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Abstract. Let F : Rp→ Rp be a locally Lipschitz map with F(0) = 0. Denote by ∂F(x) the generalized Jacobian
of F at x. We show that the following three statements hold true:

(1) Assume that for any x∈Rp and any Z ∈ ∂F(x), the symmetric part of Z (i.e., the matrix Z+ZT

2 ), is negative
definite. Then the map F is injective and every solution of the autonomous system ẋ(t) = F(x(t)) goes to
0, as t tends to +∞.

(2) Assume that for any x∈Rp and any Z ∈ ∂F(x), the spectrum radius of the matrix ZT Z is less than 1. Then
0 is the unique fixed point of the map F and every orbit of the discrete dynamical system xn+1 = F(xn)

goes to 0, as n tends to +∞.

(3) Assume that for any x ∈ Rp and any Z ∈ ∂F(x), the symmetric part of Z is negative definite. Then, for
any x0 ∈ Rp, there exists a real number h0 > 0 such that for every h ∈ (0,h0), the orbit of the discrete
dynamical system xn+1 = xn +hF(xn) converges to 0, as n goes to +∞.

These results strengthen those obtained by Furi, Martelli, and O’Neill in [J. Difference Equ. Appl., 15(4):387–397,
2009], which requires further that the map F is Gateaux differentiable except possibly on a linearly countable set.
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1. INTRODUCTION

Let F : Rp → Rp be a C1 map with F(0) = 0. In a paper published in 1960, Markus and
Yamabe [12] conjectured that if all the eigenvalues of the Jacobian matrix of F at each point
x ∈ Rp have negative real parts, then the origin 0 ∈ Rp is a globally asymptotically solution of
the autonomous system

ẋ(t) = F(x(t))
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i.e., every solution x(t) of the system exists for large t and x(t)→ 0 as t→+∞.
Nowadays, it is well-known that the Markus–Yamabe conjecture is true in R2 (see [5, 7, 8]),

and false in Rp for p≥ 3 (see [2]).
In 1976, La Salle [11] proposed a similar result for discrete dynamical systems by conjectur-

ing that if all the eigenvalues of the Jacobian matrix of F at each point x ∈ Rp have modulus
less than one, then every orbit of the discrete dynamical system

xn+1 = F(xn)

converges to the origin as n tends to +∞, i.e., xn→ 0 as n→+∞.
The conjecture of La Salle is false even in R2 (see [13]). However, it is true in R2 for

polynomial maps (see [4]).
In 1961, Hartman [9] proved the global convergence conjectured by Markus–Yamabe, when

all the eigenvalues of the symmetric part of the Jacobian matrix of F are negative. In 2009,
Furi, Martelli, and O’Neill [6] showed that Hartman’s condition can be considerably relaxed by
assuming that F is locally Lipschitz and is Gateaux differentiable except possibly on a linearly
countable set. Furthermore, they establish a companion result for discrete dynamical systems.

In this paper, we show that the results of Furi, Martelli, and O’Neill mentioned above can be
extended for nondiferentiable locally Lipschitz maps.

The rest of this paper is organized as follows. In Section 2 we recall some definitions and
preliminary results from nonsmooth analysis and the generalized Jacobian. The main results
are given in Section 3.

2. PRELIMINARIES

2.1. Notation. In this paper, we deal with the Euclidean space Rp equipped with the usual
scalar product 〈·, ·〉 and the corresponding Euclidean norm ‖ · ‖. We use Sr and Br to denote
the sphere and the closed ball, respectively, in Rp with center at the origin and radius r. The
convex hull of a set Ω⊂ Rp will be written as coΩ. For two points x,y ∈ Rp, the notation [x,y]
stands for the set of points (1− t)x+ ty with t ∈ [0,1]. For a square matrix A, let AT denote the
transpose of A and call A+AT

2 the symmetric part of A.

2.2. The generalized Jacobian. Let F : Ω→ Rq be a locally Lipschitz map, where Ω is an
open subset of Rp. By Rademacher’s Theorem (see, for example, [15]), F is almost everywhere
differentiable (in the sense of Lebesgue measure) on Ω. Let ΩF be the set of points at which the
map F fails to be differentiable. For each x ∈ Ω\ΩF , we shall write JF(x) for the usual p×q
Jacobian matrix of F. Clarke [3] defined the generalized Jacobian of F at x ∈ Ω, denoted by
∂F(x), is the convex hull of all matrices which are limits of Jacobian matrices JF(x′) as x′→ x
with F being differentiable at x′. Symbolically, then, one has

∂F(x) := co{limJF(x′) | x′→ x and x′ 6∈ΩF}.

We have the following results (see [3, Propositions 2.6.2 and 2.6.5]).

