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Abstract. This is an expository article on higher-order optimality conditions for extremum problems via the
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1. INTRODUCTION

The goal of this survey paper is twofold:
1) to present some of the main existing results obtained via the higher-order tangent cones in

Pavel-Ursescu sense, results that concern constrained optimization problems, flow-invariance
problems and some of their applications,

2) to point out the unifying effect of the theory of tangent cones in the areas of differential
equations and optimization.

We deal with the following scalar set constrained minimization problem
Minimize F(x) subject to x ∈ D, (P)

where X is a linear normed space of norm ‖ · ‖, x̄ ∈ D⊆U , and F : U ⊆ X → R is a function of
class Cn on the open set U , n positive integer.

Also, we are concerned with the vector optimization problem
Minimize F(x) subject to x ∈M, (V P)
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where F : X →Y is sufficiently often Gâteaux differentiable at the weak minimum point, X and
Y are real linear normed spaces, M ⊆ X , and Y is ordered via a closed convex cone Q⊂ Y with
nonempty interior.

We consider the multiobjective optimization problem (MOP), which is a particular case of
(V P).

Minimize F(x) subject to x ∈M, (MOP)
where X is a real linear normed spaces, M ⊆ X , F = (F1, . . . ,Fr) : X → Rr has a component
that is sufficiently often Gâteaux differentiable at the minimum point, and Q = Rr

+ = {x =
(x1, . . . ,xr) ∈ Rr : xs ≥ 0, s = 1, . . . ,r}, r nonnegative integer.

We present conditions for a closed subset D of a Banach space X to be flow-invariant with
respect to the n-th order autonomous differential equation

u(n)(t) = F(u(t)), t ≥ 0,

where F : U → X is a locally Lipschitz mapping on an open subset U of X .
The paper is organized as follows. In Section 1, that is based on [5, 6, 13, 12, 21, 24, 25, 26],

we include the definitions of the higher-order tangent cones and some of their characterizations.
In Section 2, we collect from [5, 8, 9, 10, 14] optimality conditions formulated via the tangent
cones of order n≥ 1. In Section 3, we gather from [6, 7, 21] some of the main results concerning
flow-invariance problems.

2. HIGHER-ORDER TANGENT CONES

The tangent cones are the main tools for formulating the results of this paper.

Definition 2.1. Let D be a nonempty subset of X and let x ∈ D be a given point.
i) (Ursescu, [27]) An element v1 ∈ X is called a tangent vector to D at x, if

lim
t↓0

1
t

d(x+ tv1;D) = 0. (2.1)

ii) ([6]) An element vn ∈ X is called a n-th order tangent vector to D at x ∈ D, n≥ 2, if there
are v1, . . . ,vn−1 ∈ X , such that

lim
t↓0

1
tn d(x+ tv1 +

t2

2!
v2 +

t3

3!
v3 + ...+

tn

n!
vn;D) = 0. (2.2)

where d(x;D) = inf{‖x− y‖ : y ∈ D}.

The sets of all first-order tangent vectors to D at x ∈ D are denoted by TxD. The set of all
n-th order tangent vectors to D at x ∈ D is denoted by T n

x D, n ≥ 1. Here T 1
x D = TxD. For a

given vn ∈ T n
x D, the vectors v1, v2, . . . ,vn−1 as in (2.2) are said to be associate vectors of vn, or

associated with vn, or correspondent vectors of vn.

The cone TxD is also known as the cone of attainable directions [17] or the adjacent cone [2].
The definition of T 2

x D was suggested by a formula of Pavel from 1975 (see [24] with f (x) in
place of v2).

Definition 2.1, ii) is a modification of the definition of a n-th order tangent vector vn given in
[26] where the associated vectors vi, i = 1, . . . ,n−1 are required to belong to T i

x S, respectively.
We showed in Proposition 1.2.3, [6] that the assumption vi ∈ T i

x S, i = 1, . . . ,n−1 is redundant.
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In the case n = 2, in the theory of motion on a given orbit in a force field in Flight Mechan-
ics, the vectors v1 and v2 above are the initial velocity at x and the initial acceleration at x,
respectively.

It is obvious that if x belongs to the interior of D, then T n
x D = X , n≥ 1.

The set T n
x D, n≥ 2, is a cone in X (Proposition 1.2.1, [6]).

Proposition 2.2. (Proposition 1.2.3, [6]) If vn ∈ T n
x D, then its associated vectors vi, 1 ≤ i ≤

n−1, belong to T i
x D, respectively.

Proposition 2.3. i) (Lemma 3.1, [25]) The fact that v1 belongs to TxD is equivalent to the
existence of a function γ1 : (0,∞)→ X with γ1(t)→ 0 as t ↓ 0, and

x+ t(v1 + γ1(t)) ∈ D, ∀ t > 0. (2.3)

ii)(Proposition 1.2.2, [6] The fact that vn belongs to T n
x D with the corespondent vectors vi ∈

X, i = 1,2, ...,n−1, n≥ 2, as in (2.2), is equivalent to the existence of a function γn : (0,∞)→ X
with γn(t)→ 0 as t ↓ 0 and

x+ tv1 +
t2

2
v2 + ...+

tn

n!
(vn + γn(t)) ∈ D, ∀ t > 0. (2.4)

It can easily be seen that 0∈ TxD (take γ1≡ 0), and 0∈ T n
x D (take γn≡ 0, vi = 0, 1≤ i≤ n−1),

n≥ 2.

Definition 2.4. ([2]) Let D be a nonempty subset of X and let x ∈ D be a given point.
An element v ∈ X is called a contingent vector to D at x if

liminf
t↓0

1
t

d(x+ tv;D) = 0.

The set of contingent vectors is a cone denoted by Γ(D,x). It follows from the definitions
that TxD⊆ Γ(D,x). For a convex set D, Γ(D,x) = TxD, for all x ∈ D.

Throughout the paper, if a function G is n-times differentiable at x, then G
′
(x), G

′′
(x), G

′′′
(x),

G(n)(x), n ≥ 4 denote its first, second, third and n-th order derivatives at x and G(n)(x)[y]n =

G(n)(x)(y) · · ·(y)︸ ︷︷ ︸
n times

.

There are known characterizations of the first and higher-order tangent cones to the null-set
of a mapping G : X → Y , i.e., DG = G−1(0) = {u ∈ X : G(u) = 0,G : X → Y}, where Y is a
linear normed space.

