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Abstract. In this paper, we study the bi-form optimization problem over the generalized spheres. Since bi-form
optimization problem includes bi-quadratic optimization as a special case, it is NP-Hard in general. Nevertheless,
we characterize the primal and the dual problems associated to the bi-form optimization problem and show that
there is no duality gap between them. Based on tensor analysis and the dual characterization, we propose some
methods to solve the bi-form optimization problem approximately. Particularly, we analyze the sums of powers of
tensor polynomials and give a Positivstellensatz for the bi-form optimization over the spheres. We also show that
there is a class of bi-form optimization problems which can be solved in polynomial-time. For a bi-form problem
with nonpositive coefficients, we present a globally convergent algorithm which can compute an approximation
solution with an explicit approximation ratio in terms of the degree of the bi-form and the orders of the norms.
Keywords. Bi-form optimization; Sums of squares; Sums of powers; Spheres.
2020 Mathematics Subject Classification. 65F15, 65K05, 90C90.

1. INTRODUCTION

Polynomial optimization problems have a long and rich history, see [9, 18, 20, 26, 29] and
references therein. In this paper, we study the following bi-form optimization problem over the
generalized spheres:

min Bxs · yt := ∑
m
i1,...,is=1 ∑

n
j1,..., jt=1 Bi1...is j1... jt xi1 · · ·xisy j1 · · ·y jt

s.t. ‖x‖k = 1, ‖y‖l = 1,
(1.1)

where B is an (s, t)-order m×n dimensional tensor with entries Bi1...is j1... jt ∈R for all i1, . . . , is ∈
{1,2, . . . ,m} and j1, . . . , jt ∈ {1,2, . . . ,n} (notions on tensors will be given in Section 2), x∈Rm,
y ∈ Rn, ‖ · ‖p represents lp norm for vectors of appropriate size for p ≥ 1, s ≥ 2 and t ≥ 2 are
given even integers, and k, l ≥ 1 are given positive numbers.
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It is a variational optimization problem for rectangular tensors. Actually, in [4, 5], singular
value problems for rectangular tensors were proposed and analyzed:{

T xs−1yt = λx[s+t−1],

T xsyt−1 = λy[s+t−1].
(1.2)

Here T is an (s, t)-order m×n dimensional rectangular tensor in R. If (λ ,x,y)∈R×Rm\{0}×
Rn \{0} satisfy (1.2), then it is named an H-singular triple of the tensor T (the name came from
the literature [21, 22, 23], we call simply singular triple in this paper). Denote by σ(T ) the
set of singular values of T and ρ(T ) the largest absolute value of element(s) in σ(T ). We call
σ(T ) and ρ(T ) the spectra and the spectral radius of the tensor T , respectively. When the tensor
T is partially symmetric, it is easy to see that ρ(T ) and its corresponding singular vectors are
the global optimal value and its corresponding optimal solution of the following polynomial
maximization problem, respectively

max |T xs · yt | :=
∣∣∣∑m

i1,...,is=1 ∑
n
j1,..., jt=1 Ti1...is j1... jt xi1 · · ·xisy j1 · · ·y jt

∣∣∣
s.t. ‖x‖s+t = 1, ‖y‖s+t = 1.

(1.3)

In this paper, we will consider such variational optimization problems for rectangular ten-
sors. We will assume that T is partially symmetric. Unlike the singular value problems for
matrices, there are various definitions for singular values for rectangular tensors [19], hence
various variational optimization problems for the spectral radii of tensors. There are also appli-
cations involved in multivariate polynomial optimization under unit spherical constraints using
norms other than 2-norm or s+ t-norm to make the system (1.2) homogeneous [27]. Actu-
ally, they form one starting point for investigations on low rank tensor approximation problems
[11, 12, 13] from the perspective of projection.

Besides the singular value problem for tensors, problem (1.1) arises from various areas of
applied science, such as, the strong ellipticity condition problem in solid mechanics, the en-
tanglement problem in quantum physics, the best rank one approximation problem in signal
processing and data analysis, and so on [20]. In particular, here are some special cases of the
optimization problem (1.1).

• When s, t ≥ 1, k = l = s+ t and B is partially symmetric (symmetric inside each of the
two groups of indices), (1.1) reduces to singular value problem for the tensor B proposed
in [4]. Specially, when s = t = 1 and k = l = 2, (1.1) reduces to the familiar singular
value problem for matrices [14].
• When s = t = k = l = 2, (1.1) reduces to the bi-quadratic optimization over unit spheres

which was discussed deeply in [20].

In this paper, we will consider (1.1) with two cases: (PI) k = s and l = t for even s, t, and
(PII) k = l ≥ s+ t which includes bi-quadratic optimization and singular value problem for
tensors as special cases, respectively. Since the bi-quadratic optimization problem is NP-Hard
in general, problem (PI) considered in this paper is NP-Hard in general as well. Nevertheless,
there exists no result on the NP-hardness of problem (PII) in the literature.

For the special bi-quadratic optimization problem, various approximation methods (both for
theoretical analysis and practical computations) to solve a general bi-quadratic optimization
problem or such an optimization problem with special structures were presented in [20].
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In this paper, based on the concept of K-eigenvalues of tensors [30, 31], we will first estab-
lish some decomposition results for homogeneous polynomials of even degrees. Then, we will
investigate problem (PI) from the prima-dual aspects in detail. Concretely, we first characterize
the primal and the dual problems associated to problem (PI), and prove that there is no duality
gap between them. Then, using the dual characterization of problem (PI) and the concepts of
K-eigenvalues, we propose a numerical scheme for problem (PI). We also discuss the sums of
squares of a tensor polynomial through its representation matrix polynomial, and the general-
ized sums of powers of a tensor polynomial. Especially, utilizing results from [25] on dual cone
of the cone of positive semidefinite tensors, we give a theorem on sums of powers of tensor
polynomials which is a generalization of the results in [20, 26]. At last, we point out that a
class of problem (PI) can be solved in polynomial-time through the representation matrix of
that tensor. To the best of our knowledge, such a result is new even when it reduces to the case
of bi-quadratic optimization problems.

For problem (PII), we concentrate our attentions to nonnegative rectangular tensor T in (1.2).
It turns out that the resulting maximization problem (1.3) can be solved by a globally linearly
convergent algorithm with respect to Hilbert’s projective metric. We point out that in [4], for the
class of irreducible nonnegative tensors, an algorithm was proposed for solving maximization
problem (1.3). Nevertheless, there is no convergent result. So, the contribution of this paper for
problem (PII) are two folds:

• we give a convergent algorithm for the singular value problem for irreducible rectangu-
lar tensors proposed in [4], and also extend their results to general nonnegative rectan-
gular tensors;
• for general cases when k = l > s+ t, we give a convergent algorithm for the maximiza-

tion problem (1.3) (hence its corresponding counterpart (1.1)) with an explicit approxi-
mation ratio.