Proposition 2.1. Let F : Ω→ Rq be a locally Lipschitz map, where Ω is an open subset of Rp.
Then the following statements hold:

(i) ∂F(x) is a nonempty compact convex subset of Rp×q.
(ii) ∂F is closed at x; that is, if xn→ x,Zn ∈ ∂F(xn) and Zn→ Z, then Z ∈ ∂F(x).
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(iii) ∂F is upper semicontinuous at x: for any ε > 0 there exists δ > 0 such that, for all y ∈Rp

with ‖y− x‖< δ ,

∂F(y) ⊂ ∂F(x)+Bε ,

where Bε is the closed ball in Rp×q with center at the origin and radius ε.

Proposition 2.2. Let F : Ω→Rq be a locally Lipschitz map, where Ω is an open convex subset
of Rp. Then for any x,y ∈Ω, we have

F(x)−F(y) ∈ co∂F([x,y])(x− y).

The right-hand side above denotes the convex hull of all points of the form Z(x− y), where
Z ∈ ∂F(u) for some point u in [x,y]. Since

[co∂F([x,y])](x− y) = co [∂F([x,y])(x− y)],

there is no ambiguity.

3. RESULTS

The following three theorems strengthen those obtained by Furi, Martelli, and O’Neill in [6],
which requires further that the map in question is Gateaux differentiable except possibly on a
linearly countable set.

Theorem 3.1. Let F : Rp→ Rp be a locally Lipschitz map with F(0) = 0. Assume that for any
x ∈ Rp and any Z ∈ ∂F(x), the symmetric part of Z is negative definite. Then the map F is
injective and every solution of the autonomous system

ẋ(t) = F(x(t)) (3.1)

goes to 0, as t goes to +∞.

Proof. Let x,y ∈ Rp with x 6= y. Combining Proposition 2.2 with Caratheodory’s Theorem, we
get nonnegative real numbers λk with ∑

p+1
k=1 λk = 1, points uk ∈ [x,y] and matrices Zk ∈ ∂F(uk)

such that

F(x)−F(y) =
p+1

∑
k=1

λkZk(x− y).

Observe that

〈x− y,Zk(x− y)〉 =
1
2
〈x− y,(Zk +ZT

k )(x− y)〉 < 0,

where the inequality follows from the assumption that the symmetric part of Zk is negative
definite. Therefore,

〈x− y,F(x)−F(y)〉 =
p+1

∑
k=1

λk〈x− y,Zk(x− y)〉 < 0.

Consequently, F(x) 6= F(y), and so F is injective. Moreover, by letting y = 0 in the above
inequality, we get

〈x,F(x)〉 < 0.



4 G. M. LEE, T. S. PHA. M

To show the second statement of the theorem, take any x0 ∈ Rp, and let x(t) be the unique
solution of (3.1) such that x(0) = x0. The assumption that F is locally Lipschitz on Rp insures
that the solution of the system (3.1) is uniquely determined by its initial value x0 and varies
continuously with it (see, for example, [1, 14]). In particular, if x(t) = 0 for some t∗ ≥ 0, then
x(t) = 0 for all t ≥ t∗ and so the second claim follows immediately. Assume that x(t) 6= 0 for all
t ≥ 0. We have

d‖x(t)‖2

dt
= 2〈x(t), ẋ(t)〉 = 2〈x(t),F(x(t))〉 < 0,

and so the function t 7→ ‖x(t)‖ is strictly decreasing. Thus, the following limit exists

r := lim
t→+∞

‖x(t)‖ ≥ 0.

We must show that r = 0. By contradiction, assume that r > 0. Let ω(x0) be the (positive) limit
set of the solution x(·), i.e.,

ω(x0) := {y ∈ Rp | ∃tk→+∞ such that x(tk)→ y}.

Then it is easy to see that ω(x0) is nonempty and is contained in the sphere Sr. Furthermore, it
is well-known that the set ω(x0) is positively invariant1 (see, for example, [1, Theorem 17.2]
or [10, Proposition, page 202]). Now pick a point y ∈ ω(x0) and let u(t) be the unique solution
of (3.1) such that u(0) = y. Then for all t ≥ 0 we have u(t) ∈ ω(x0), and so ‖u(t)‖ = r. This,
however, is impossible, since the function t 7→ ‖u(t)‖ is strictly decreasing. �

Theorem 3.2. Let F : Rp→ Rp be a locally Lipschitz map with F(0) = 0. Assume that for any
x ∈Rp and any Z ∈ ∂F(x), the spectrum radius of ZT Z is less than 1. Then 0 is the unique fixed
point of the map F and every orbit of the discrete dynamical system

xn+1 = F(xn)

goes to 0, as n goes to +∞.

Proof. Take any x ∈ Rp \ {0}. In view of Proposition 2.2, F(x) ∈ co∂F([0,x])x. According
to Caratheodory’s Theorem, there exist nonnegative real numbers λk with ∑

p+1
k=1 λk = 1, points

uk ∈ [0,x] and matrices Zk ∈ ∂F(uk) such that

F(x) =
p+1

∑
k=1

λkZkx.