Theorem 2.5. (Pavel-Ursescu, Corollary 3.1, [25]) Assume that X is a linear normed space,
Y is a finite dimensional normed space, G : X → Y is continuous in a neighborhood of x and
Fréchet differentiable at x. If G′(x) is onto, then

TxDG = KerG′(x). (2.5)

Here KerG′(x) denotes the null space of G′(x), i.e., KerG′(x) = {v ∈ X ; G′(x)(v) = 0}.

Theorem 2.6. (Pavel-Ursescu, Corollary 3.2, [25]) Assume that X is a linear normed space,
Y is a finite dimensional normed space, G : X → Y is twice Fréchet differentiable at x and
continuous near x, G(x) = 0, and G

′
(x) is onto.

Then, v2 ∈ T 2
x DG with associated vector v1 ∈ TxDG, if and only if
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G′(x)(v1) = 0,
G′(x)(v2)+G′′(x)(v1)(v1) = 0.

Remark 2.7. If G′(x) is not onto, then in general the strict inclusion TxDG ⊂ KerG′(x) holds.

Definition 2.8. ([28]) Let G : X →Y be twice Fréchet differentiable at x ∈ X . Then G is said to
be 2-regular at x if, given any v ∈ X , v 6= 0 with G′′(x)(v)(v) = 0, we have G′′(x)(v)X = Y .

In the above two theorems, N.H. Pavel and C. Ursescu characterized the second-order tangent
vectors to DG at x ∈ DG when G : X → Rs is twice Fréchet differentiable at x and G

′
(x) is onto.

In our 2019 paper [13], we described the second-order tangent cone to DG at x ∈ DG in the
degenerate case G

′
(x) = 0.

Theorem 2.9. (Theorem 1, [13]) Let X be a linear normed space, G = (G1, . . . ,Gs) : X → Rs

be three times Fréchet differentiable at x and continuous near x ∈ DG = {u ∈ X : G(u) = 0}.
Assume that G′(x) = 0 and G is 2-regular at x.

Then v2 ∈ T 2
x DG with associated vector v1 6= 0, if and only if

G′′(x)(v1)(v1) = 0, v1 6= 0, and (2.6)

G(3)(x)(v1)(v1)(v1)+3G′′(x)(v1)(v2) = 0, (2.7)
i.e., G′′j (x)(v1)(v1) = 0, for all j ∈ J := {1, . . . ,s} and
G j

(3)(x)(v1)(v1)(v1)+3G j
′′(x)(v1)(v2) = 0, for all j ∈ J.

In the case where D = DG, G : X → Y , X linear normed spaces, Y finite dimensional normed
space, we described in 2004 the higher-order tangent cones to DG in the regular case, that is, in
the case where G has onto Fréchet derivative G′(x).

Theorem 2.10. (Corollary 2.1, [6], Corollary 1.1, [5])
Assume that G : X → Rs is three times Fréchet differentiable at x ∈ X with G(x) = 0, G is

continuous near x, and G′(x) : X → Rs is onto.
Then v3 ∈ T 3

x DG with associated vectors vi ∈ T i
x DG, i = 1,2 if and only if

G′(x)(v1) = 0,G′′(x)(v1)(v1)+G′(x)(v2) = 0,

G′′′(x)(v1)(v1)(v1)+3G′′(x)(v1)(v2)+G′(x)(v3) = 0.
Furthermore, assume that G : X→Rs is n times Fréchet differentiable at x∈X with G(x) = 0,

G is continuous near x, and G
′
(x) : X → Rs is onto, n≥ 1.

Then, vn ∈ T n
x DG with the associated vectors vm ∈ T m

x DG, m = 1, ...,n−1, if and only if

SG
m(x;v1, . . . ,vm) = 0, ∀1≤ m≤ n, (2.8)

where DG = {u ∈ X : G(u) = 0} is nonempty.
Here, for a positive integer m and vectors v1, . . . ,vm, SG

m(x;v1, . . . ,vm) denotes the expression

SG
m(x;v1, . . . ,vm) =

m

∑
k=1

m!
k!

[ ∑
i1,...,ik∈{1,...,m}

i1+...+ik=m

1
i1!i2!...ik!

G(k)(x)(vi1) · · ·(vik)]. (2.9)

In particular,
for m = 2, SG

2 (x;v1,v2) = G
′
(x)(v2)+G

′′
(x)(v1)(v1),

for m = 3, SG
3 (x;v1,v2,v3) = G

′′′
(x)(v1)(v1)(v1)+3G

′′
(x)(v1)(v2)+G

′
(x)(v3),
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for m = 4, SG
4 (x;v1,v2,v3,v4) = G

(4)
(x)(v1)(v1)(v1)(v1)+6G

′′′
(x)(v1)(v1)(v2)+

+4G
′′
(x)(v1)(v3)+3G

′′
(x)(v2)(v2)+G

′
(x)(v4).

Definition 2.11. A mapping G : X → Z is said to be strictly differentiable at a point x, if there
exists a continuous linear operator Λ : X → Z with the property that for any ε > 0 there is
δ > 0 such that for all x1 and x2 satisfying the inequalities ‖x1− x̄‖ < δ and ‖x2− x̄‖ < δ , the
following inequality holds

‖G(x1)−G(x2)−Λ(x1− x2)‖ ≤ ε‖x1− x2‖.

A strictly differentiable function G at a point x is Fréchet differentiable at x and Λ = G′(x).
A continuously differentiable function near x is strictly differentiable at x (Corollary 2, Section
2.2.3, [1]).

As noted in [16], second-order Fréchet differentiability at a point is not a local property
and it does not imply that the function is strictly differentiable at the point, or continuously
differentiable around the point, or Lipschitz around the point.

Theorem 2.12. (Lyusternik’s Theorem, [1]) Let X , Z be Banach spaces, U be a neighborhood
of a point x ∈ X, G : U → Z, G(x) = 0 and DG = {u ∈U : G(u) = 0}.

If G is strictly differentiable at x and G′(x) is onto, then

TxDG = {v ∈ X ; G′(x)(v) = 0}. (2.10)

In 2016, we extended the characterizations we established in Corollary 2.1, [6] for the higher-
order tangent cones in Pavel sense to the null-set of a mapping taking values in a finite dimen-
sional normed space. In our result below, the mapping takes values into an arbitrary linear
normed space.

Theorem 2.13. (Theorem 3.5, [12] Let X and Z be Banach spaces, let U be a neighborhood of
a point x in X.