The rest of the paper is organized as follows. The definitions and various related properties of
K-eigenvalues and K-eigenvectors are given in Section 2. Section 3 investigates problem (PI)
from the primal-dual aspects and several heuristic numerical schemes. In Section 4, we discuss
problem (PII) in detail. Some final remarks are given in Section 5.

2. PRELIMINARIES

In this section, we present a simple yet useful notion for tensors. It starts from the balanced
matrix flattening of an even order tensor and the natural embedding of the space of symmetric
tensors into the space of tensors. Then, we can treat a tensor as a linear mapping, and hence
eigenvalue and singular value decompositions can be employed. Due to the embedding of
symmetric tensors, a symmetric tensor (corresponding to a homogeneous polynomial) can be
decomposed as well. More importantly, it acts well on the Veronese variety when it is viewed
as a dual linear operator, and hence a meaningful decomposition of polynomials. We refer to
[17] for basic notions on tensors.

These are related to K-eigenvalues of tensors discussed in the literature [30, 31].

2.1. Matrix flattening. Given positive integers l and m, an l-th order m dimensional tensor
T in a field K (R or C) is a set of elements Ti1i2...il for all i j ∈ {1,2, . . . ,m} and j ∈ {1,2, . . . , l},
where every element Ti1i2...il is in K. It is denoted by T := (Ti1i2...il). For any two l-th order m



4 S. HU

dimensional tensors T (1), T (2) and γ ∈K, we define

T (1)+T (2) := (T (1)
i1i2...il +T (2)

i1i2...il) and γT := (γTi1i2...i2n).

Then, the set of all l-th order m dimensional tensors in K forms a linear space, denoted by Tl,m,
where the zero element under addition is denoted by 0, a tensor with all elements being zero.
We will abbreviate Tl,m as T if there is no confusion.

For the convenience of the subsequent analysis, we introduce the following notation for ten-
sors. For a tensor T ∈Tl,m with l = 2n, we put its indices into two sets

I = {i1i2 . . . in | i j ∈ {1,2, . . . ,m}, j ∈ {1,2, . . . ,n}};
J = {in+1in+2 . . . i2n | i j ∈ {1,2, . . . ,m}, j ∈ {n+1,n+2, . . . ,2n}}.

We arrange elements in I and J by the lexicographic order, respectively; and then re-label
elements in I and J in turn by 1,2, . . . ,mn, respectively. Thus, the tensor T can be represented
as a matrix T̄ := (T̄i j) of mn×mn. Conversely, given an arbitrary mn×mn matrix T̄ , then it must
be the matrix representation of some 2n-th order m dimensional tensor in the above way. It is
the balanced matrix flattening of an even order tensor.

Throughout this paper, for any tensor T ∈ Tl,m, we denote its vector representation by T̂ ∈
Kml

; and if l = 2n, we denote its matrix representation by T̄ ∈ Kmn×mn
. For any S,Q ∈ Tl,m,

define 〈S,Q〉 := ∑
ml

i=1 ŜiQ̂i. Then, it is easy to show that 〈·, ·〉 defined as above is an inner

product in Tl,m. The norm induced by this inner product is ‖T‖ :=
√

∑
ml

i=1 T̂ 2
i for any T ∈Tl,m.

If l = 2n, i.e., S,Q ∈ T2n,m, then the above inner product definition is equivalent to 〈S,Q〉 :=

∑
mn

i=1, j=1 S̄i jQ̄i j; and the norm induced by the inner product is ‖T‖ :=
√

∑
mn

i=1, j=1 T̄ 2
i j for any

T ∈ T2n,m, which is called the Hilbert-Schmidt norm. For any two tensors A := (Ai1i2...in) and
B := (Bin+1in+2...i2n) in Tn,m, define C := A⊗B by (Ci1i2...i2n) := (Ai1i2...inBin+1in+2...i2n).

Definition 2.1. Let T2n,m and Tn,m be the spaces of 2n-th order m dimensional and n-th order m
dimensional tensors in the field K, respectively. For any tensor T ∈ T2n,m, if there is a number
λ ∈C and a nonzero tensor D ∈Tn,m, such that T̄ D̂ = λ D̂. Then, λ is called a K-eigenvalue of
T , and D is called a K-eigenvector of T with respect to the eigenvalue λ .

In Definition 2.1, the eigenvalues and eigenvectors of even order tensors were defined by
using the methods used in matrix theory [30, 31]. Then, matrix theory can be applied [15].

For any T ∈T2n,m, there exist mn (counted with multiplicities) K-eigenvalues of T .
The space of all symmetric tensors in T2n,m is denoted by S2n,m. For any T ∈S2n,m, suppose

that K-eigenvalues of T are {λi : i ∈ {1,2, . . . ,mn}} and the corresponding orthonormal system
of K-eigenvectors is {D(1),D(2), . . . ,D(mn)}. Then, we have T = ∑

mn

i=1 λiD(i)⊗D(i).

2.2. Decomposition of even degree homogenous polynomial. For an n-th order m dimen-
sional tensor T and a vector x ∈Km (K is R or C), we define

T xn := 〈T,X〉,

where X is an n-th order m dimensional tensor defined by

X := {Xi1i2...in := xi1xi2 . . .xin | i j ∈ {1,2, . . . ,m}, and j ∈ {1,2, . . . ,n}}.
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Actually, X can also be written as the tensor product of n vectors x, i.e., X := xn := x⊗ x⊗·· ·⊗ x︸ ︷︷ ︸
n copies

.

It is the Veronese image of a vector of order n.

Theorem 2.2. Let T2n,m be the space of 2n-th order m dimensional tensors in the field K. For
any T ∈ T2n,m, if there exist k numbers {λi : i ∈ {1,2, . . . ,k}} and n-th order m dimensional
tensors {D(1),D(2), . . . ,D(k)} such that T = ∑

k
i=1 λiD(i)⊗D(i). Then for any x ∈ Km, we have

T x2n = ∑
k
i=1 λi(D(i)xn)2.

