ,x) such that
x̂+ tnxn ∈ K(µ̂ + tnµn). For sufficiently large n, by (iii) for some fixed constant γ > 0 one has

d(x̂+ tnxn,S(µ̂ + tnµn))≤ γ| f (µ̂ + tnµn, x̂+ tnxn)|.

By Hadamard directional differentiability of f at (µ̂, x̂), one has

f (µ̂ + tnµn, x̂+ tnxn) = f (µ̂, x̂)+ tn f ′(µ̂, x̂)(µn,xn)+o(||(tnµn, tnxn)||).

Thus, there exists bn ∈ B̄ such that

x̂+ tn[xn− γ| f ′(µ̂, x̂)(µn,xn)+
o(||(tnµn, tnxn)||)

tn
|bn + tnbn] ∈ S(µ̂ + tnµn).



8 C.M. LIAO, M.H. LI, X.W. XUE

Since X is finite dimensional, bn has a convergent subsequence. We might as well assume that
bn→ b ∈ B̄. Hence,

x− γ| f ′(µ̂, x̂)(µ,x)|b ∈ DS(µ̂, x̂)(µ).

Then,
d(x,DS(µ̂, x̂)(µ))≤ ||x− (x− γ| f ′(µ̂, x̂)(µ,x)|b)|| ≤ γ| f ′(µ̂, x̂)(µ,x)|.

This completes the proof. �

Theorem 3.9. Let x̂ ∈ S(µ̂), (ŵ, v̂) ∈ T (gphS,(µ̂, x̂)) and X be finite dimensional. Suppose
(A1) holds with q = 1 and f is Hadamard directionally differentiable at (µ̂, x̂), and f ′(µ̂, x̂) is
Hadamard directionally differentiable at (ŵ, v̂). Then

D(DS(µ̂, x̂))(ŵ, v̂)(µ) = {x ∈ D(DK(µ̂, x̂))(ŵ, v̂)(µ)|[ f ′(µ̂, x̂)]′(ŵ, v̂)(µ,x) = 0}. (3.3)

Moreover, if 0 ∈ T (2)(gphS,(µ̂, x̂),(ŵ, v̂)) and gphS is convex, then

D(2)S(µ̂, x̂, ŵ, v̂)(µ) = {x ∈ D(2)K(µ̂, x̂, ŵ, v̂)(µ)|[ f ′(µ̂, x̂)]′(ŵ, v̂)(µ,x) = 0} (3.4)

and there exists α > 0 such that ∀µ ∈ domD(2)S(µ̂, x̂, ŵ, v̂),x ∈ D(2)K(µ̂, x̂, ŵ, v̂)(µ)

αd(x,D(2)S(µ̂, x̂, ŵ, v̂)(µ))≤ |[ f ′(µ̂, x̂)]′(ŵ, v̂)(µ,x)|. (3.5)

Proof. By Theorem 3.7 we have

DS(µ̂, x̂)(µ) = {x ∈ DK(µ̂, x̂)(µ)| f ′(µ̂, x̂)(µ,x) = 0}.

It follows from Lemmas 3.1, 3.8 and Theorem 3.7 that (3.3) holds. Since gphS is convex and
0 ∈ T (2)(gphS,(µ̂, x̂),(ŵ, v̂)), it follows from Proposition 3.34 in [3] that

T (2)(gphS,(µ̂, x̂),(ŵ, v̂)) = T (gphDS(µ̂, x̂),(ŵ, v̂)).

By the definitions, we have

gphD(DS(µ̂, x̂))(ŵ, v̂) = T (gphDS(µ̂, x̂),(ŵ, v̂))

and
gphD(2)S(µ̂, x̂, ŵ, v̂) = T (2)(gphS,(µ̂, x̂),(ŵ, v̂)).

Thus, D(DS(µ̂, x̂))(ŵ, v̂) = D(2)S(µ̂, x̂, ŵ, v̂). Similarly, D(DK(µ̂, x̂))(ŵ, v̂) = D(2)K(µ̂, x̂, ŵ, v̂).
Thus, (3.4) holds. The proof of (3.5) is similar to that of Lemma 3.8, so we omit it. This
completes the proof. �

Remark 3.10. (i) It follows from Theorems 3.7 and 3.9 that there is an interesting result: the
contingent derivative and the second-order contingent derivative of the implicit multifunction
are also implicit multifunctions, respectively. Moreover, from Theorem 3.7 to Theorem 3.9
we could deduce that the high-order contingent derivative of the implicit multifunction (1.1) is
easily obtained under some similar conditions. (ii) The convexity of gphS can be easily obtained
by the convexities of gphK and gph f .