Assume that G : U → Z is strictly differentiable at x ∈U with G(x) = 0, its derivative G
′
(x) :

X → Z is onto, and G is n times Fréchet differentiable at x.
Let DG = {u ∈U : G(u) = 0}.
For any n≥ 2, it holds

T n
x DG = {vn ∈ X for which there exist v1, . . . ,vn−1 ∈ X

such that SG
m(x,v1, . . . ,vm) = 0, 1≤ m≤ n}.

Here, for every positive integer m, SG
m(x,v1, . . . ,vm) denotes the expression

SG
m(x,v1, . . . ,vm) =

m

∑
k=1

m!
k!

[ ∑
i1,...,ik∈{1,...,m}

i1+...+ik=m

1
i1!i2!...ik!

G(k)(x)(vi1) · · ·(vik)].

3. HIGHER-ORDER OPTIMALITY CONDITIONS VIA TANGENT CONES

3.1. Higher-Order Optimality Conditions for Scalar Optimization Problems. In this sec-
tion we deal with the scalar constrained minimization problem

Minimize F(x) subject to x ∈ D, (P)
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where X is a real linear normed space of norm ‖·‖, x̄∈D⊆U , and F : U ⊆ X→R is a function
of class Cp on the open set U , p positive integer.

Recall that a point x̄ ∈ D is said to be a local minimum of a function F : U → R on D ⊆ X ,
X Banach space, if there exists δ > 0 such that F(x) ≥ F(x̄), for all x ∈ U ∩D satisfying
0 < ||x− x̄|| < δ . If the defining inequality is strict, then x̄ is said to be a strict local minimum
of F on D.

A point x̄ ∈ D is said to be an isolated local minimum of order p (p positive integer) of
F : X → R on D, if there exists a neighborhood V of x̄ and a constant c > 0 such that

F(x)−F(x̄)≥ c‖x− x̄‖p, for all x ∈ D∩V \{x̄}.
In this section we recall our higher-order necessary conditions of extremum for problem (P)

with smooth data and an arbitrary constraint set. We generalized the second-order necessary
conditions of Theorem 3.1, [26] established for a functional constraint set.

Theorem 3.1. (Theorem 2.2, [5]) Let x̄ be a local minimum of F : X → R on D,
where D is a nonempty subset of the Banach space X.

Then
i) If F is of class C1 near x̄, then

F
′
(x̄)(v1)≥ 0, ∀v1 ∈ Tx̄D.

ii) If F is of class C2 near x̄, then
F
′
(x̄)(v2)+F

′′
(x̄)[v1]

2 ≥ 0,
∀v2 ∈ T 2

x̄ D with the associated vector v1 ∈ Tx̄D such that F
′
(x̄)(v1) = 0.

iii) If F is of class C3 near x̄, then

F
′′′
(x̄)[v1]

3 +3F
′′
(x̄)(v1)(v2)+F

′
(x̄)(v3)≥ 0, (3.1)

∀v3 ∈ T 3
x̄ D with associated vectors v1 ∈ Tx̄D and v2 ∈ T 2

x̄ D such that

F
′
(x̄)(v1) = 0, and F

′
(x̄)(v2)+F

′′
(x̄)[v1]

2 = 0. (3.2)

In general, if F is of class Cp near x̄, there must exist a positive integer p with the property that
SF

p (x̄;v1, . . . ,vp)≥ 0, ∀v1,v2, ...,vp ∈ X such that

x̄+ tv1 +
t2

2
v2 + ...+

t p

p!
(vp + γ(t)) ∈ D, ∀ t > 0, γ(t)→ 0 as t ↓ 0, and

SF
n (x̄;v1, . . . ,vn) = 0, for every n, 0 < n≤ p−1.

We can combine Theorem 3.1 with either one of Theorems 2.10 and 2.13 to formulate the
following result. Under hypotheses i), Theorem 3.2 was obtained in Corollary 3.1.2, [6], and in
Corollary 2.1, [5].

Theorem 3.2. Let F and G be two functions on a normed space X, F : X → R, G : X → Y , X
and Y be linear normed spaces, and x̄ be a local minimum of F on DG = {x ∈ X : G(x) = 0}.

Assume that either one of the hypotheses i) and ii) hold.
i) Y is finite dimensional and G is continuous near x̄.
ii) G is strictly differentiable at x̄.
If F is of class C4 in a neighborhood of x̄, G is four times Frechét differentiable at x̄, G

′
(x̄) is

onto, and
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F
′
(x̄)(v1) = 0, F

′
(x̄)(v2)+F

′′
(x̄)(v1)(v1) = 0, (3.3)

F
′′′
(x̄)(v1)(v1)(v1)+3F

′′
(x̄)(v1)(v2)+F

′
(x̄)(v3) = 0, (3.4)

for all v1, v2 and v3 for which

G
′
(x̄)(v1) = 0, G

′
(x̄)(v2)+G

′′
(x̄)(v1)(v1) = 0, and (3.5)

G
′′′
(x̄)(v1)(v1)(v1)+3G

′′
(x̄)(v1)(v2)+G

′
(x̄)(v3) = 0, (3.6)

then
F

(4)
(x̄)(v1)(v1)(v1)(v1)+6F

′′′
(x̄)(v1)(v1)(v2)+4F

′′
(x̄)(v1)(v3)+

+3F
′′
(x̄)(v2)(v2)+F

′
(x̄)(v4)≥ 0

whenever v1, v2, v3, v4 satisfy

G(4)(x̄)(v1)(v1)(v1)(v1)+6G
′′′
(x̄)(v1)(v1)(v2)+4G

′′
(x̄)(v1)(v3)+

+3G
′′
(x̄)(v2)(v2)+G

′
(x̄)(v4) = 0,

besides (3.5) and (3.6).
In general, if F is of class Cp, p > 1, in a neighborhood of x̄, G is p times Frêchet differen-

tiable at x̄, and G
′
(x̄) is onto, then

SF
p (x̄,v1, . . . ,vp)≥ 0,

v1, v2, . . . ,vp ∈ X such that

SF
i (x̄,v1, . . . ,vi) = 0, for every i, 1≤ i≤ p−1, and

SG
i (x̄,v1, . . . ,vi) = 0, for all i, 1≤ i≤ p.

Example 3.3. Let us minimize the function F(x1,x2) = x4
1 + x1x2

2 + x3
2 subject to G(x1,x2) =

x
8
3
1 + x1x2 + x2

2 = 0, F,G : R2→ R.
The only critical point, i.e., the only solution of the equation F

′
(x1,x2) = 0, which satisfies

the constraint is (0,0).
The method of Lagrange multipliers and the classical second-order optimality conditions

(Propositions 3.1.1 and 3.2.1, [4]) can not be applied to this example because G′(x) = 0, for all
x ∈ R2.