Proof. Let X denote the tensor generated by the tensor product of 2n vectors x; and Y denote
the tensor generated by the tensor product of n vectors x. Suppose that the matrix representation
of X is denoted by X̄ and the vector representation of Y is denoted by Ŷ . Then, it is easy to see
that X̄ = ŶŶ T . Furthermore,

T x2n = 〈T,X〉=

〈
k

∑
i=1

λiD(i)⊗D(i),X

〉
=

k

∑
i=1

λi

〈
D(i)⊗D(i),X

〉
=

k

∑
i=1

λi

mn

∑
k, j=1

(
D̂(i)

k D̂(i)
j

)
X̄k j =

k

∑
i=1

λi

mn

∑
k, j=1

(
D̂(i)

k D̂(i)
j

)(
ŶkŶj

)
=

k

∑
i=1

λi

mn

∑
k, j=1

(
D̂(i)

k Ŷk

)(
D̂(i)

j Ŷj

)
=

k

∑
i=1

λi

mn

∑
k=1

mn

∑
j=1

(
D̂(i)

k Ŷk

)(
D̂(i)

j Ŷj

)

=
k

∑
i=1

λi

mn

∑
k=1

(
D̂(i)

k Ŷk

) mn

∑
j=1

(
D̂(i)

j Ŷj

)
=

k

∑
i=1

λi

(
mn

∑
j=1

(D̂(i)
j Ŷj)

)2

=
k

∑
i=1

λi

(
D(i)xn

)2
,

where the fourth equality follows from the definitions of ⊗ and inner product, the last follows
from the definition of D(i)xn. The proof is complete. �

From the proof of the above theorem, we have the following corollary.

Corollary 2.3. Let T2n,m be the space of 2n-th order m dimensional tensors in the field K. For
any T ∈ T2n,m, if there exist k numbers {λi : i ∈ {1,2, . . . ,k}} and n-th order m dimensional
tensors {D(1),D(2), . . . ,D(k)} and {F(1),F(2), . . . ,F(k)} such that T = ∑

k
i=1 λiD(i)⊗F(i). Then

for any x ∈Km, we have T x2n = ∑
k
i=1 λi(D(i)xn)(F(i)xn).

The following theorem and corollary demonstrate that a non-symmetric tensor applied to
the Veronese image can be equivalently transformed into a balanced symmetric (symmetric
with respect to the two groups of indices) tensor applied to the Veronese image. Actually, the
conclusion of this theorem holds for the subspace of symmetric tensors, since the Veronese
image is symmetric. There are situations in the sequel that need this refined conclusion. While,
in most sitations, the conclusin of this theorem is sufficient.

Theorem 2.4. Let T2n,m be the space of 2n-th order m dimensional tensors in the field K and
S b

2n,m be the corresponding balanced symmetric subspace of T2n,m. For any T ∈ T2n,m, there
exists a tensor S ∈S b

2n,m such that T x2n = Sx2n for any x ∈Km.
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Proof. For any T ∈ T2n,m, let T̄ denote the matrix form of T . Suppose that S is a tensor with
the matrix representation S̄ := T̄+T̄ T

2 , then S ∈S b
2n,m. For any x ∈ Km, let X denote the tensor

generated by the tensor product of 2n vectors x, i.e., x⊗ x⊗ . . .⊗ x︸ ︷︷ ︸
2n copies

. It is easy to see that X is

symmetric. Since T̄ = T̄+T̄ T

2 + T̄−T̄ T

2 , we have

T x2n =
1
2
(
2〈S̄, X̄〉+ 〈T̄ , X̄〉−〈T̄ T , X̄〉

)
= Sx2n +

1
2

(
mn

∑
i, j=1

T̄i jX̄i j−
mn

∑
j,i=1

T̄jiX̄i j

)

= Sx2n +
1
2

(
mn

∑
i, j=1

T̄i jX̄i j−
mn

∑
j,i=1

T̄jiX̄ ji

)
= Sx2n,

where the third equality follows from the symmetry of X . The proof is complete. �
The proof actually gives the following.

Corollary 2.5. Let T2n,m be the space of 2n-th order m dimensional tensors in the field K and
S b

2n,m be the corresponding balanced symmetric subspace of T2n,m. For any T ∈ T2n,m, there
exists a tensor S ∈S b

2n,m such that 〈T,D⊗D〉= 〈S,D⊗D〉 for any D ∈Tn,m.

A family of l-th order m dimensional real tensors {D(1),D(2), . . . ,D(k)} is said to be regular
if for any x ∈ Rm\{0}, it follows that at least one of D(1)xn,D(2)xn, . . . ,D(k)xn is nonzero. By
Theorem 2.2, we may obtain the following theorem.

Theorem 2.6. Suppose that the 2n-th order m dimensional real tensor T is balanced symmetric.

(i) 〈T,D⊗D〉 ≥ 0 holds for all n-th order m dimensional real tensor D if and only if every
K-eigenvalue of T is nonnegative. If every K-eigenvalue of T is nonnegative, then there
is a family of n-th order m dimensional tensors {D(1),D(2), . . . ,D(k)} such that T x2n =

∑
k
i=1

(
D(i)xn

)2
holds for all x ∈ Rm.

(ii) 〈T,D⊗D〉> 0 holds for all n-th order m dimensional real nonzero tensor D if and only
if every K-eigenvalue of T is positive. If every K-eigenvalue of T is positive, then there
is a regular family of n-th order m dimensional tensors {D(1),D(2), . . . ,D(mn)} such that

T x2n = ∑
mn

i=1

(
D(i)xn

)2
holds for all x ∈ Rm.

The results established so far are for “square” tensors, i.e., tensors with all its indices the
same dimension. However, these results can be generalized to “rectangular” tensor easily.
An m× n dimensional rectangular tensor B of order s+ t means a multiarray with its entries
Bi1...is j1... jt ∈K for all i1, . . . , is ∈ {1, . . . ,m} and j1, . . . , jt ∈ {1, . . . ,n} [4, Section 2].

Similar to the discussions in Sections 2.1 and 2.2, using singular value decomposition of
matrices [15], we can get the following results.

Theorem 2.7. For any m×n dimensional rectangular tensor B of order s+ t in the field R, we
have
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(i) there exists k ≤ min{ms,nt} positive numbers λi and tensors Pi ∈ Ts,m and Qi ∈ Tt,n

with i ∈ {1, . . . ,k} such that B = ∑
k
i=1 λiPi⊗Qi;

(ii) and hence, Bxs · yt = ∑
k
i=1 λi(Pixs)(Qiyt) for any x ∈ Rm and y ∈ Rn.

3. A POSITIVSTELLENSATZ OF BI-FORM OPTIMIZATION OVER UNIT SPHERES

In this section, we discuss the bi-form optimization problem (1.1) with k = s and l = t. For
the convenience of reference, we state it more explicitly:

min Bxs · yt

s.t. ‖x‖s = 1, ‖y‖t = 1,
(3.1)

where B is an m×n dimensional s+ t-th order rectangular tensor. When s = t = 2, we arrive at
a bi-quadratic optimization problem. We denote by Bs := {x ∈ Rm | ‖x‖s = 1} and Bt := {y ∈
Rn | ‖y‖t = 1} the unit spheres. Recall that s ≥ 2 and t ≥ 2 are even integers throughout this
section.