The assumption that the spectrum radius of ZT
k Zk is less than 1 implies that

‖Zkx‖2 = 〈Zkx,Zkx〉 = 〈x,ZT
k Zkx〉 < ‖x‖2.

Therefore,

‖F(x)‖ ≤
p+1

∑
k=1

λk‖Zkx‖ < ‖x‖. (3.2)

Consequently, 0 is the unique fixed point of F.

1Recall that a set Ω⊂Rn is called positively invariant if for each y ∈Ω, the unique solution of (3.1) that passes
through y at t = 0 is defined and in Ω for all t ≥ 0.
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To show the second of the theorem, take any x0 ∈Rp and consider the orbit O(x0) defined by
xn+1 := F(xn) for n = 0,1, . . . . If xn = 0 for some integer n∗ ≥ 0, then xn = 0 for all n≥ n∗ and
so the desired conclusion holds. Assume that xn 6= 0 for all n. The inequality (3.2) implies that

‖xn+1‖ < ‖xn‖.
Hence, the sequence {‖xn‖}n≥0 is strictly decreasing, and so it converges to a value r ≥ 0. We
must show that r = 0.

Suppose to the contrary that r > 0. Let L(x0) be the set of limit points of the orbit O(x0), i.e.,

L(x0) := {y ∈ Rp | ∃nk→+∞ such that xnk → y}.
Then it is easy to see that L(x0) is a nonempty compact subset of the sphere Sr. Take any
x∗ ∈ L(x0). By definition, there is a sequence nk tending to infinity such that xnk converges to
x∗. Then xnk+1 = F(xnk) converges to F(x∗), which yields F(x∗) ∈ L(x0). (In fact, we can show
that F(L(x0)) = L(x0). Since we do not use this fact, we leave the proof to the reader.) Observe
from (3.2) that ‖F(x∗)‖< ‖x∗‖= r. This, however, contradicts F(x∗) ∈ L(x0)⊂ Sr. Therefore,
r = 0, which yields the origin is the only limit point of the orbit O(x0), i.e. L(x0) = {0}. �

Theorem 3.3. Let F : Rp→ Rp be a locally Lipschitz map with F(0) = 0. Assume that for any
x ∈ Rp and any Z ∈ ∂F(x), the symmetric part of Z is negative definite. Then, given an initial
point x0 ∈Rp, there exists a real number h0 := h(x0)> 0 such that for any h ∈ (0,h0), the orbit
of the discrete dynamical system

xn+1 = xn +hF(xn)

converges to 0, as n goes to +∞.

Proof. Take any x0 ∈ Rp. Obviously, the conclusion is trivial if x0 = 0. Thus, without loss of
generality, we assume that x0 6= 0. Let r := ‖x0‖> 0 and

M1 := sup{〈x,Zx〉 | ‖x‖= r and Z ∈ co∂F([0,x])}.
Since the symmetric part of Z is negative definite for all Z ∈ ∂F(x) and all x ∈ Rp, it follows
easily from Proposition 2.1 that M1 < 0. Observe that if x ∈ Br \{0}, then [0,x]⊂ [0, r

‖x‖x]. By
definition, therefore

〈x,Zx〉 ≤ M1

r2 ‖x‖
2 (3.3)

for all x ∈ Br and all Z ∈ co∂F([0,x]).
Since the map F is locally Lipschitz, it is globally Lipschitz on every compact subset of Rp.

(This fact may follows from Propositions 2.1 and 2.2.) In particular, we can find a constant
M2 > 0 such that

‖F(x)‖ = ‖F(x)−F(0)‖ ≤ M2‖x‖ (3.4)

for all x ∈ Br. Let

h0 :=− 2M1

r2(M2
2 +1)

.

Take any h ∈ (0,h0) and consider the dynamical system

xn+1 = xn +hF(xn).

In order to prove the theorem, it suffices to consider the case xn 6= 0 for all n≥ 0.
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According to Proposition 2.2, there exists Z ∈ co∂F([0,xn]) such that F(xn) = Zxn. Hence

‖xn+1‖2 = ‖xn‖2 +2h〈xn,F(xn)〉+h2‖F(xn)‖2

= ‖xn‖2 +2h〈xn,Zxn〉+h2‖F(xn)‖2.

From the inequalities (3.3) and (3.4), we know that if xn ∈ Br, then

〈xn,Zxn〉 ≤
M1

r2 ‖xn‖2 and ‖F(xn)‖ ≤M2‖xn‖,

which yield

‖xn+1‖2 ≤ ‖xn‖2 +2h
M1

r2 ‖xn‖2 +h2M2
2‖xn‖2 < ‖xn‖2.

Since x0 ∈ Br, it follows that ‖x1‖ < ‖x0‖ = r. By induction, then ‖xn+1‖ < ‖xn‖, i.e., the
sequence {‖xn‖}n≥0 is strictly decreasing. Finally, the reasoning of Theorem 3.2 can be applied
to complete the proof of the theorem. �
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