We have T(0,0)DG ⊆ Ker G
′′
(0,0) =

{
(v11,v12) ∈ R2, v11v12 + v2

12 = 0
}

.
Indeed, if (v11,v12) ∈ T(0,0)DG then there exists a mapping r(t) = (r1(t),r2(t)), r(t)→ 0 as

t ↓ 0 such that tv1 + tr(t) ∈ DG, ∀ t > 0, which means that
(tv11 + tr1(t))3 +(tv12 + tr2(t))2 +(tv11 + tr1(t))(tv12 + tr2(t)) = 0, ∀ t > 0.

After dividing by t2and letting t go to 0, we get v11v12 + v2
12 = 0.

In this example, the first-order derivatives of the functions F and G at (0,0) are identically
zero. For any v1 ∈ T(0,0)DG, G

′′
(0,0)(v1) is onto. Thus, the second-order tangent cone can be

characterized with the aid of our Theorem 2.9 (Theorem 1, [13])
T 2
(0,0)DG = {(v21,v22) ∈ R2, for which there exists (v11,v12) 6= (0,0) with v11v12 + v2

12 = 0,
such that 2v3

11 + v11v22 + v12v21 +2v12v22 = 0}.
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Obviously, F
′
(0,0) = F

′′
(0,0) = 0, so F

′
(0,0)(v1) = 0, for all v1 ∈ T(0,0)DG, and

F
′
(0,0)(v2)+F

′′
(0,0)(v1)(v1) = 0,

for any v2 ∈ T 2
(0,0)DG with associated vector v1 ∈ T(0,0)DG.

Furthermore,

F
′′′
(0,0)(v1)(v1)(v1)+3F

′′
(0,0)(v1)(v2)+F

′
(0,0)(v3) = 6v2

12 (v12 + v11) = 0,

for every v1 ∈ T(0,0)DG and

F
(4)
(0,0)(v1)(v1)(v1)(v1)+6F

′′′
(0,0)(v1)(v1)(v2)+4F

′′
(0,0)(v1)(v3)+3F

′′
(0,0)(v2)(v2)+

F
′
(0,0)(v4) = 24v4

11 +6
(
2v2

12v21 +4v11v12v22
)
,

whenever v4 ∈T 4
(0,0)DG with correspondent vectors v3 ∈T 3

(0,0)DG, v2 ∈T 2
(0,0)DG and v1 ∈T(0,0)DG.

If v1 ∈ T(0,0)DG and v1 6= 0, then one possibility is v12 = 0, in which case the above expression
is equal to 24v4

11, so it is strictly positive because v11 6= 0. Another possibility is v12 + v11 = 0
(v12 =−v11 6= 0), when the above expression becomes equal to 12v2

11
(
3v21−2v2

11
)
, after using

the fact that v2 ∈ T 2
(0,0)DG with associated v1 ∈ T(0,0)DG, so 2v3

11+v11v22+v12v21+2v12v22 = 0,
which reduces to v22 = 2v2

11− v21.
The relations that hold between the components of that vectors v1 and v2 allow us to con-

clude that the fourth order expression does not have constant sign for all v2 ∈ T 2
(0,0)DG with

correspondent v1 ∈ T(0,0)DG. Therefore, by Theorem 3.1 (Theorem 2.2, [5]), (0,0) is neither a
local minimum nor a local maximum of F on DG.

Theorem 3.4. Suppose that
a) F : X→R is p-times differentiable at x̄∈DG∩S, where DG = {x∈X , G(x)= 0}, G : X→Rk,
p≥ 2, and S is an arbitrary subset of a finite dimensional normed space X.

b) There is a positive integer m such that G is m-times differentiable at x̄, G
( j)
(x̄) = 0, 0 ≤

j ≤ m−1, and G(m)(x̄) is not identically zero.
c) F( j)(x̄)[y] j ≥ 0, ∀y ∈Rn, 1≤ j≤ p−1, and F(p)(x̄)[y]p > 0, ∀y 6= 0 with G(m)(x̄)[y]m = 0

and y ∈ Γx̄S.
Then x̄ is an isolated local minimum of order p of F on DG∩S.

Remark 3.5. The above theorem follows from Theorem 3.3, [14] as a p-times differentiable
function is p-times Gâteaux differentiable. If the set S is convex, then in the above theorem, the
contingent cone Γ(x̄,S) can be replaced by the tangent cone Tx̄S as these cones coincide.

In [11] we obtained second-order sufficient conditions via the tangent cone for an isolated
local minimum of order two for problem (P) with a locally Lipschitz objective function and a
convex constraint set.

Example 3.6. Let us consider the objective function F(x1,x2) = x4
1+5x7

2, subject to G(x1,x2) =

x8/3
1 + x1x2 + x2

2 = 0, F,G : R2→ R.
The method of Lagrange multipliers and the classical second-order optimality conditions

(Propositions 3.1.1 and 3.2.1, [4]) can not be applied to this example because G′(x) = 0, for all
x ∈ R2.

We notice that x̄ = (0,0) belongs to the constraint set DG. Obviously, x̄ verifies the well-
known first-order necessary optimality conditions F ′(x̄)(v)≥ 0, for all v∈ Tx̄DG as F

′
(0,0) = 0.
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Moreover, x̄ satisfies our second-order necessary optimality conditions of [9, Theorem 2.1] as
F
′
(x̄) = F

′′
(x̄) = 0.

The conditions of Theorem 3.4 are fulfilled with m= 2, p= 4 since F
′
(x̄)=F

′′
(x̄)=F

(3)
(x̄)=

0, and F
(4)
(x̄)[y]4 = 24y4

1 > 0, ∀y = (y1,y2), y 6= 0 such that G
′′
(x̄)[y]2 = 0, i.e., for all y 6= 0

with y1y2 + y2
2 = 0, as y1 = 0 implies y2 = 0 too, which contradicts y 6= 0.

By Theorem 3.4, we conclude that x̄ = (0,0) is a strict local minimum of F on DG, it is an
isolated local minimum of order four of F on DG.

In this example, Theorem 3.2, [9] is applicable with D = DG as F ′(x̄) = 0. The second-order
sufficient optimality conditions of [9, Theorem 3.2] are not verified because F

′′
(x̄) = 0 and

therefore F
′′
(x̄)(y)(y) is not strictly positive in any nonzero direction y ∈ Tx̄DG.