For the convenience of the subsequent analysis, we will denote by Ik a “diagonal” tensor in
Tk,m, i.e., (Ik)i1...ik = 1 if i1 = · · · = ik and 0 otherwise. We will call a rectangular tensor B
positive semidefinite if Bxs · yt ∈ R[x,y] is a positive semidefinite (a.k.a. nonnegative) polyno-
mial. Here R[x,y] represents the polynomial ring with the coefficients taking from the field
R. Similarly, we can define positive definite tensors. Note that, when a tensor is square, we
will let x = y in the above definition. Please refer to [25] for a comprehensive reference. For
square tensors, we will denote by Pl,m, abbreviated as P if there is no confusion, for the set
of positive semidefinite tensors in Tl,m. Consequently, we will denote by P∗ the dual cone of
P [25]. The positive semidefiniteness of a tensor is equivalent to its symmetrization or partial
symmetrization for a rectangular tensor. While, for simplicity, the dual cones are always stud-
ied inside the subspace of symmetric tensors or the subspace of partially symmetric rectangular
tensors. We will denote by T � 0 for T ∈P , and T � 0 for T ∈ int(P), the interior of P .

Using the decomposition results in the previous section, i.e., Theorem 2.7, we can decompose
the objective function of (3.1) as

Bxs · yt =
k

∑
i=1

(Pixs)(Qiyt). (3.2)

Here Pi’s and Qi’s are (square) tensors of order s dimension m and order t dimension n, re-
spectively. Note that Pi’s and Qi’s can be chosen as symmetric. We first discuss the necessary
conditions for optimality of (3.1).

Necessary Conditions for Optimality. Since problem (3.1) is actually minimizing a contin-
uous function on a compact set, it has optimal solutions. Let λ∗ be the optimal value of (3.1),
and one of the corresponding optimal solution pairs be (x∗,y∗). Then, we must have

Bxs · yt ≥ Bxs
∗ · yt
∗ = λ∗, ∀ x ∈ Bs, ∀y ∈ Bt .

This implies further that

Bxs · yt ≥ λ∗(‖x‖s)
s = λ∗(‖y‖t)t , ∀ x ∈ Bs, ∀y ∈ Bt .
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This, together with ‖x∗‖s = 1, implies that Bxs
∗ ·yt−λ∗Ityt is a positive semidefinite polynomial

in R[y]. We also have by (3.2) that

Bxs
∗ · yt−λ∗Ityt =

k

∑
i=1

(Pixs
∗)(Q

iyt)−λ∗Ityt .

Hence, one of the necessary conditions for optimality is:

k

∑
i=1

(Pixs
∗)Q

i−λ∗It � 0. (3.3)

A similar analysis can yield that another necessary condition is:

k

∑
i=1

(Qiyt
∗)P

i−λ∗Is � 0. (3.4)

We now summarize the above analysis into the following theorem.

Theorem 3.1. (x∗,y∗) is an optimal solution pair of (3.1) with optimal value λ∗ only if

∑
k
i=1(P

ixs
∗)Q

i−λ∗It � 0,
∑

k
i=1(Q

iyt
∗)P

i−λ∗Is � 0,
‖x∗‖s = 1, and ‖y∗‖t = 1.

(3.5)

In the literature, there are investigations on polynomial optimization over spheres similar to
(3.1) via the eigenvalues of symmetric tensors [4, 21, 24]. The underlying principle is based
on the first order necessary conditions for these polynomial optimization problems. Essentially,
the necessary conditions considered there corresponding to KKT points. While, KKT points
for (3.1) is different from the necessary conditions established in Theorem 3.1. In the next
subsection, we will see some nice properties of (3.5).

3.1. Primal-dual characterization. For any given x ∈ Bs and y ∈ Bt , we can find a λ ∈ R
such that

k

∑
i=1

(Pixs)Qi−λ It � 0 and
k

∑
i=1

(Qiyt)Pi−λ Is � 0. (3.6)

This is because x and y are bounded, and It and Is are both positive definite. Denote by Λ(x,y)
the set of λ ∈ R satisfing (3.6) for any (x,y) ∈ Bs×Bt . Since Pi’s and Qi’s are given data
after we decompose (3.1) using Theorem 2.7, and x and y are bounded, we have that the set
of λ which is feasible for (3.6) is bounded from above. This, together with the continuity
of λ in (3.6), implies that the set Λ(x,y) contains its finite supremum. Hence, we essentially
have Λ(x,y) = (−∞,λ (x,y)] for some finite λ (x,y). That is to say, λ (x,y) is defined to be
maxλ∈Λ(x,y)λ .

We now have the following result.

Theorem 3.2. Suppose the optimal value of minimization problem (3.1) is λ∗. Then,

λ∗ = λ̄ := min
x∈Bs, y∈Bt

λ (x,y) = min
x∈Bs, y∈Bt

max
λ∈Λ(x,y)

λ . (3.7)



SOME PROPERTIES OF BI-FORM OPTIMIZATION 9

Proof. Suppose (x∗,y∗) is an optimal solution pair of (3.1) with optimal value λ∗. It is obvious to
see that (x∗,y∗,λ∗) is a feasible solution triple of (3.6) by Theorem 3.1. We also have Bxs

∗ ·yt
∗ =

λ∗ by the hypothesis, this implies that λ∗ = λ (x∗,y∗). Otherwise, λ∗ < λ (x∗,y∗). This, together
with (3.6) and Bxs

∗ · yt
∗ = λ∗, yields a contradiction. Hence,

λ̄ = min
x∈Bs, y∈Bt

λ (x,y)≤ λ∗. (3.8)

On the other hand, for any feasible (x,y) ∈ Bs×Bt , note the followings[
k

∑
i=1

(Pixs)Qi−λ∗It

]
yt =

k

∑
i=1

(Pixs)(Qiyt)−λ∗Ityt

= Bxs · yt−λ∗

≥ 0

hold for any y satisfing ‖y‖t = 1. Hence, ∑
k
i=1(P

ixs)Qi−λ∗It � 0. Similarly, we can prove that
∑

k
i=1(Q

iyt)Pi−λ∗Is � 0. Those imply λ∗ ∈ Λ(x,y). So,

max
λ∈Λ(x,y)

λ ≥ λ∗

for any (x,y) ∈ Bs×Bt . Taking minimization of both sides of the above inequality over the unit
spheres, we get

min
x∈Bs, y∈Bt

max
λ∈Λ(x,y)

λ ≥ λ∗.

This, together with (3.8), implies that λ∗ = λ̄ . The proof is complete. �
We will call (3.7) the primal problem of the optimization problem (3.1). As expected, we

define the dual problem of minimization problem (3.1) as the following problem:

λ := max
λ∈R

min
x∈Bs, y∈Bt

δ (λ ,x,y), (3.9)

where δ is a function defined as

δ (λ ,x,y) :=
{

λ if λ ∈ Λ(x,y),
−∞ otherwise

(3.10)

for x ∈ Bs and y ∈ Bt .

Theorem 3.3. There is no duality gap between the primal and the dual problems of (3.1), i.e.,
λ̄ = λ .