It follows from Theorems 3.7, 3.9, Lemma 3.1 and Remark 3.2 (b) that we easily get the
following conclusion.
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Corollary 3.11. Let S = {x ∈ K| f (x) = 0}, x̂ ∈ S and v̂ ∈ T (S, x̂). Suppose (i) or (ii) of Remark
3.2 (b) holds and assume that f is Hadamard directionally differentiable at x̂. Then

T (S, x̂) = {x ∈ T (K, x̂)| f ′(x̂)(x) = 0}

and there exists α > 0 such that ∀x ∈ T (K, x̂)

αd(x,T (S, x̂))≤ | f ′(x̂)(x)|.

Moreover, if f ′(x̂) is Hadamard directionally differentiable at v̂, X is finite dimensional, 0 ∈
T (2)(S, x̂, v̂) and gphS is convex, then one has

T (2)(S, x̂, v̂) = {x ∈ T (2)(K, x̂, v̂)|[ f ′(x̂)]′(v̂)(x) = 0}

and there exists α > 0 such that ∀x ∈ T (2)(K, x̂, v̂)

αd(x,T (2)(S, x̂, v̂))≤ |[ f ′(x̂)]′(v̂)(x)|.

Remark 3.12. (a) A more general model than (1.1) is the following implicit multifunction

M(µ) := {x ∈ K(µ)|0 ∈ G(µ,x)},

where G : Λ×X ⇒ Z is a set-valued mapping and Z is a normed space. Being similar to this
paper, we can easily discuss the Hölder-likeness and metric regularity of M. Indeed, by some
methods of variational analysis which are different from our viewpoints, Durea and Strugariu
[11] and Uderzo [26] have discussed the Lipschitz-likeness and metric regularity of M, respec-
tively. One important reason discussing the simple model (1.1) is that our results can be easily
applied to the solution mapping of a parametric vector equilibrium problem (see Section 4).

(b) It follows from Theorems 3.7 and 3.9 that we obtain some necessary conditions of Robin-
son metric regularity. For M, we could easily parallel get similar results. Recently, by using
of a contingent derivative criterion, Dontchev et al. [10] got a sufficient condition for Robin-
son metric regularity. Unfortunately, our necessary conditions are different from their sufficient
conditions. Looking for a contingent derivative criterion being equivalent to Robinson metric
regularity will be considered in our future work.

4. APPLICATIONS

In this section, we consider the following parametric vector equilibrium problem (for short,
PWVEP): find x ∈ K(µ) for the parameter µ ∈ Λ such that

f (µ,x,y) 6∈ −intC, ∀y ∈ K(µ),

where f : Λ×X ×X → Z is a vector-valued mapping, K : Λ ⇒ X is a set-valued mapping, Z is
a Banach space and C ⊆ Z is a closed convex and pointed cone with nonempty interior intC.

For each µ ∈ Λ, let S(µ) denote the solution mapping of (PWVEP), i.e.,

S(µ) := {x ∈ K(µ)| f (µ,x,y) 6∈ −intC, ∀y ∈ K(µ)}.

Now we recall the definition of a real-valued gap function for (PWVEP).

Definition 4.1. A mapping h : Λ×X→ R is said to be a gap function for (PWVEP) with respect
to the parameter µ ∈ Λ if

(i) h(µ,x)≥ 0, ∀x ∈ K(µ); (ii) h(µ,x∗) = 0 and x∗ ∈ K(µ) iff x∗ ∈ S(µ).
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For each µ ∈ Λ and each x ∈ K(µ), set

h(µ,x) := sup
y∈K(µ)

−ξe( f (µ,x,y)),

where e ∈ intC and ξe : Z→ R is a nonlinear scalarization function defined by

ξe(z) = min{t ∈ R|z ∈ te−C}, ∀z ∈ Z.

The function ξe is a continuous, positively homogeneous, subadditive and convex function on
Z, and it is monotone (i.e., z1 ∈ z2−C =⇒ ξe(z1) ≤ ξe(z2)) and strictly monotone (i.e., z1 ∈
z2− intC =⇒ ξe(z1)< ξe(z2)), and is Lipschitz continuous on Z (see [5, 6, 7, 14, 19]). Moreover,
it follows from [7, Proposition 1.43] that for any z∈ Z and r ∈ R, the following statements hold:

(i): ξe(z)< r⇐⇒ z ∈ re− intC (i.e., ξe(z)≥ r⇐⇒ z 6∈ re− intC);
(ii): ξe(z)≤ r⇐⇒ z ∈ re−C (i.e., ξe(z)> r⇐⇒ z 6∈ re−C);
(iii): ξe(z) = r⇐⇒ z ∈ re−∂C, where ∂C denotes the boundary of C.