Theorem 2.2, [9] is not applicable to this example as G′(x̄) is not onto.
Theorem 4.2, [18] is applicable with fs = F , h = G, g(x) = 0, ∀x ∈ R2, and C = R2. The

higher-order sufficient optimality conditions of D.V. Luu’s result are not verified at (0,0) as
F

(4)
(0,0)[y]4 is not necessarily strictly positive for any direction y with ‖y‖ = 1, for example

F
(4)
(0,0)[(0,1)]4 = 0. Thus the origin can not be recognized as a higher-order isolated local

minimum of F on G−1(0) by means of [18, Theorem 4.2].

3.2. Higher-Order Optimality Conditions for Vector Optimization Problems. In this sec-
tion we deal with the vector optimization problem

Minimize F(x) subject to x ∈M, (V P)
where F : X→Y , X and Y are real linear normed spaces, M ⊆ X . Let Q⊂Y be a closed convex
cone with its interior int Q 6= /0.

A point x̄ ∈M is said to be a local weak minimum of F on M, if there exists a number δ > 0
such that

F(x)−F(x̄) /∈ −int Q, ∀x ∈M∩B(x̄,δ ), (3.7)
where B(x̄,δ ) stands for the open ball of radius δ centered at x̄.

The notion of local weak minimum is the concept of local minimum when F : X → R in
problem (V P).

A point x̄ is called a strict local Pareto minimum of order p of F on M, if there exist numbers
δ > 0 and α > 0 such that

( f (x)+Q)∩B( f (x̄),α‖x− x̄‖p) = /0, ∀x ∈M∩B(x̄,δ )\{x̄}. (3.8)

In the case Y =R and Q =R+, this notion becomes the usual notion of isolated local minimum
of order p, since then (3.8) is equivalent to

f (x))> f (x̄)+α‖x− x̄‖p, ∀x ∈M∩B(x̄,δ )\{x̄}.
We are also concerned with the multiobjective problem (MOP), which is a special case of

(V P) obtained for X = Rr, Q = Rr
+ and F = (F1, . . . ,Fr).

In this case the above definition of a weak local minimum becomes: a point x̄ ∈M is a weak
local minimum to problem (MOP), if there exists a neighborhood V of x̄ such that no x ∈V ∩M
satisfies Fi(x)< Fi(x̄) for all i = 1, . . . ,r.

Let G be a mapping from X into Y , where X and Y are real normed linear spaces. Recall that
G is Gâteaux differentiable at x̄, if there exists a continuous linear mapping Λ1 from X into Y
such that

G(x̄+ tv) = G(x̄)+ tΛ1(v)+o(t), ∀v ∈ X ,
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where ‖o(t)‖/|t| → 0 as t → 0. The mapping Λ1 is said to be Gâteaux derivative of G at x̄
and is denoted by G′G(x̄). Note that a mapping which is Gâteaux differentiable at x̄ may not be
continuous at x̄.

The mapping G : X → Y is p-times Gâteaux differentiable at x̄ (p ≥ 2), if G is Gâteaux
differentiable at x̄ and there exist continuous multilinear symmetric mappings Λk from Xk into
Y (continuous linear symmetric in k variables), k = 2, . . . , p, such that

G(x̄+ tv) = G(x̄)+ tΛ1(v)+
t2

2!
Λ2[v]2 + · · ·+

t p

p!
Λp[v]p +o(t p), ∀v ∈ X ,

where Λ1 = G′G(x̄), ‖o(t p)‖/|t|p → 0 as t → 0 (see Luu, [18]). Note that symmetric means
it does not change under permutation of variables. For the correctness of this definition, the
symmetric multilinear mapping Λp should be uniquely determined by the respective form v→
Λp(v)p (see, for example, [19]). The continuous multilinear symmetric mapping Λk is the kth

order Gâteaux derivative of G at x̄ and is denoted by G(k)
G (x̄). Thus, for a function G which is

p-times Gâteaux differentiable at x̄, G can be expanded as

G(x̄+ tv) = G(x̄)+ tG′G(x̄)(v)+
t2

2!
G(2)

G (x̄)[v]2 + · · ·+ t p

p!
G(p)

G (x̄)[v]p +o(t p),

for all v ∈ X , where ‖o(t p)‖/|t|p→ 0 as t→ 0.
In 2014, Luu, [18] established higher-order necessary conditions via higher-order tangent

cones for (V P) with regular equality constraints, that is, with an equality constraint function
that has onto Fréchet derivative at the minimum point.

For a m-times Gâteaux differentiable function G : X → Y , Luu, [18] replaced the Fréchet
derivatives by the corresponding Gâteaux derivatives in our expression (2.9) obtained in [6, 5,
10].

(SG
m)G(x̄,v1, . . . ,vm) =

m

∑
k=1

m!
k!

[ ∑
i1,...,ik∈{1,...,m}

i1+...+ik=m

1
i1!i2!...ik!

G(k)
G (x̄)(vi1) · · ·(vik)].

Theorem 3.7. (Theorem 3.3, [18]) Let x̄ be a local weak minimum for problem (VP) with M =
{x ∈ X : −H(x) ∈ S, x ∈ DG}, where H : X → Z, Z is a linear normed space, S is a closed
convex cone in Z, G : X → Rl , l nonnegative integer, DG = {x ∈ X : G(x) = 0}. Assume that F
is n-times Gâteaux differentiable at x̄, H is p-times Gâteaux differentiable at x̄, p ≤ n, G is of
class Cn in a neighborhood of x̄ with G′(x̄) onto.

Then, for v1,v2, . . . ,vn satisfying
(SH

j )G(x̄;v1, . . . ,v j) ∈ −S, j = 1, . . . , p−1,
(SH

p )G(x̄;v1, . . . ,vp) ∈ −int S,
(SG

i )G(x̄;v1, . . . ,vi) = 0, i = 1, . . . ,n,
(SF

i )G(x̄;v1, . . . ,vi) = 0, i = 1, . . . ,n−1,
we have

(SF
n )G(x̄;v1, . . . ,vn) /∈ −int Q.

We recall the higher-order sufficient conditions derived in 2014 by Luu, [18], and then the
higher-order sufficient conditions we formulated in [14] in 2019 for multiobjective optimization
problems.
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Denote by (Fs)
(i)
G the i-th order Gâteaux derivative of Fi at x̄, and (Fs)

(1)
G = (Fs)

′
G.