Proof. From the proof of Theorem 3.2, we see that λ∗ = λ̄ ∈ Λ(x,y) for every (x,y) ∈ Bs×Bt .
Hence, δ (λ̄ ,x,y) = λ̄ for every (x,y) on the joint unit spheres. Thus,

λ = max
λ∈R

min
x∈Bs, y∈Bt

δ (λ ,x,y)≥ λ̄ .

On the other hand,

λ = max
λ∈R

min
x∈Bs, y∈Bt

δ (λ ,x,y)≤max
λ∈R

min
x∈Bs, y∈Bt

max
λ∈Λ(x,y)

λ = max
λ∈R

λ̄ = λ̄ .

The proof is complete. �
In the following, we have a characterization on the dual problem of (3.1), i.e., (3.9).
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Theorem 3.4. minx∈Bs, y∈Bt δ (λ ,x,y) is finite (i.e., not equal −∞) if and only if

k

∑
i=1

(Pixs)Qi−λ It � 0 and
k

∑
i=1

(Qiyt)Pi−λ Is � 0 (3.11)

for any x and y on the joint unit spheres.

Proof. The result follows from the definitions of δ and Λ immediately. �
Theorem 3.4 can be informative for solving optimization problem (3.9), and hence, the orig-

inal optimization problem. First note that λ̄ = λ = λ∗ are bounded, we can find in polynomial-
time an upper bound p̄ and a lower bound p for λ∗. Then, if we can solve the problem in
Theorem 3.4 efficiently, we can use bisection method to [p, p̄] to get an ε approximation solu-
tion for λ∗ with any given ε > 0, i.e., finding λ such that |λ −λ∗| < ε . However, we have to
be aware of the hardness of solving problem (3.11). With this notice and the NP-Hardness of
(3.1), the two equivalent problems stated in Theorem 3.4 are essentially as hard as (3.1).

3.2. General approaches and a class of trackable cases. Since detecting conditions (3.11)
for the general case is NP-Hard, is there a framework to approach that? Is there a special
case which is polynomial-time solvable? We will give some answers to these questions in this
subsection.

First, what does the condition (3.11) mean? The following result is easily proven.

Lemma 3.5.
k

∑
i=1

(Pixs)Qi−λ It � 0

for any x ∈ Bs means the tensor polynomial (i.e., a tensor whose entries are polynomials)

K(x) :=
k

∑
i=1

(Pixs)Qi−λ (‖x‖s)
sIt (3.12)

is positive semidefinite for every x ∈ Rm.

Since the positive semidefiniteness of (3.12) for every x ∈ Rm is equivalent to

K(x)yt =
k

∑
i=1

(Pixs)(Qiyt)−λ (‖x‖s)
sItyt

=
k

∑
i=1

(Pixs)(Qiyt)−λ (‖x‖s)
s(‖y‖tt)

≥ 0

for any x ∈ Rm and y ∈ Rn, we have that ∑
k
i=1(P

ixs)Qi−λ It � 0 for any x ∈ Bs is equivalent to
∑

k
i=1(Q

iyt)Pi−λ Is � 0 for any y ∈ Bt . Hence, considering one of the conditions in Theorem
3.4 is sufficient.

Proposition 3.6. If

K(x) =
w

∑
k=1

(hk(x))t (3.13)
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with hk(x)∈Rn[x] for k ∈ {1, . . . ,w}, then K(x) is positive semidefinite for all x ∈Rm. Actually,
all the K-eigenvalues of K(x) are nonnegative. We will call the representation (3.13) of K(x)
sums of powers, abbreviated as s.o.p.

The notion s.o.p has an intimate relationship with symmetric tensor decomposition [3]. Note
that when t = 2, s.o.p reduces to the well known sums of squares, abbreviated as s.o.s, in the
literature [20]. We will also define the s.o.s representation of K(x) as

K(x) =
w

∑
k=1

Hk(x)⊗Hk(x) (3.14)

with Hk(x) ∈ Rnt/2
[x] for k ∈ {1, . . . ,w}. Note that if K(x) has an s.o.p representation, then it

has an s.o.s representation since t is even. Moreover, Proposition 3.6 is also true with (3.13)
being replaced by (3.14).

In the following, we will derive some characterizations of the conditions in Theorem 3.4.
Hence, by the preceding discussion, we get some heuristic numerical approaching schemes for
the optimization problem (3.1).

Theorem 3.7. If t = 2 and K(x)� 0 for any x ∈ Rm \{0}, then there exists N ∈N+ such that
(‖x‖2)

2NK(x) has an s.o.s representation. Moreover, if we define

κ(K) := max
‖z‖2=1

max‖x‖2=1 zT K(x)z

min‖x‖2=1 zT K(x)z
,

then N ≥ m s
2 (s−1)

2log2
κ(K)− m+s

2 is sufficient.

Proof. From the proof of [20, Lemma 3.5], especially [20, (3.7)], we can get that there exists
N ∈N+ such that (‖x‖2)

2NK(x) has an s.o.s representation in the sense of (3.14). �
Theorem 3.7 is also a corollary of Theorem 3.9 below since P2,n is self-dual. Nevertheless,

the general case for t ≥ 2 is much more involved. Based on the definition of K-eigenvalues and
Theorem 3.7, we have the following result.

Theorem 3.8. For general even t ≥ 2, if all K-eigenvalues of K(x) are positive for any x ∈
Rm \{0}, then there exists N ∈N+ such that (‖x‖2)

2NK(x) has an s.o.s representation.

Proof. Since t ≥ 2 is even, we can write the matrix representation of K(x) as K(x), see Sec-
tion 2 for details. Now, since all K-eigenvalues of K(x) are positive for any x ∈ Rm \ {0},
K(x) is positive definite for any x ∈ Rm \ {0}. So, by Theorem 3.7, there exists N ∈N+ such
that (‖x‖2)

2NK(x) has an s.o.s representation. However, the corresponding tensor of matrix
(‖x‖2)

2NK(x) is exactly (‖x‖2)
2NK(x). Thus, by (3.14) and isomorphism of space of tensors

and space of matrices established in Section 2, we get the desired result. �
Under what condition(s), K(x) or h(x)2K(x) with some h(x) ∈ R[x] has an s.o.p representa-

tion? We give a result in the following theorem.

Theorem 3.9. For general even t ≥ 2, if K(x) ∈ int(P∗) for any x ∈Rm \{0}, then there exists
N ∈N+ such that (‖x‖2)

2NK(x) has an s.o.p representation. Define

σ(K) := max
T∈P\{0}

max‖x‖2=1 K(x)•T
max‖x‖2=1 K(x)•T

,
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then N ≥ N∗ :=


2

m s
2 (s−1)

2log2
σ(K)−m+s

2 −s

t

 t + s is sufficient.