Under some suitable conditions, h is a gap function for (PWVEP). The reader can refer to
Proposition 3.2 in [19]. In the rest of this section, we always assume that h is a gap function of
(PWVEP). Then, the solution mapping of (PWVEP) can be written as

S(µ) = {x ∈ K(µ)|h(µ,x) = 0}, ∀µ ∈ Λ.

Thus, we could apply the results obtained in Section 3 to the solution mapping of (PWVEP). At
first, we introduce the following assumption which is similar to (A1):

(B1) ∃α > 0,δ > 0,q > 0 such that ∀µ ∈ B(µ̂,δ ),∀ε > 0 and ∀x ∈ K(µ)\U(S(µ),ε) with

x ∈ B(x̂,δ ), one has, for some y ∈ K(µ), f (µ,x,y) ∈ −(αε)e−C,

where x̂ ∈ S(µ̂).

Theorem 4.2. Let (B1) hold. If K is Lipschitz continuous around (µ̂, x̂) and f is Lipschitz
continuous on U(µ̂)×U(x̂)×K(U(µ̂)), where U(µ̂) and U(x̂) are neighborhoods of µ̂ and x̂,
respectively, then S is Lipschitz-like around (µ̂, x̂).

Proof. It follows from the properties of ξe and the definition of h that (B1) is equivalent to the
following statement:

∃α > 0,δ > 0 such that ∀µ ∈ B(µ̂,δ ),∀ε > 0 and ∀x ∈ K(µ)\U(S(µ),ε) with x ∈ B(x̂,δ ),
one has h(µ,x)≥ αε.

Then by Theorem 3.3 we only need verify the Lipschitz continuity of h. By Proposition 3.4
in [19] and by the conditions, we easily get that h is Lipschtiz continuous around (µ̂, x̂). This
completes the proof. �

In the rest of this section, we set µ̂ ∈ Λ and

M(µ̂, x̂) := {y ∈ K(µ̂)|h(µ̂, x̂) =−ξe( f (µ̂, x̂,y))}.

For ŷ ∈M(µ̂, x̂) and ẑ = f (µ̂, x̂, ŷ), set

Ω(ŷ) := {y|ξ ′e(ẑ)( f ′(µ̂, x̂, ŷ)(0Λ,0X ,y)) = 0}.

Theorem 4.3. Let x̂ ∈ S(µ̂). Suppose that X is a finite dimensional space. Moreover, assume
that
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(i): f is Hadamard directionally differentiable at (µ̂, x̂, ŷ) for each ŷ ∈M(µ̂, x̂);
(ii): all conditions of Theorem 4.2 hold;
(iii): K is compact-valued and closed (gphK is a closed set);
(iv): for each ŷ ∈M(µ̂, x̂), Ω(ŷ)∩DK(µ̂, ŷ)(0Λ) = {0X}.

Then for each µ ∈ dom(DS(µ̂, x̂)) one has

DS(µ̂, x̂)(µ) = {x ∈ DK(µ̂, x̂)(µ)| sup
ŷ∈M(µ̂,x̂)

sup
y∈DK(µ̂,ŷ)(µ)

min
ξ∈B∗e(ẑ)

〈−ξ , f ′(µ̂, x̂, ŷ)(µ,x,y)〉= 0}.

When K is proto-differentiable at (µ̂, ŷ) for any ŷ∈M(µ̂, x̂), one has that S is proto-differentiable
at (µ̂, x̂).

Proof. It follows from the conditions and Proposition 3.6 in [19] that h is Hadamard direction-
ally differentiable at (µ̂, x̂) and that

h′(µ̂, x̂)(µ,x) = sup
ŷ∈M(µ̂,x̂)

sup
y∈DK(µ̂,ŷ)(µ)

min
ξ∈B∗e(ẑ)

〈−ξ , f ′(µ̂, x̂, ŷ)(µ,x,y)〉.

Then, by the similar proof to that of Theorem 3.7, we easily get

DS(µ̂, x̂)(µ) = {x ∈ DK(µ̂, x̂)(µ)|h′(µ̂, x̂)(µ,x) = 0}.
This completes the proof. �

Remark 4.4. In the above theorem, B∗e(z)= {ξ ∈B∗e |〈ξ ,z〉= ξe(z)}, where B∗e := {ξ ∈C∗|〈ξ ,e〉=
1} which is a weak* compact convex base of C∗, C∗ is the dual cone of C defined by C∗ = {ξ ∈
Z∗|〈ξ ,z〉 ≥ 0,∀z ∈C}, and Z∗ is the topological dual space of Z and 〈ξ ,z〉 denotes the value of
ξ at z.
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