Theorem 3.8. (Theorem 4.2, [18]) Consider the problem (MOP) with the feasible set M = {x ∈
C : −H(x) ∈ S, x ∈ DG}, Y = Rr, Q = Rr

+, and F = (F1, . . . ,Fr) : X → Rr. Let x̄ ∈M. Assume
that X is a finite dimensional linear normed space, C ⊂ X is convex, S is a closed convex cone
in Z, int S 6= /0, G : X →W and H : X → Z areGâteaux differentiable at x̄, Fs is p-times Gâteaux
differentiable at x̄ for some s, 1 ≤ s ≤ r, Z and W are linear normed spaces Suppose also that
the following two conditions hold:

a) (Fs)
(i)
G (x̄)(v)i ≥ 0, for all v ∈ Tx̄C∩S, i = 1,2, . . . ,n−1,

b) (Fs)
(p)
G (x̄)(v)p > 0, for all v∈ Tx̄C∩S∩{u∈ X : H ′G(x̄)(u)∈−SH(x̄), G′G(x̄)(u) = 0}. Here

SH(x̄) = cl(cone(S+H(x̄))), and S is the unit sphere in X.
Then x̄ is a strict local Pareto minimum of order p of F on M.

Note that SH(x̄) 6= /0 if int S 6= /0.

Theorem 3.9. (Theorem 4.1, [14]) Consider the problem (MOP) with the feasible set M =
S∩DG. Let F = (F1, . . . ,Fr) : U → Rr be defined on an open subset U of the finite dimensional
normed space X. Suppose that G : U → Rk and Fs : U → R for some s ∈ {1, . . . ,r} are p-times
Gâteaux differentiable at x̄ ∈M = S∩DG, where DG = {x ∈U ; G(x) = 0}, p≥ 2, and S is an
arbitrary subset of X, S⊆U ⊆ X. Suppose that there exists some λ ∈ Rk such that
i) [(Fs)

( j)
G (x̄)−λG

( j)

G (x̄)][y] j ≥ 0, for all y ∈ X, 1≤ j ≤ p−1, and

ii) [(Fs)
(p)
G (x̄)−λG(p)

G (x̄)][y]p > 0, for all y ∈ Γ(x̄,M), y 6= 0.
Then x̄ is a strict local Pareto minimum of order p of F on M.

Theorem 3.10. (Theorem 4.2, [14]) Consider the problem (MOP) with the feasible set M =
S∩DG. Suppose that

a) F = (F1, . . . ,Fr) : U →Rr is defined on an open subset U of the finite dimensional normed
space X, Fs : U → R for some s ∈ {1, . . . ,r} is p-times Gâteaux differentiable at x̄ ∈M, where
DG = {x ∈U ; G(x) = 0}, p≥ 2, S is an arbitrary subset of X, S⊆U ⊂ X.
b) There is a positive integer m such that G is m-times Gâteaux differentiable at x̄, G

( j)

G (x̄) = 0,
0≤ j ≤ m−1, and G(m)

G (x̄) is not identically zero.

c) (Fs)
( j)
G (x̄)[y] j ≥ 0, ∀y∈ X, 1≤ j≤ p−1, and (Fs)

(p)
G (x̄)[y]p > 0, ∀y 6= 0 with G(m)

G (x̄)[y]m = 0
and y ∈ Γ(x̄,S).

Then x̄ is a strict local Pareto minimum of order p of F on M.

Remark 3.11. If the set S is convex, then in the above theorem (Theorem 4.2, [14]), the con-
tingent cone Γ(x̄,S) can be replaced by the tangent cone Tx̄S as these cones coincide.

Example 3.12. Let us consider the function f = ( f1, f2) : R2 → R2 subject to G(x1,x2) =
x5

1− x4
2 + x2

2− x3
1x2 = 0, G : R2→ R, where f1(x1,x2) = x2

1− x2
2 and

f2(x1,x2) =

{
−x2, i f x1 = x2

2
0, i f otherwise.

The functions f1 and G are polynomials, so they are (Fréchet) differentiable at (0,0) of any
order and therefore Gâteaux differentiable of any order. The function f2 is Gâteaux differ-
entiable at (0,0) with ( f2)

′
G(0,0) = 0, but f2 is not (Fréchet) differentiable at (0,0). Indeed,
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lim
‖h‖→0

| f2((0,0)+h)− f2(0,0)|
‖h‖

= 1 6= 0, for h(t) = (t2, t) with t→ 0+, so the (Fréchet) deriva-

tive of f2 does not exist at (0,0).
First we show that the origin is an isolated local minimum of order two of f1 on DG.
We notice that x̄ = (0,0) belongs to the constraint set DG. Obviously, x̄ verifies the well-

known first-order necessary optimality conditions f ′1(x̄)(v)≥ 0, for all v∈ Tx̄DG, as f ′1(0,0) = 0.
Also it can be seen that x̄ satisfies our second-order necessary optimality conditions given in [9,
Theorem 2.1]: f ′′1 (x̄)(v)(v)+ f ′1(x̄)(w) = f ′′1 (x̄)(v)(v) = 2v2

1−2v2
2≥ 0, for all v= (v1,v2)∈ Sw⊂

Tx̄DG ⊆ Γ(x̄,DG)⊆ {v ∈ R2; G′′(0,0)[v]2 = 0}= {v ∈ R2;v2 = 0} (see [9] for the definition of
the set Sw).

The assumptions of Theorem 3.4 are satisfied with f1 = F , S = R2, p = 2, m = 2. Indeed,
f ′1(x̄)(y) = 0≥ 0, for all y∈R2, and f ′′1 (x̄)(y)(y) = 2y2

1−2y2
2 > 0, for all y 6= 0 with G′′(x̄)[y]2 =

0, as y2 = 0, and so y1 6= 0. Therefore, by Theorem 3.4 (Theorem 3.3, [14]) the origin is an
isolated local minimum of order two of f1 subject to G(x1,x2) = 0.

The hypotheses of Theorem 3.10 (Theorem 4.2, [14]) are verified with fs = f1, S =R2, p= 2,
m = 2, and therefore, the origin is a strict local Pareto minimum of order two of f subject to
G(x1,x2) = 0.

Theorem 4.2, [18] is applicable with fs = f1, h = G, g(x) = 0, for all x ∈ R2, C = R2, but
the hypotheses of Luu’s result are not satisfied as f ′′1 (0,0)[y]

2 = 2y2
1− 2y2

2 ≯ 0, for all y with
‖y‖ = 1. Thus, the origin can not be recognized as a strict local Pareto minimum of order two
of f on DG by means of [18, Theorem 4.2].