Proof. Write K(x) = ∑i fi(x)Ki, where fi(x) ∈ R[x] are homogeneous and Ki’s are symmetric
tensors. Let G(x) := ‖x‖2

2. For any polynomial p(x), we define the differential operator p(∂ )
as x j being replaced by ∂

∂x j
. Hence, G(∂ ) = ∆ is the Laplacian operator. K(∂ ) is defined to be

∑i fi(∂ )Ki.
Let d be an arbitrary given positive integer, and Hd(Rm) ⊂ R[x] be the set of homogeneous

forms of degree d. For any polynomial h ∈ Hd(Rm), from the results in [26, Pages 267-268],
we have

h(∂ )GN = ΦN(h)GN−d, where ΦN(h) = ∑
j≥0

(N)d− j

22 j−d j!
∆

j(h)G j.

Here, (N)w := N(N−1) · · ·(N− (w−1)) and ΦN is a linear map from Hd(Rm) to itself. When
N > d, ΦN is invertible with explicit formula for its inverse. Please refer to [26] for details.
With the Hilbert Identity:

G(x)N =
q

∑
i=1

µi(αi1x1 + · · ·+αimxm)
2N ,

where µi > 0 and αi j ∈ R, we can have the followings:

h(∂ )GN = h(∂ )
(
∑

q
i=1 µi(αi1x1 + · · ·+αimxm)

2N) ,
ΦN(h)GN−d = (2N)d ∑

q
i=1 µih(αi1, . . . ,αim)(αi1x1 + · · ·+αimxm)

2N−d.

Let N > s and d = s, then ΦN is a bilinear map between Hs(Rm) and itself. Now, let h =
Φ
−1
N ( f j), we get

f j(x)GN−s(x) = (2N)s

q

∑
i=1

µiΦ
−1
N ( f j)(αi1, . . . ,αim)(αi1x1 + · · ·+αimxm)

2N−s.

Hence,

K(x)GN−s = (2N)s

q

∑
i=1

µi ∑
j

K jΦ
−1
N ( f j)(αi1, . . . ,αim)(αi1x1 + · · ·+αimxm)

2N−s. (3.15)

From the general formula for Φ
−1
N in [26], and since f j’s are homogeneous polynomial of

degree s, we have the following formula:

Φ
−1
N ( f j) =

1
(N)s2s

s/2+1

∑
i=0

(−1)i∆i( f j)Gi

22ii!(m
2 +N−1)i

=
1

(N)s2s f j +
1

(N)s2s

s/2+1

∑
i=1

(−1)i∆i( f j)Gi

22ii!(m
2 +N−1)i

.

So,

lim
N→∞

(N)s2s
Φ
−1
N ( f j) = f j.
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Thus,

lim
N→∞

(N)s2s
∑

i
KiΦ

−1
N ( fi)(x) = K(x).

This, together with (3.15), yields

lim
N→∞

K(x)GN−s

= lim
N→∞

(2N)s

q

∑
i=1

µi ∑
j

K jΦ
−1
N ( f j)(αi1, . . . ,αim)(αi1x1 + · · ·+αimxm)

2N−s

= lim
N→∞

(2N)s

(N)s2s

q

∑
i=1

µi(N)s2s
∑

j
K jΦ

−1
N ( f j)(αi1, . . . ,αim)(αi1x1 + · · ·+αimxm)

2N−s.

Now, for any N ≥ N0 with N0 > s sufficiently large, we can get

(N)s2s
∑

j
K jΦ

−1
N ( f j)(αi1, . . . ,αim) ∈ int(P∗)

since K(αi1, . . . ,αim) ∈ int(P∗) and ΦN is linear [26]. Similar to the discussion in [20, Page
1297] and [26, Section 7], we can conclude that

N0 ≥
m s

2(s−1)
2log2

σ(K)− m+ s
2

is sufficient. Hence, with each N ≥ N0, we have by [25] that

(N)s2s
∑

i
KiΦ

−1
N ( fi)(αi1, . . . ,αim) ∈ intP∗ =

r

∑
j=1

ht
j

for some h j ∈ Rn with j ∈ {1 . . . ,r}. Since t is even, we can conclude that the defined N∗ ≥ N0
such that t divides 2N∗− s. Now, for this N∗, we can write K(x)G(x)N∗−s as

K(x)G(x)N∗−s =
(2N∗)s

(N∗)s2s

q

∑
i=1

µi

r

∑
j=1

(
h j(αi1x1 + · · ·+αimxm)

2N∗−s
t

)t
.

Since µi > 0, we obviously arrive at an s.o.p representation of K(x)G(x)N∗−s. The proof is
complete. �

Theorem 3.9 actually presents a Positivstellensatz for the considered problem. We refer to
[18, 26] for some classical results on this topic.

We note that another reason for investigating Theorem 3.9 is that it may give some light to
tensor conic optimization problems [25], and also symmetric tensor decomposition [3].

Theorem 3.10. If K(x) ∈Rnt
[x] defined in (3.12) is positive semidefinite for every x ∈Rm, then

there exists a homogeneous polynomial h(x,y) ∈ R[x,y] such that h2(x,y)K(x)yt is a sum of
squares of polynomials in R[x,y].

Proof. Due to Artin’s theorem for Hilbert’s 17th problem [2], we only need to prove that K(x)yt

is positive semidefinite in R[x,y]. This is obvious. The proof is complete. �
At the end of this section, we point out that one class of problems (3.1) can be solved in

polynomial-time completely. At first, we prove the following result.
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Theorem 3.11. If K(x)∈Rnt
[x] defined in (3.12) is positive semidefinite for every x ∈Rm, t = 2

and m = 2, then K(x)y2 is a sum of squares of polynomials in R[x,y]. In particular, we have

K(x)y2 =
r

∑
i=1

(Hixs/2y)2 (3.16)

for a set of tensors Hi ∈ Rms/2×n.

Proof. We only need to prove that K(x)y2 is a positive semidefinite polynomial in R[x,y] [6,
Theorem 7.1]. This is easy, since K(x) is positive semidefinite for every x ∈ Rm. The proof is
complete. �

We note that, when n = 2, we can get a result similar to Theorem 3.11. Due to Theorem 3.11,
when m = 2 and t = 2, we can characterize K(x)� 0 through SDP based on the representation
matrix developed in Sections 2 and 3 of the tensors in (3.16). So, we can solve the underlying
bi-form optimization problem (3.1) completely in polynomial-time. When s= 2, the underlying
problems are a class of bi-quadratic optimization problems. Nevertheless, to our best knowl-
edge, this class of problems which can be solve in polynomial-time was not pointed out in the
literature of bi-quadratic optimization.