4. FLOW-INVARIANCE VIA HIGHER-ORDER TANGENT CONES

In this section we provide conditions for a closed subset D of a Banach space X to be flow-
invariant with respect to the n-th order autonomous differential equation

u(n)(t) = F(u(t)), t ≥ 0, (4.1)

where n≥ 3, and F : U → X is a locally Lipschitz mapping.
The invariant sets for the first-order differential equations were studied by H. Brézis [3], M.G.

Crandall [15], R.H. Jr. Martin [20], N.H. Pavel and F. Iacob [23] and many other authors.
In [25], N.H. Pavel and C. Ursescu treated the problem of flow-invariance of a set with

respect to the second-order differential equation u′′(t) = F(u(t)), t ≥ 0, using the theory of
tangent cones.

In [6, 7], we characterized the sets D = DG = {x ∈ X ; G(x) = 0}, that are flow-invariant with
respect to the n-th order autonomous differential equation (4.1) when n≥ 3, and thus extended
Theorem 2.6, [25].

Theorem 4.1. (Definition 1.9, [21]) The nonempty set D ⊂U is said to be (right-hand) flow-
invariant with respect to the n-th order differential equation (4.1) if the solution u : [0,T )→ X
to the Cauchy problem (CP) determined by (4.1) and the initial conditions

u(0) = x,u′(0) = v1, . . . ,u(n−1)(0) = vn−1, (4.2)

with x ∈ D, v1 ∈ TxD,. . . , vn−1 ∈ T n−1
x D, F(x) ∈ T n

x D having correspondent vectors v1, . . . ,
vn−1, satisfies

u(t) ∈ D,∀ t ≥ 0, t ∈ domu. (4.3)
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The constraints imposed to (x,v1, . . . ,vn−1) are necessary conditions to have the invariance
property (4.3).

In [21], Pavel and Motreanu introduced the following set

M(n)
D = {(x,v1, . . . ,vn−1) ∈ D×Xn−1 : vi ∈ T i

x D, i = 1, . . . ,n−1,

F(x) ∈ T n
x D with associated vectors v1, . . . ,vn−1},n≥ 2. (4.4)

Note that M(2)
D coincides with the set MD previously introduced by Pavel and Ursescu in [25]

MD = {(x,v) ∈ D×Xn−1 : v ∈ TxD,F(x) ∈ T 2
x D with associated vector v}.

The choice in (4.2) for the initial conditions was expresses in [21] by means of (4.4) as
follows

(u(0),u′(0), . . . ,u(n−1)(0)) = (x,v1, . . . ,vn−1) ∈M(n)
D .

This was justified by the following result that extended Theorem 2.2 i) of Pavel and Ursescu,
[25] established for second-order differential equations.

Proposition 4.2. (Proposition 1.8, [21]) Consider the Cauchy problem (CP) determined by
(4.1) and (4.2). If u : [0,T )→ X is a solution of (CP), which satisfies the invariance property
(4.3), then one has

(u(t),u′(t), . . . ,u(n−1)(t)) ∈M(n)
D ,∀ t ∈ [0,T ). (4.5)

N.H. Pavel and C. Ursescu ([21, 25]) reduced the problem of invariant sets for (4.1) to a
similar problem for a first-order differential equation, fact that allowed them to utilize a theorem
proved by M. Nagumo [22] and, independently, by H. Brézis (Theorem 1, [3]), in order to
obtain the following characterization of flow-invariant sets D⊂U with respect to the n-th order
differential equation (4.1).

Theorem 4.3. (Theorem 1.10, [21]) Assume that M(n)
D is a nonempty closed subset of U×Xn−1,

for a closed subset D of U, n≥ 2. Then D⊂U is a flow-invariant set with respect with the n-th
order differential equation (4.1) if and only if (v1, . . . ,vn−1,F(x)) ∈ Xn is a tangent vector to
M(n)

D for all (x,v1, . . . ,vn−1) ∈M(n)
D , i.e.,

lim
t↓0

t−1d((x,v1, . . . ,vn−1)+ t(v1, . . . ,vn−1,F(x));M(n)
D ) = 0.

The above necessary and sufficient conditions for a set to be flow-invariant with respect to
the nth-order differential equation (4.1) were inspired by Theorem 2.4, [25] given for the case
n = 2.

Pavel and Ursescu gave a description of the sets DG = {u ∈ U : G(u) = 0} that are flow-
invariant with respect to the second order differential equation u′′(t) = F(u(t)), t ≥ 0.

Theorem 4.4. (Theorem 2.6, [25]) Assume that G : U → Rs, s ≥ 1 is two times Fréchet differ-
entiable and its first Fréchet derivative G′(x) : X → Rs is onto for each x ∈ DG. Then M(2)

DG
is

given by

M(2)
DG

= {(x,v1) ∈U×X : G(x) = 0,G′(x)(v1) = 0,G′′(x)(v1)(v1)+G′(x)(F(x)) = 0}. (4.6)

Suppose further that G is three times Fréchet differentiable on U, the function h : U → Rs

given by
h(x) = G′(x)(F(x)),∀x ∈U,
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is Fréchet differentiable, M(2)
DG

is nonempty and the mapping

(G′(x)(·),G′′(x)(v1)(·)) : X → Rs×Rs is onto for every (x,v1) ∈M(2)
DG

.
Then DG is flow-invariant with respect to the differential equation u′′(t) = F(u(t)), t ≥ 0 if

and only if

G′′′(x)(v1)(v1)(v1)+2G′′(x)(v1)(F(x))+h′(x)(v1) = 0, ∀(x,v1) ∈M(2)
DG

. (4.7)

Note that if G : U → Rs, then DG = {u ∈U : G(x) = 0} is closed in U .

Remark 4.5. (Remark 5.1, [25]) First recall that a function F : U → X is regarded as a field
of force on U , in the sense that to each vector position x ∈U it is associated the vector force
F(x) ∈ X .

The notion

DG is a f low− invariant set f or the equation u′′(t) = F(u(t)), t ≥ 0, (4.8)

can be restated in terms of Flight Mechanics as follows:
A mass particle projected from a point x ∈DG with a velocity v1 ∈ X such that (x,v1) ∈M(2)

DG
(given by (4.6)), describes (under the action of the force field F) an orbit which lies in DG.
Under the hypotheses of Theorem 4.4 upon G, this happens if and only if (4.7) holds.

We extended Theorem 2.6, [25] to third-order flow-invariance problems.