4. BI-FORM OPTIMIZATION WITH NONPOSITIVE COEFFICIENTS

In this section, we consider the following special case of (1.1) with nonnegative tensor T .

min −T xp · yq := ∑
m
i1,...,ip=1 ∑

n
j1,..., jq=1 Bi1...ip j1... jqxi1 · · ·xipy j1 · · ·y jq

s.t. ‖x‖p+q = 1, ‖y‖p+q = 1,

which is equivalent to

max T xp · yq :=−∑
m
i1,...ip=1 ∑

n
j1..., jq=1 Bi1...ip j1... jqxi1 · · ·xipy j1 · · ·y jq

s.t. ‖x‖p+q = 1, ‖y‖p+q = 1
(4.1)

in the sense that they have the same optimal solution set and the optimal value is the minus
of the other. Without loss of generality, T is assumed to be partially symmetric. We refer to
[4, 7, 8, 10] and references therein for more on nonnegative tensors.

It is easy to check that the first order necessary optimality condition for (4.1) is the following
KKT system [1]: {

T xp−1yq = λx[p+q−1],

T xpyq−1 = λy[p+q−1].
(4.2)

If (λ ,x,y) ∈ C×Cm \ {0}×Cn \ {0} satisfies (4.2), then it is named a singular triple of the
tensor T . Denote by σ(T ) the set of singular values of T and ρ(T ) the largest absolute value of
elements in σ(T ). We call σ(T ) and ρ(T ) the spectra and the spectral radius of the tensor T ,
respectively [4]. It is easy to see that ρ(T ) and its corresponding singular vectors are the global
optimal value and its corresponding optimal solution, respectively.

Denote by {ei}m
1 and { f j}n

1 the bases of Rm and Rn, respectively, and let ep
i := ei⊗·· ·⊗ ei︸ ︷︷ ︸

p times

and f q
j := f j⊗·· ·⊗ f j︸ ︷︷ ︸

q times

, where ⊗ denotes the tensor outer product. Given T , for any j ∈
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{1, . . . ,n}, let T j := (Ti1...ip j... j) be the p-th order m dimensional square sub-tensor, and for
any i ∈ {1, . . . ,m}, let Ti := (Ti...i j1... jq) be the q-th order n dimensional square sub-tensor.

Definition 4.1. Square tensor T of order m and dimension n is reducible if there exists a
nonempty proper index subset I ⊂ {1, . . . ,n} such that

Ti1i2...im = 0, ∀i1 ∈ I, ∀i2, . . . , im /∈ I. (4.3)

If T is not reducible, then T is called irreducible.

Definition 4.2. A nonnegative rectangular tensor T is called irreducible if all the square tensors
Ti with i ∈ {1, . . . ,m} and T j with j ∈ {1, . . . ,n} are irreducible.

Definition 4.3. For any nonnegative rectangular tensor T , we associate it an (m+n)× (m+n)
matrix R(T ) called the representation of T as:

R(T )i j :=


∑ j∈{i2,...,ip}Tii2...ip j1... jq if i, j ∈ {1, . . . ,m};
∑ j∈{ j1,..., jq}Tii2...ip j1... jq if i ∈ {1, . . . ,m}, and j ∈ {m+1, . . . ,m+n};

∑ j∈{ j2,..., jp}Ti1i2...ipi j2... jq if i, j ∈ {m+1, . . . ,m+n};
∑ j∈{i2,...,ip}Ti1i2...ipi j2... jq if i ∈ {m+1, . . . ,m+n}, and j ∈ {1, . . . ,m}.

(4.4)

We call T weakly irreducible if R(T ) is irreducible and weakly primitive if R(T ) is primitive.

Theorem 4.4. [4, Theorem 4] Assume that the nonnegative tensor T is irreducible, then there
exists a solution (λ ,x,y) of system (4.2), satisfying λ > 0 and (x,y) ∈ Rm

++×Rn
++. Moreover,

if λ0 is a singular value with positive1 left and right singular vectors, then λ0 = λ . The positive
left and right singular vectors are unique up to a multiplicative constant.

Theorem 4.5. [4, Theorem 5] Assume that T is an irreducible nonnegative rectangular tensor
of order (p,q) and dimension m×n, then

min
(x,y)∈Rn

+\{0}×Rn
+\{0}

max
i, j

(
(T xp−1yq)i

xp+q−1
i

,
(T xpyq−1) j

yp+q−1
j

)
= λ

= max
(x,y)∈Rn

+\{0}×Rn
+\{0}

min
i, j

(
(T xp−1yq)i

xp+q−1
i

,
(T xpyq−1) j

yp+q−1
j

)
(4.5)

where λ is the unique positive singular value corresponding to positive left and right singular
vectors.

Theorem 4.6. [4, Theorem 6] Assume that T is an irreducible nonnegative rectangular tensor,
and λ is the positive singular value with positive left and right singular vectors. Then |µ| ≤ λ

for all µ ∈ σ(T ). Hence, λ = ρ(T ).

Actually, we have the following result, see [10] and references herein.

Theorem 4.7. Assume that the nonnegative tensor T is weakly irreducible, then

1 Actually, the result holds with “positive” being replaced by “nonnegative”.
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• there exists a solution (λ ,x,y) of system (4.2), satisfying λ > 0 and (x,y)∈Rm
++×Rn

++.
Moreover, when T is weakly primitive, if λ0 is a singular value with nonnegative left and
right singular vectors, then λ0 = λ . The strict positive left and right singular vectors
are unique up to a multiplicative constant;
• we have

min
(x,y)∈Rn

+\{0}×Rn
+\{0}

max
i, j

(
(T xp−1yq)i

xp+q−1
i

,
(T xpyq−1) j

yp+q−1
j

)
= λ

= max
(x,y)∈Rn

+\{0}×Rn
+\{0}

min
i, j

(
(T xp−1yq)i

xp+q−1
i

,
(T xpyq−1) j

yp+q−1
j

)
(4.6)

where λ is the unique positive singular value corresponding to strict positive left and
right singular vectors;
• |µ| ≤ λ for all µ ∈ σ(T ). Hence, λ = ρ(T ).

Remark 4.8. For weakly irreducible nonnegative tensor T , we have

p∗ := λ = min
(x,y)∈Rn

++×Rm
++

max
i, j

(
(T xp−1yq)i

xp+q−1
i

,
(T xpyq−1) j

yp+q−1
j

)

= min
(x,y)∈Rn×Rm

f (x,y) := max
i, j

(
(T exp(x)p−1exp(y)q)i

exp(x)p+q−1
i

,
(T exp(x)pexp(y)q−1) j

exp(x)p+q−1
j

)
.

Note that f (x,y) is a piecewise convex and piecewise smooth function on Rn×Rm. So, opti-
mization problem (1.1) with k = l = s+ t is actually an unconstrained convex but nonsmooth
optimization for nonnegative tensors.

Algorithm 1 A Higher Order Power Method (HOPM)

Step 0: Initialization: choose x0 ∈ Rn
++ and y0 ∈ Rm

++. Let k := 0.
Step 1: Compute

x̄k+1 := T (xk)p−1(yk)q, , ȳk+1 := T (xk)p(yk)q−1,

xk+1 := (x̄k+1)
[ 1

p+q−1 ]∥∥∥∥(x̄k+1)
[ 1

p+q−1 ],(ȳk+1)
[ 1

p+q−1 ]
∥∥∥∥

p+q

, yk+1 := (ȳk+1)
[ 1

p+q−1 ]∥∥∥∥(x̄k+1)
[ 1

p+q−1 ],(ȳk+1)
[ 1

p+q−1 ]
∥∥∥∥

p+q

αk+1 := max
{

(x̄k+1)i

(xk)
p+q−1
i

,
(ȳk+1) j

(yk)
p+q−1
j

}
and β k+1 := min

{
(x̄k+1)i

(xk)
p+q−1
i

,
(ȳk+1) j

(yk)
p+q−1
j

}
.

Step 2: If αk+1 = β k+1, stop. Otherwise, let k := k+1, go to Step 1.

Theorem 4.9. Suppose that T is a weakly primitive nonnegative tensor, and the sequence
{xk,yk} is generated by Algorithm 1. Then, {xk,yk} converges to the unique optimal solution
vectors x∗ ∈ Rn

++ and y∗ ∈ Rm
++, and there exist a constant θ ∈ (0,1) and a positive integer M

such that

d((xk,yk),(x∗,y∗))≤ θ
k
M

d((x0,y0),(x∗,y∗))
θ

, (4.7)
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for all k ≥ 1.

Proof. We can prove this theorem following from those in [7, 8]. �

Lemma 4.10. For any nonnegative rectangular tensor T , if (λ ,x,y) is a nonnegative singular
triple of T , then

‖x‖p+q = ‖y‖p+q. (4.8)

Proof. From (4.2) and the nonnegativeness of (x,y), we can get the desired result whether λ = 0
or not. �

Lemma 4.11. For any nonnegative rectangular tensors A and T , if T ≥ A and T is irreducible,
then ρ(A)≤ ρ(T ).

Proof. Suppose (µ.x,y) is a singular triple of A such that |µ|= ρ(A). Then, we must have

ρ(A)|x|p+q−1 =
∣∣∣µx[p+q−1]

∣∣∣= ∣∣Axp−1yq∣∣≤ A|x|p−1|y|q ≤ T |x|p−1|y|q,

and

ρ(A)|y|p+q−1 =
∣∣∣µy[p+q−1]

∣∣∣= ∣∣Axpyq−1∣∣≤ A|x|p|y|q−1 ≤ T |x|p|y|q−1.

Hence, by Theorem 4.5, we get ρ(A)≤ ρ(T ). �

Theorem 4.12. For any nonnegative rectangular tensor T , ρ(T ) is a singular value of T with
a pair of nonnegative singular vectors.

Proof. Denote by E the tensor of the same size of T with its elements being 1. Now, tensor
T (k) := T + 1

k E is a positive tensor for any k ≥ 1. Hence, T (k) is irreducible. By Theorem 4.4,
T (k) has a positive singular triple (λk,xk,yk). By Lemma 4.10 and the homogeneity of (4.2),
we can choose xk,yk such that ‖xk‖p+q = ‖yk‖p+q = 1. Hence, sequences {xk} and {yk} are
bounded. Suppose, without loss of generality, that both {xk} and {yk} converge and to x∗ ≥ 0
and y∗ ≥ 0, respectively. Since T (k) > T (k+ 1), by Lemma 4.11 and Theorem 4.12, {λk} is
nonincreasing and bounded below by ρ(T ) since T (k)> T for any k≥ 1. Suppose λk→ λ ≥ 0,
then, by continuity of (4.2), we have

0 = lim
k→∞

T (k)xp−1
k yq

k−λkx[p+q−1]
k = T xp−1

∗ yq
∗−λx[p+q−1]

∗ ,

and

0 = lim
k→∞

T (k)xp
k yq−1

k −λky[p+q−1]
k = T xp

∗y
q−1
∗ −λy[p+q−1]

∗ .

Since ‖x∗‖p+q = ‖y∗‖p+q = 1, we have that (λ ,x∗,y∗) is a singular triple of T . So, λ ≤ ρ(T ).
This, together with λ ≥ ρ(T ), yields that ρ(T ) = λ and (x∗,y∗) is one corresponding nonnega-
tive singular pair. �

By the homogeneity of the objective function and the results in this section, we arrive at a
result for the general case.

Theorem 4.13. For general bi-form optimization problem (1.1) with k, l ≥ s+ t, if the tensor
B in objective function is nonpositive, then, there is a globally linearly convergent algorithm
which can find a feasible solution pair (x,y) for (1.1), with its corresponding objective value
within ms s+t

k −snt s+t
k −t the optimal value of (1.1).
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Proof. Let the objective function of (1.1) be f .
In this case, we will solve the problem when k = l = s+ t by the preceding algorithm for

nonnegative tensors. Denote the corresponding optimal solution found by the higher order
power method as (x̄, ȳ). It follows that

‖x̄‖s+t = ‖ȳ‖s+t = 1.

Let x := x̄
‖x̄‖k

and y := ȳ
‖ȳ‖l

. Then, (x,y) is a feasible solution for (1.1). Let the corresponding
objective function value being p. Let the optimal objective function value of (1.1) be p∗ with
optimal solution (x∗,y∗). Then, we must have

p∗ ≤ p≤ 0.

While, ( x∗
‖x∗‖s+t

, y∗
‖y∗‖s+t

) is a feasible solution for the problem when k = l = s+ t. It follows from
the homogeneity of the objective function that

p≤ f (
x∗

‖x∗‖s+t
,

y∗

‖y∗‖s+t
) =

1
‖x∗‖s

s+t‖y∗‖ts+t
f (x∗,y∗) =

1
‖x∗‖s

s+t‖y∗‖ts+t
p∗.

On the other hand, it is a standard analysis to show that

‖x∗‖k ≤ ‖x∗‖s+t ≤ m1− s+t
k ‖x∗‖k.

Thus, by the nonpositivity of p∗, we have

p≤ ms s+t
k −snt s+t

k −t p∗.

The result follows. �

5. CONCLUSIONS

In this paper, we recalled the concepts of K-eigenvalues and K-eigenvectors for even order
tensors. It has some consequences on homogeneous polynomials of even degrees and the bi-
form optimization problems. Some natural further questions arose from those discussions. For
example, theoretical or numerical refinements of bi-quadratic optimization problems using var-
ious techniques from quadratic optimization [16, 28, 32, 33, 34]. Some further investigations
should be put on bi-form optimization problems proposed in this paper as well, such as further
properties on sums of powers of polynomials.
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