Theorem 4.6. (Theorem 3, [7], Theorem 4.3, [6]) Assume that G : U → Rs, s≥ 1 is three times
Fréchet differentiable and its first Fréchet derivative G′(x) : X → Rs is onto for each x ∈ DG.
Then M(3)

DG
is given by

M(3)
DG

= {(x,v1,v2) ∈U×X×X : G(x) = 0,G′(x)(v1) = 0,

G′′(x)(v1)(v1)+G′(x)(v2) = 0,
G′′′(x)(v1)(v1)(v1)+3G′′(x)(v1)(v2)+G′(x)(F(x)) = 0}. (4.9)

Suppose further that G is four times Fréchet differentiable on U, the function h : U → Rs

given by
h(x) = G′(x)(F(x)),∀x ∈U, (4.10)

is Fréchet differentiable, M(3)
DG

is nonempty and the mapping

(G′(x)(·),G′′(x)(v1)(·)) : X → Rs×Rs is onto for every (x,v1,v2) ∈M(3)
DG

.
Then DG is flow-invariant with respect to the differential equation u′′′(t) = F(u(t)), t ≥ 0 if

and only if
G(4)(x)(v1)(v1)(v1)(v1)+6G′′′(x)(v1)(v1)(v2)+

+3G′′(x)(v2)(v2)+3G′′(x)(v1)(F(x))+h′(x)(v1) = 0. (4.11)

Our result below [7] represents a generalization of the previous theorem for the case of equa-
tion (4.1), that is, for the case of higher-order flow-invariance problems.

Theorem 4.7. (Theorem 4, [7], Theorem 4.4, [6]) Assume that G : U → Rs is n times Fréchet
differentiable and its first Fréchet derivative G′(x) : X→Rs is onto for each x ∈DG. Then M(n)

DG
is given by

M(n)
DG

=
{
(x,v1, ...,vn−1) ∈U×Xn−1 : G(x) = 0,
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SG
j (x,v1, ...,v j) = 0,1≤ j ≤ n−1,

G′(x)(F(x))+
n

∑
k=2

n!
k!

[
∑

i1+...+ik=n
i1,...,ik∈{1,...,n−1}

1
i1! · · · ik!

G(k)(x)(vi1) . . .(vik)
]
= 0
}
. (4.12)

Suppose further that G is n+ 1 times Fréchet differentiable on U, the function h : U → Rs

given by
h(x) = G′(x)(F(x)),∀x ∈U,

is Fréchet differentiable, M(n)
DG

is nonempty and the mapping

(G′(x)(·),G′′(x)(v1)(·)) : X → Rs×Rs is onto for any (x,v1, . . .vn−1) ∈M(n)
DG

.
Then DG is flow-invariant with respect to the differential equation u(n)(t) = F(u(t)), t ≥ 0 if

and only if

h′(x)(v1)+
n

∑
k=3

n!
k!

{
∑

i1+...+ik=n
i1,...,ik∈{1,...,n−2}

1
i1! · · · ik!

[
G(k+1)(x)(v1)(vi1) . . .(vik)+

+G(k)(x)(vi1+1)(vi2) . . .(vik)+ . . .+G(k)(x)(vi1) . . .(vik−1)(vik+1)
]}

+

+nG′′′(x)(v1)(v1)(vn−1)+nG′′(x)(v2)(vn−1)+nG′′(x)(v1)(F(x)) = 0. (4.13)

Here, SG
j (x,v1, ...,v j), j ≥ 1 denotes the expression

SG
j (x,v1, ...,v j) =

j

∑
k=1

j!
k!

[
∑

i1+...+ik= j
i1,...,ik∈{1,..., j}

1
i1! · · · ik!

G(k)(x)(vi1) . . .(vik)
]
.

We can derive necessary and sufficient conditions for the flow-invariance of the sphere S(r)
of radius r > 0 centered at origin in an Hilbert space H by applying Theorems 4.6 and 4.7 with

G(x) =
1
2
(‖x‖2− r2),∀x ∈ H as S(r) = DG.

Corollary 4.8. Let H be a real Hilbert space of inner product <,> and norm ‖ · ‖.
Then, in the case of the sphere S(r) = {x ∈ H,‖x‖ = r}, r > 0, the sets given by (4.9) and

(4.12) become respectively

M(3)
S(r) =

{
(x,y1,y2) ∈U×H×H,‖x‖= r, < x,y1 >= 0,

‖y1‖2+< x,y2 >= 0, < x,F(x)>+3 < y1,y2 >= 0
}
, and (4.14)

M(n)
S(r) =

{
(x,y1, . . . ,yn−1) ∈U×Hn−1,‖x‖= r, < x,y1 >= 0,

‖y1‖2+< x,y2 >= 0, < x,y j >+
1
2

j−1

∑
k=1

(
j
k

)
< yk,y j−k >= 0,3≤ j ≤ n−1,

< x,F(x)>+
1
2

n−1

∑
k=1

(
n
k

)
< yk,yn−k >= 0

}
, n > 3. (4.15)
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Corollary 4.9. Let U ⊂ H be an open subset of the Hilbert space H, with S(r) ⊂U. Assume
that F : U→H is locally Lipschitz and the mapping h(x) =< x,F(x)> is Fréchet differentiable
on U.

Then S(r) is a flow-invariant set with respect to the equation u′′′(t) = F(u(t)), t ≥ 0, if and
only if

3‖y2‖2 +3 < y1,F(x)>+h′(x)(y1) = 0,∀(x,y1,y2) ∈M(3)
S(r), (4.16)

and S(r) is a flow-invariant set for (4.1) if and only if

n < y2,yn−1 >+n < y1,F(x)>+h′(x)(y1) = 0,∀(x,y1, . . . ,yn−1) ∈M(n)
S(r). (4.17)

Remark 4.10. The result obtained when the order of the differential equation is equal to three
has a geometrical interpretation. Suppose that at the initial moment a mass particle is at a point
x in a given set DG (for example, on a sphere of center the origin and radius r in the three
dimensional space in the case G(x) = 1

2(‖x‖
2− r2), for all x ∈ R3), it has a certain velocity

v1 and a certain acceleration v2, and its trajectory u(t) satisfies the third-order autonomous
differential equation under discussion, then the trajectory of the particle under the action of the
force field F remains in that set as long as it exists if and only if the necessary and sufficient
condition for the flow-invariance of the set with respect to that third-order differential equation
are verified (under the hypotheses of Theorem 4.7 upon G, and n = 3).
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